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Q: How many ways can you tile 2-d flat 
space using regular polygons? 

A. Zero

B. Three

C. Five

D. Infinity

Answer:  Three (equilateral triangles, squares, or hexagons)



Tilings of 2-d flat space (i.e., plane) using regular polygons

{p,q} = {3,6}
{4,4}

{6,3}

Q:  But how do you prove that these are the only three?

Tiling condition for q p-gons meeting at a vertex: 1/p + 1/q = 1/2

Opening angle of a regular p-gon = (p-2)∗180o∕p
Sum of the angles around each vertex = 360oA:

q* (p-2)*180o / p = 360o









Figure 69
(Plane Tessellations)
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Q: How many different 
periodic wall tilings are there?

=
?

A) Three     B) Seven   C) Seventeen    D) 230     E) Infinity

Answer: 17 different 2-d wall tilings (Fedorov 1891, Polya 1924)



Dror Bar-Natan’s Image Gallery:Symmetry:Tilings:

Brian Sanderson’s Pattern Recognition Algorithm

Is the maximum rotation order 1,2,3,4 or 6?

Is there a mirror (m)? Is there an indecomposable glide reflection (g)?

Is there a rotation axis on a mirror? Is there a rotation axis not on a mirror?
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Note: Every pattern is identified according to three systems of notation, as in the example below:

442 The Conway-Thurston notation, as used in my tilings page.

p4 The International Union of Crystallography notation.

S442 The Montesinos notation, as in his book

“Classical Tesselations and Three Manifolds”

• See this page in HTML:

http://www.ma.huji.ac.il/�drorbn/Gallery/Symmetry/Tilings/Sanderson/index.html

• This page is a modified version of a page by Brian Sanderson. Visit his original page at

http://www.maths.warwick.ac.uk/�bjs/images/patrecog.jpg

(from Brian Sanderson’s webpage)17 wallpaper symmetry patterns





CG1CG2G2G1 - BAD!!

CG1G2G2G1 - BAD!! CG1CG2G2G1 - BAD!!

CG1G2G2G1 - BAD!!



Extra slides
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