Escher tiles

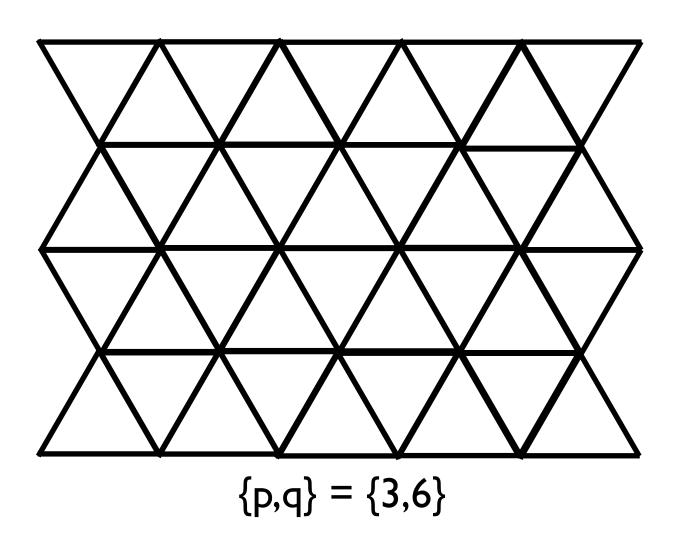
Joe Romano

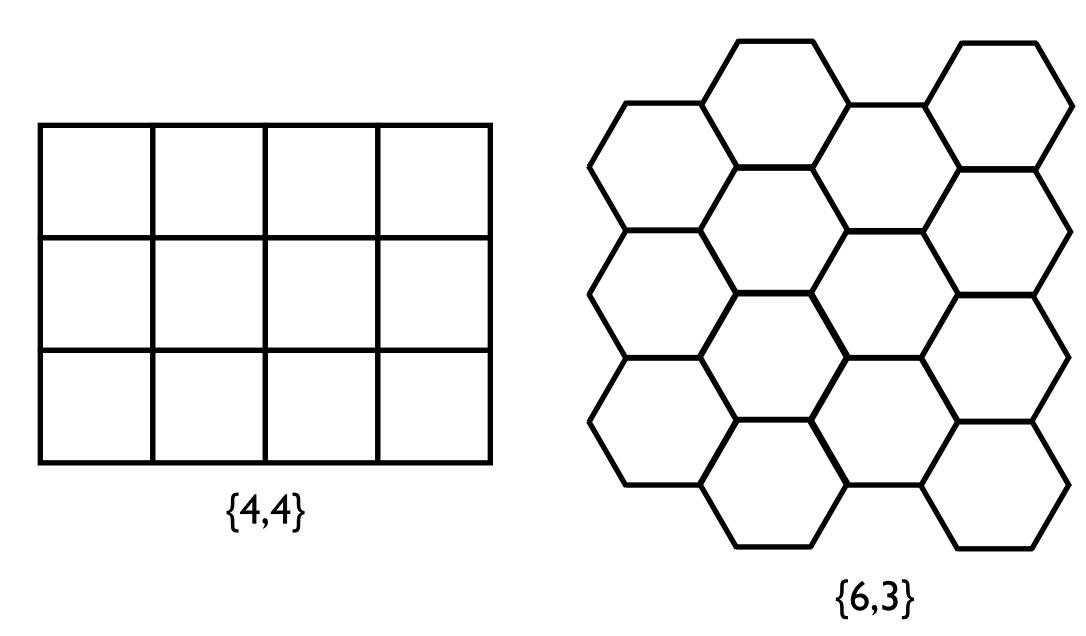
Q: How many ways can you tile 2-d flat space using regular polygons?

- A. Zero
- B. Three
- C. Five
- D. Infinity

Answer: Three (equilateral triangles, squares, or hexagons)

Tilings of 2-d flat space (i.e., plane) using regular polygons

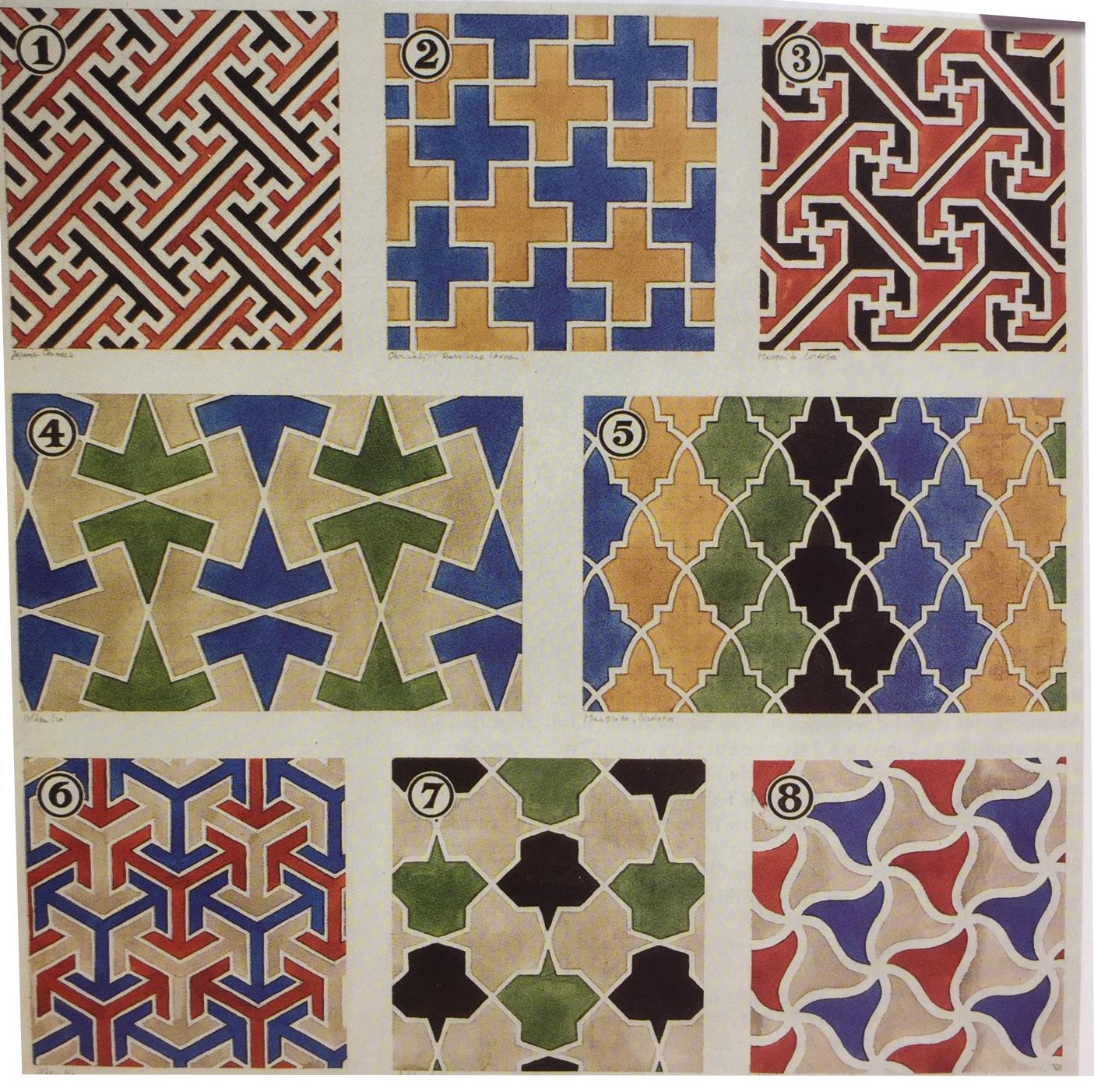


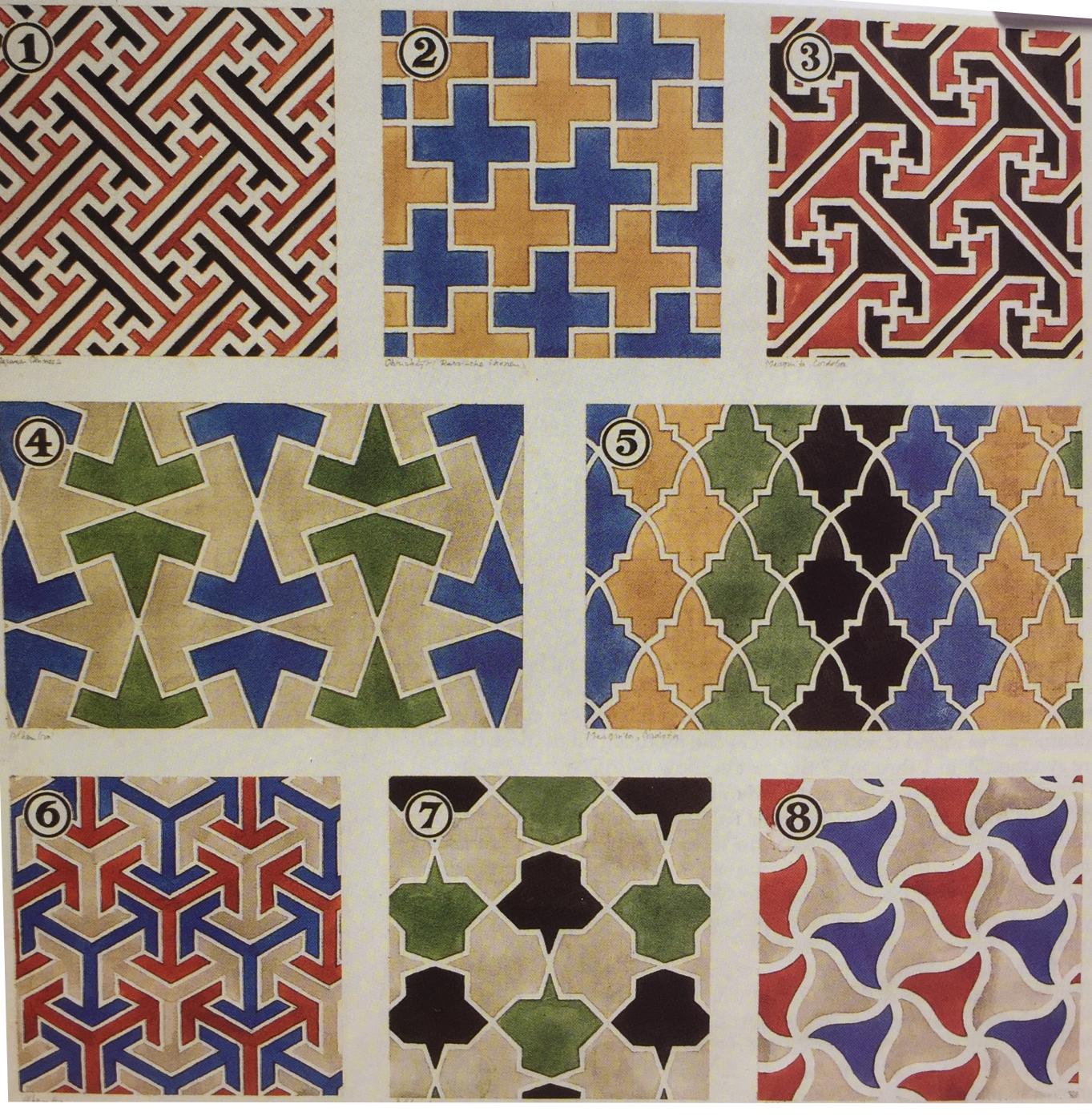


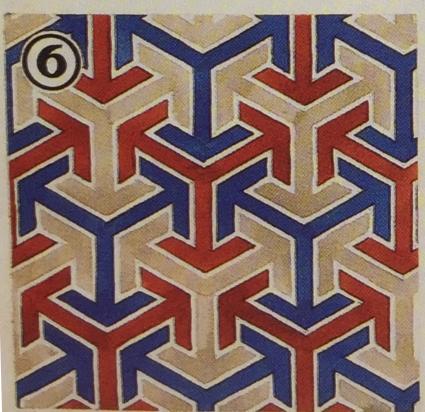
- Q: But how do you prove that these are the only three?
- A: Sum of the angles around each vertex = 360° Opening angle of a regular p $q*(p-2)*180^{\circ}/p = 360^{\circ}$

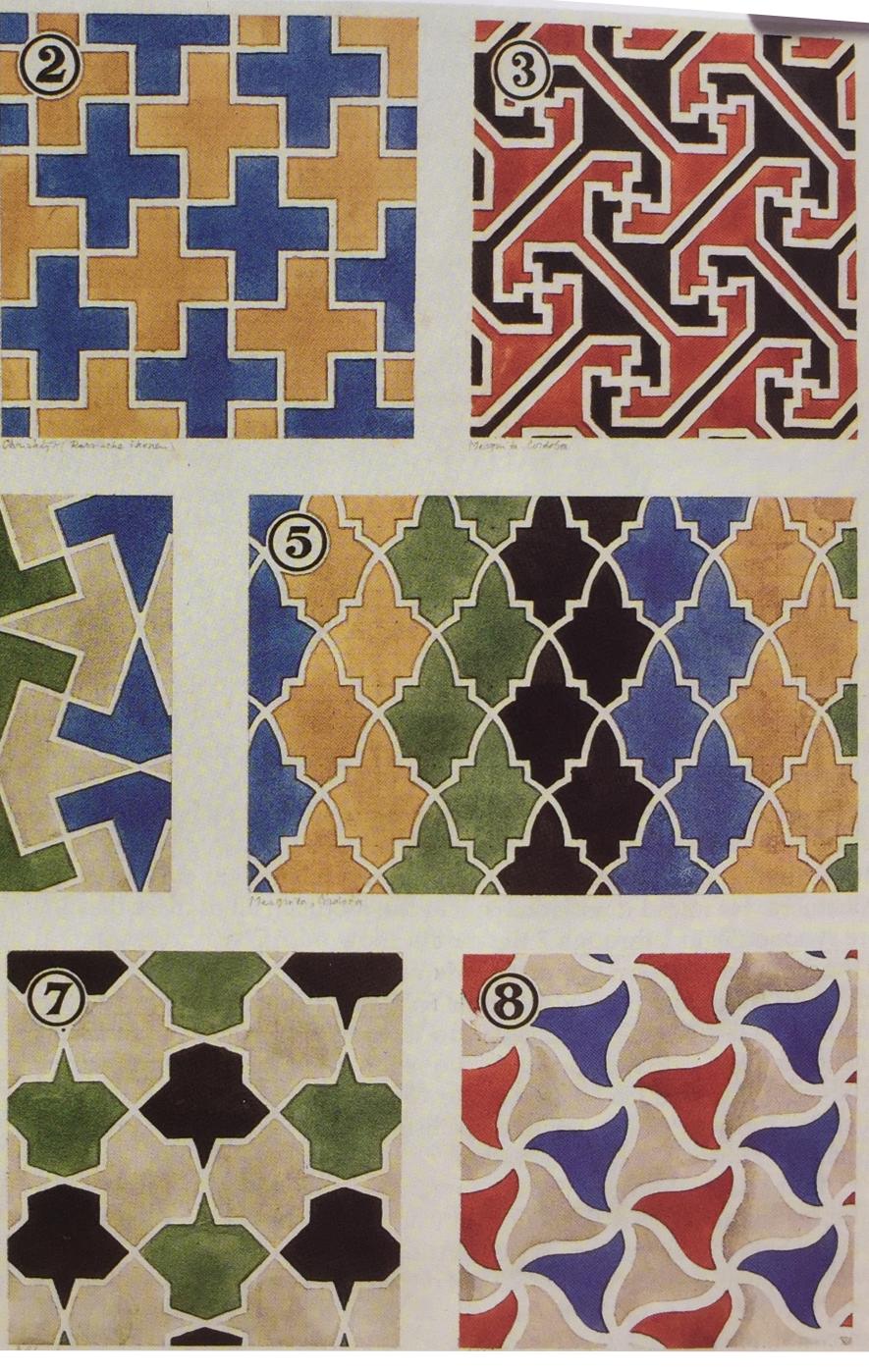
Tiling condition for q p-gons meeting at a vertex: I/p + I/q = I/2

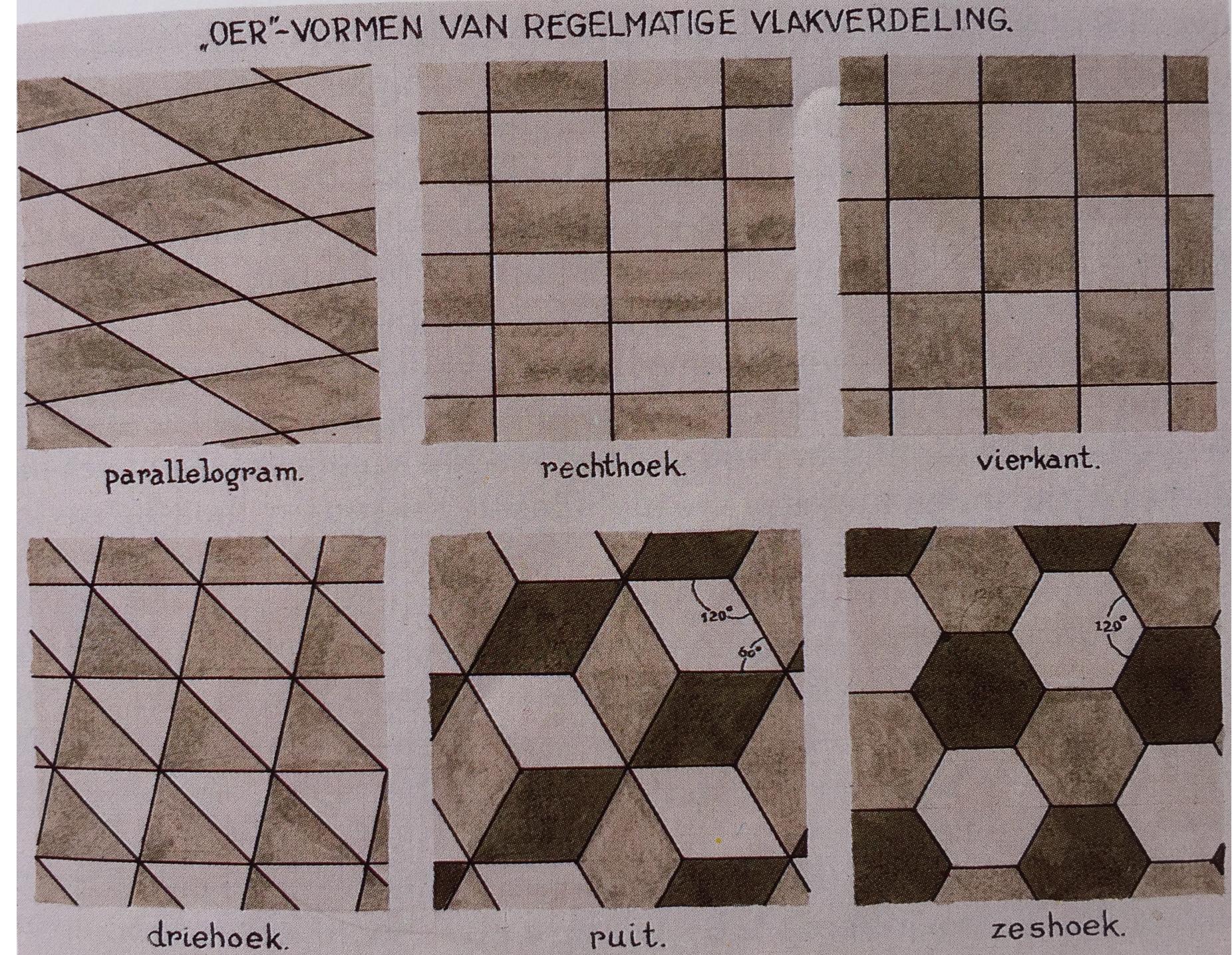
$$-gon = (p-2) * 180^{\circ}/p$$







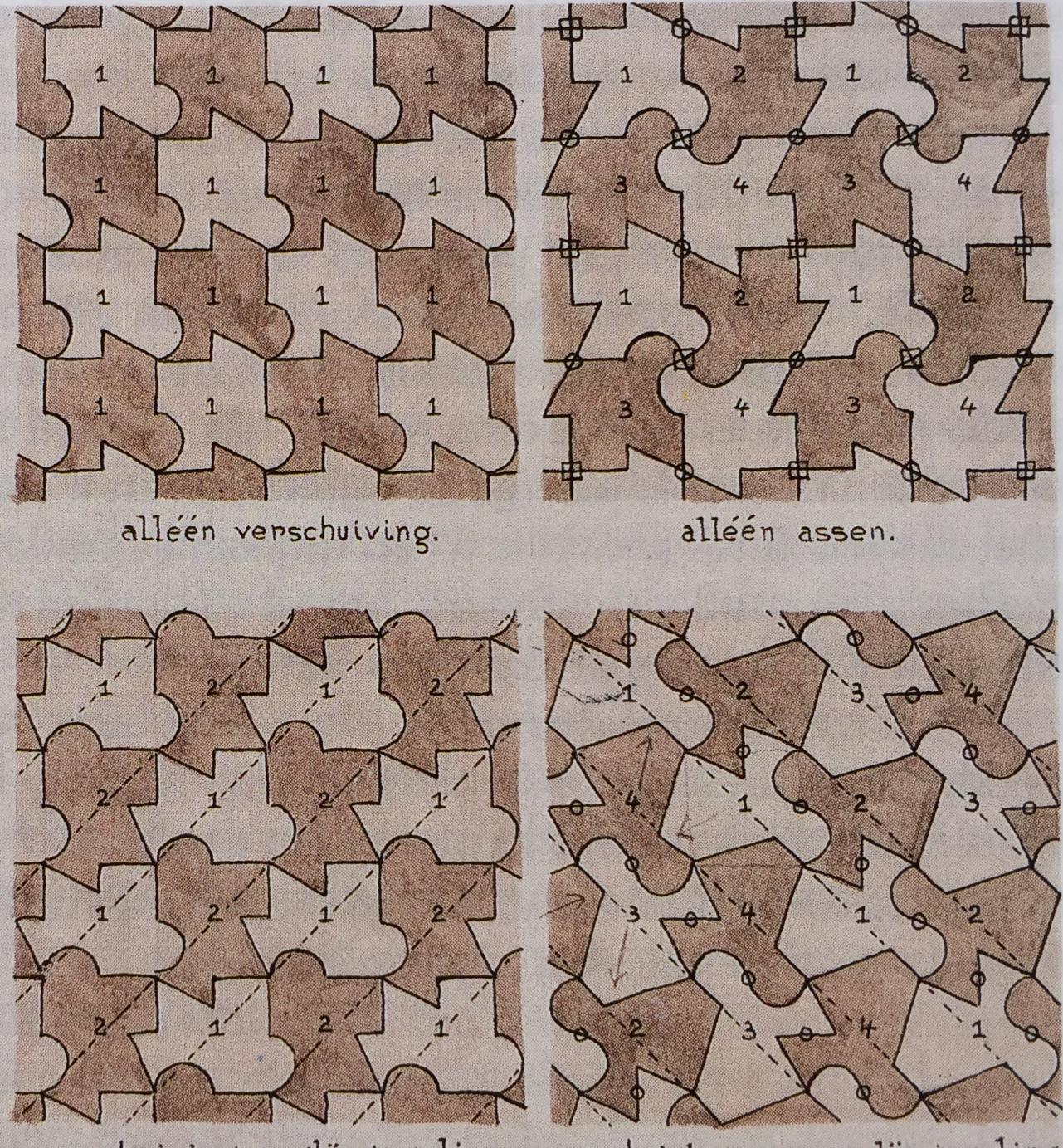


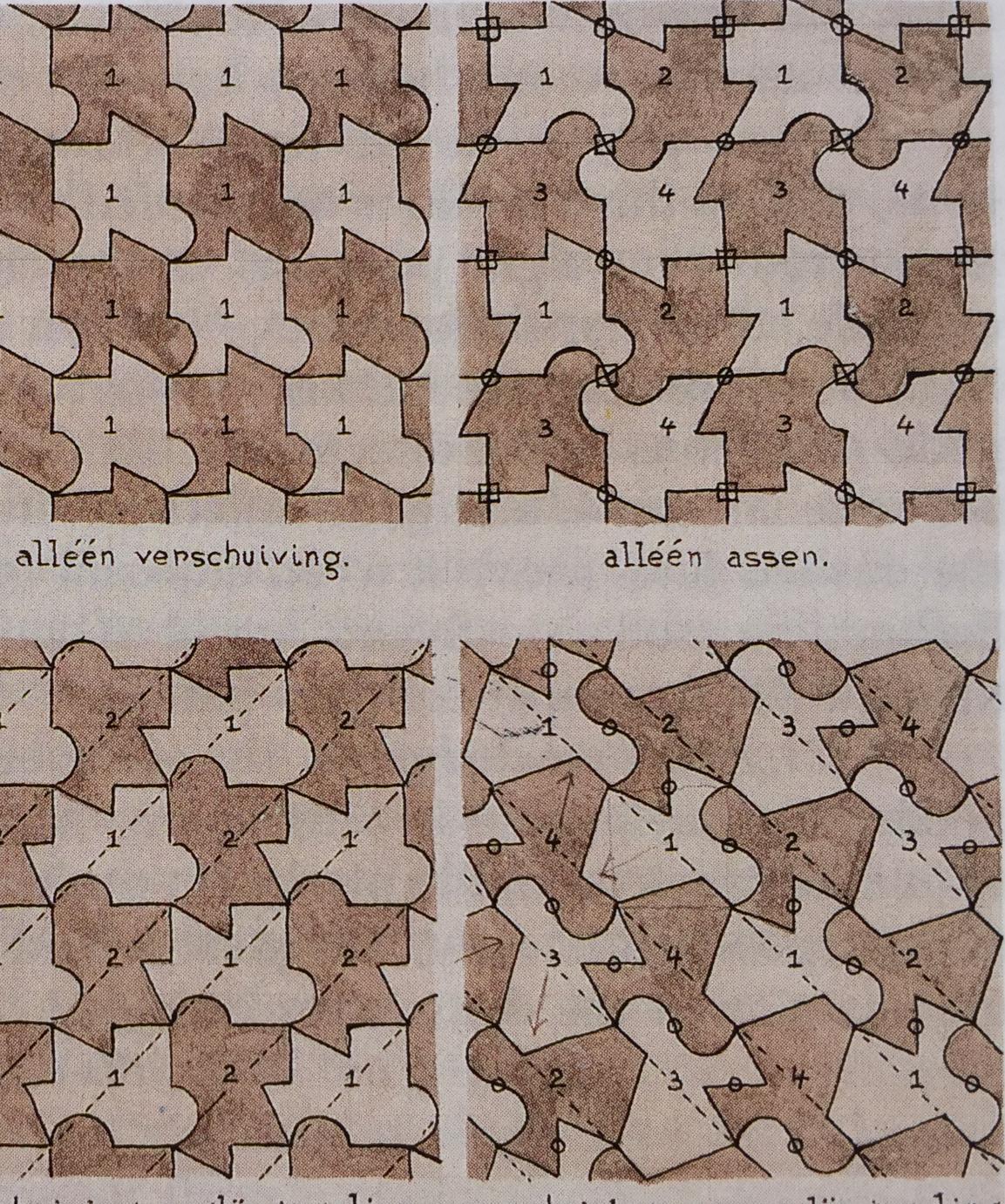


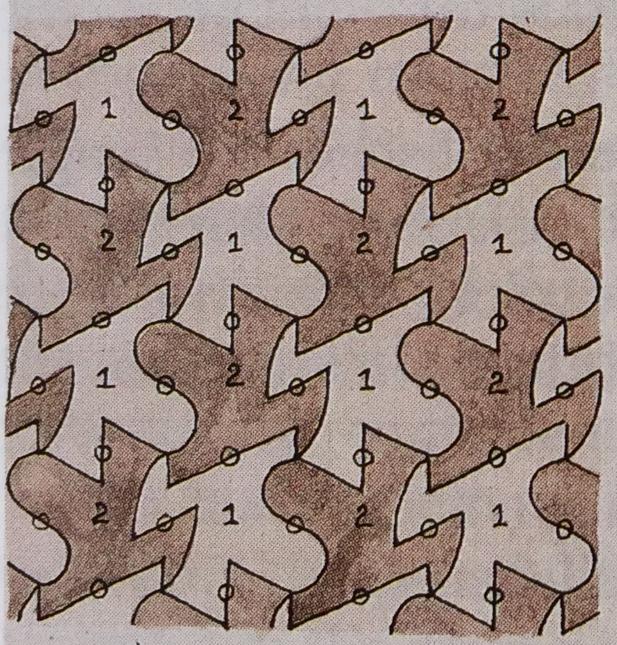
REGELMATIGE VLAKVERDELING.

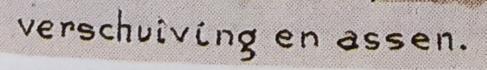
vijf voorbeelden van vierkant-systemen.

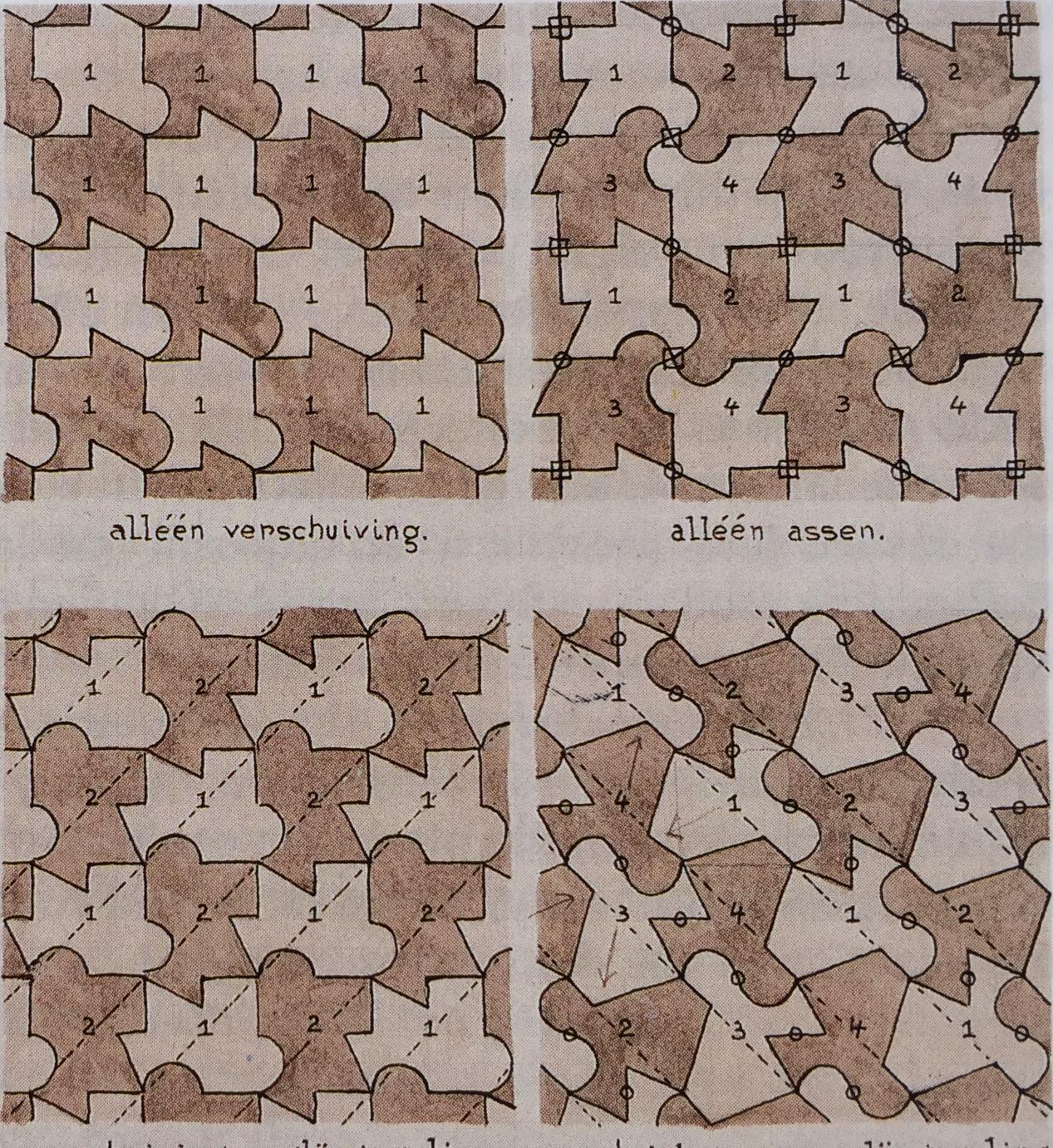
de drie hoofdkenmerken zijn: 1. verschuiving. 2. assen. (o en D) 3. glijspiegeling.





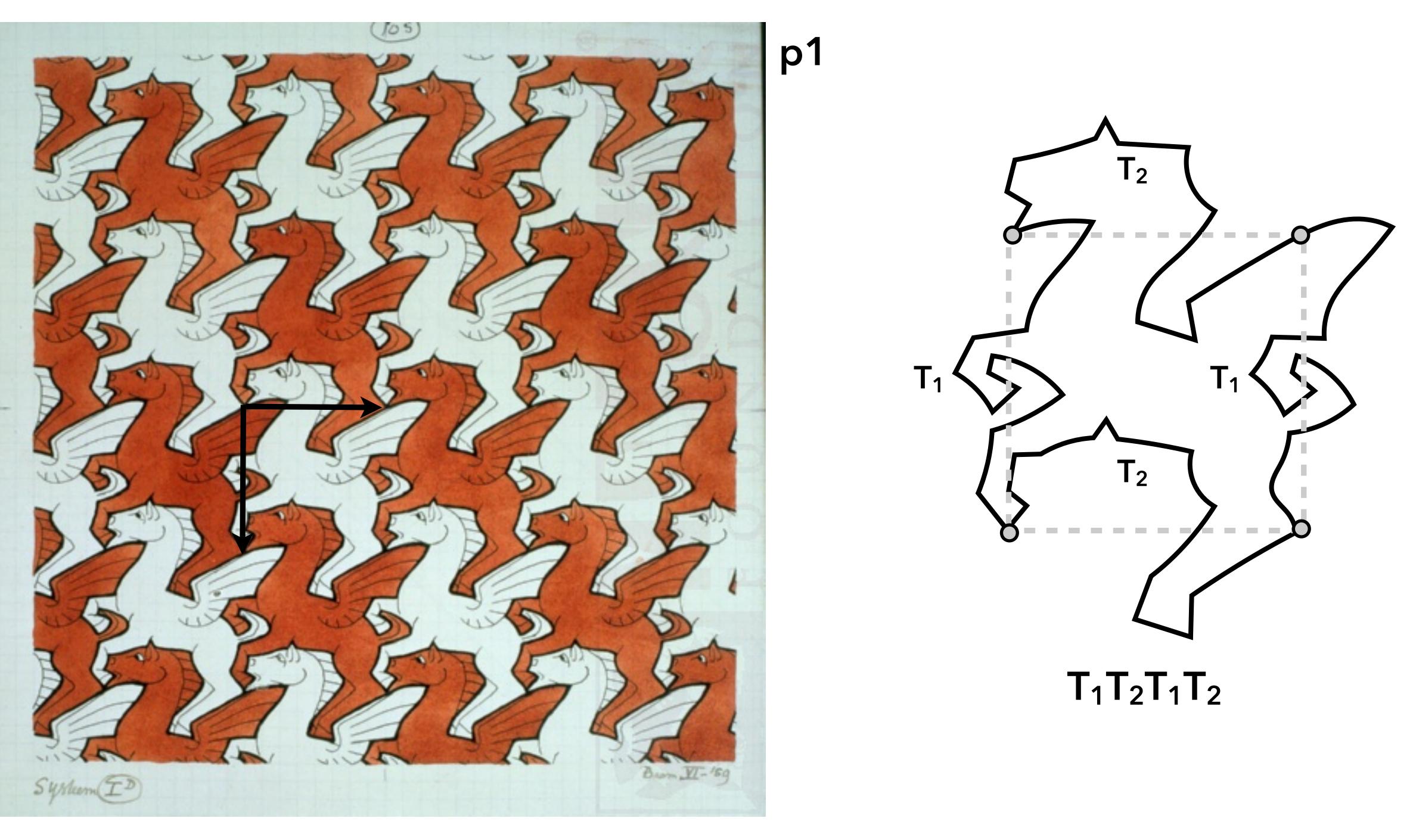


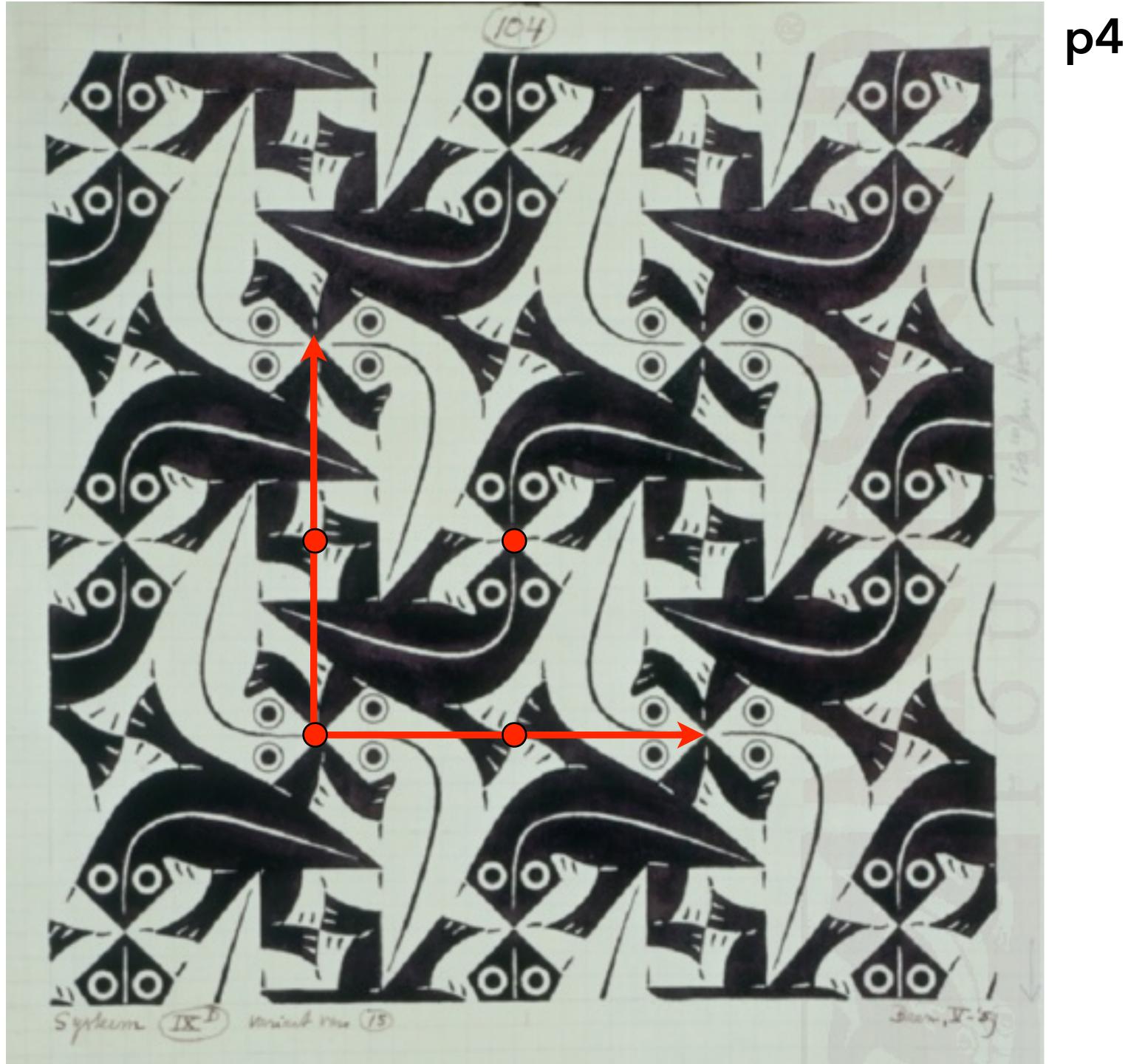


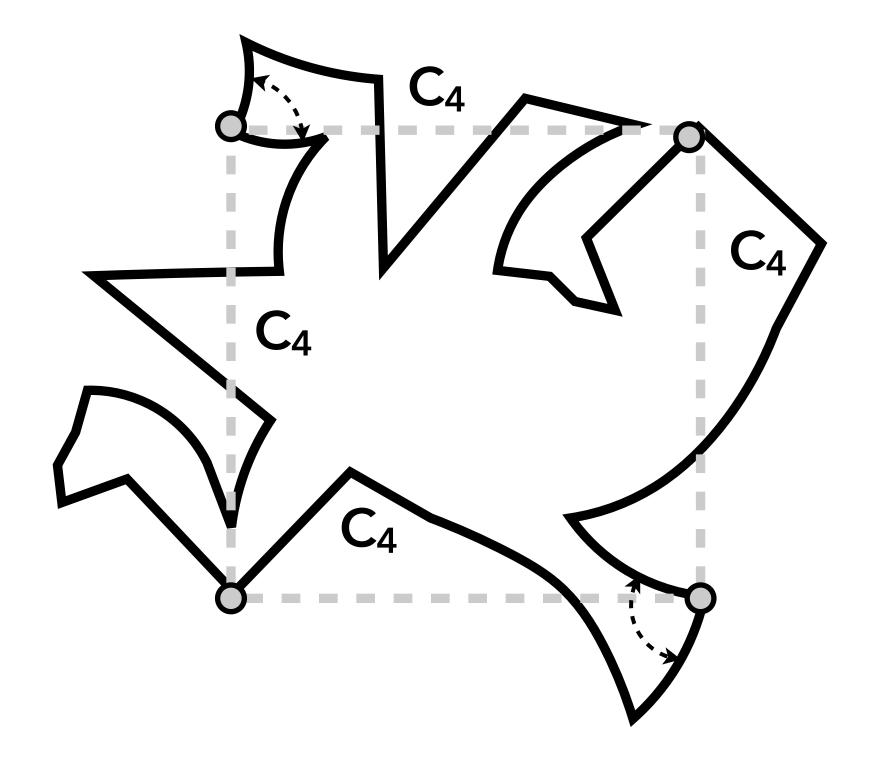


verschuiving en glijspiegeling. verschuiving,assenen glijspiegeling

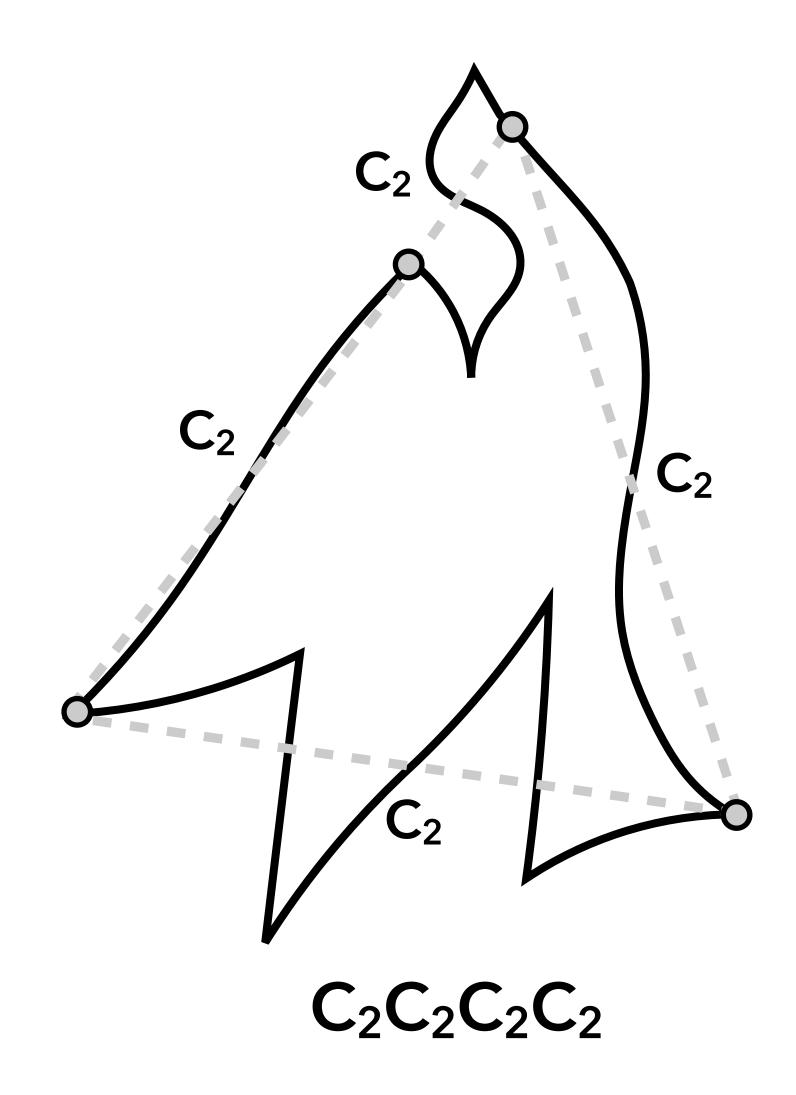
Figure 69 (Plane Tessellations)

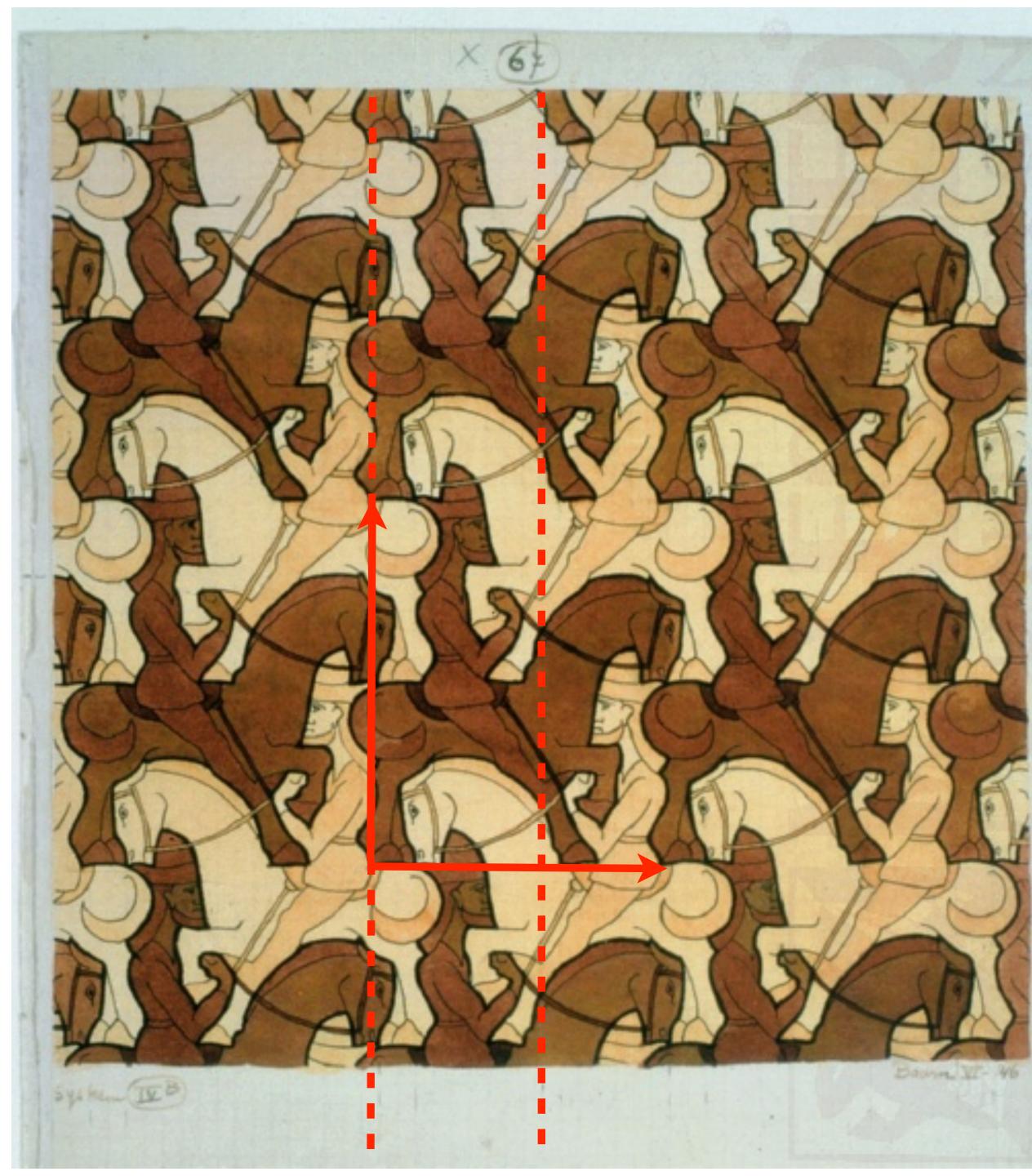


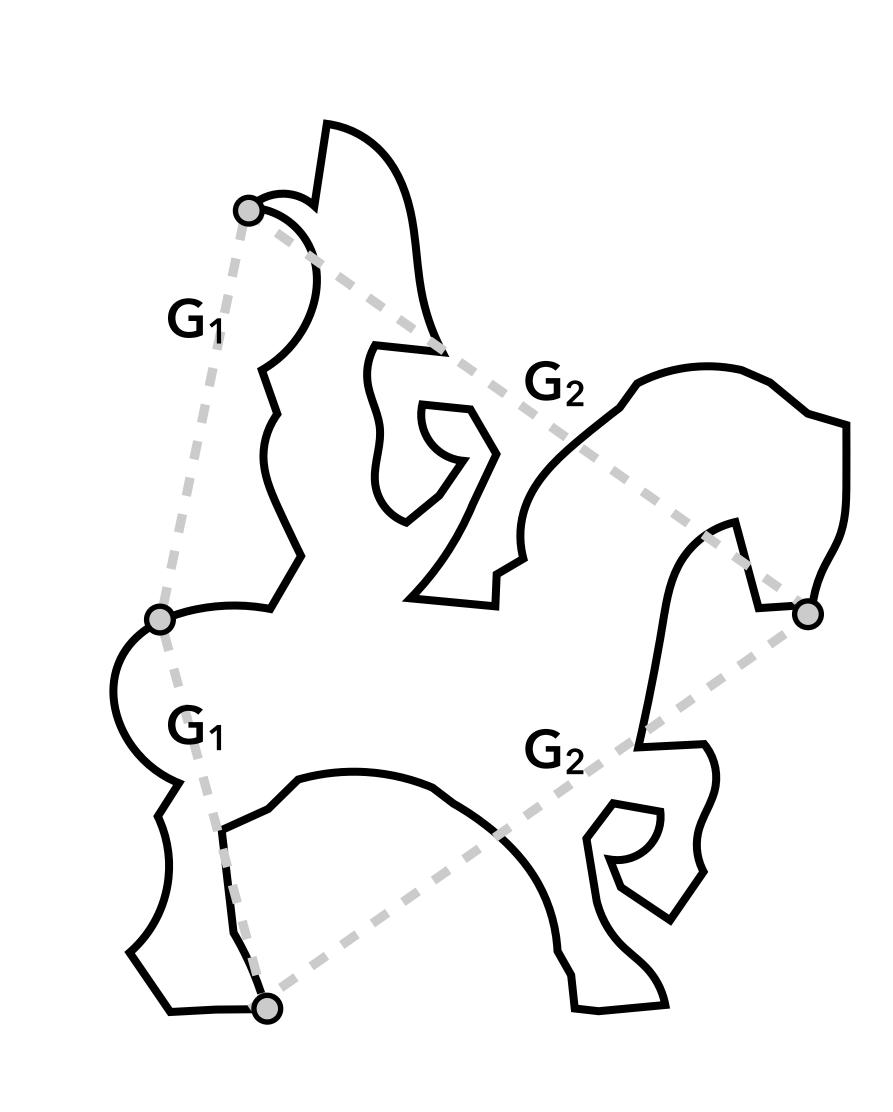




 $C_4C_4C_4C_4$

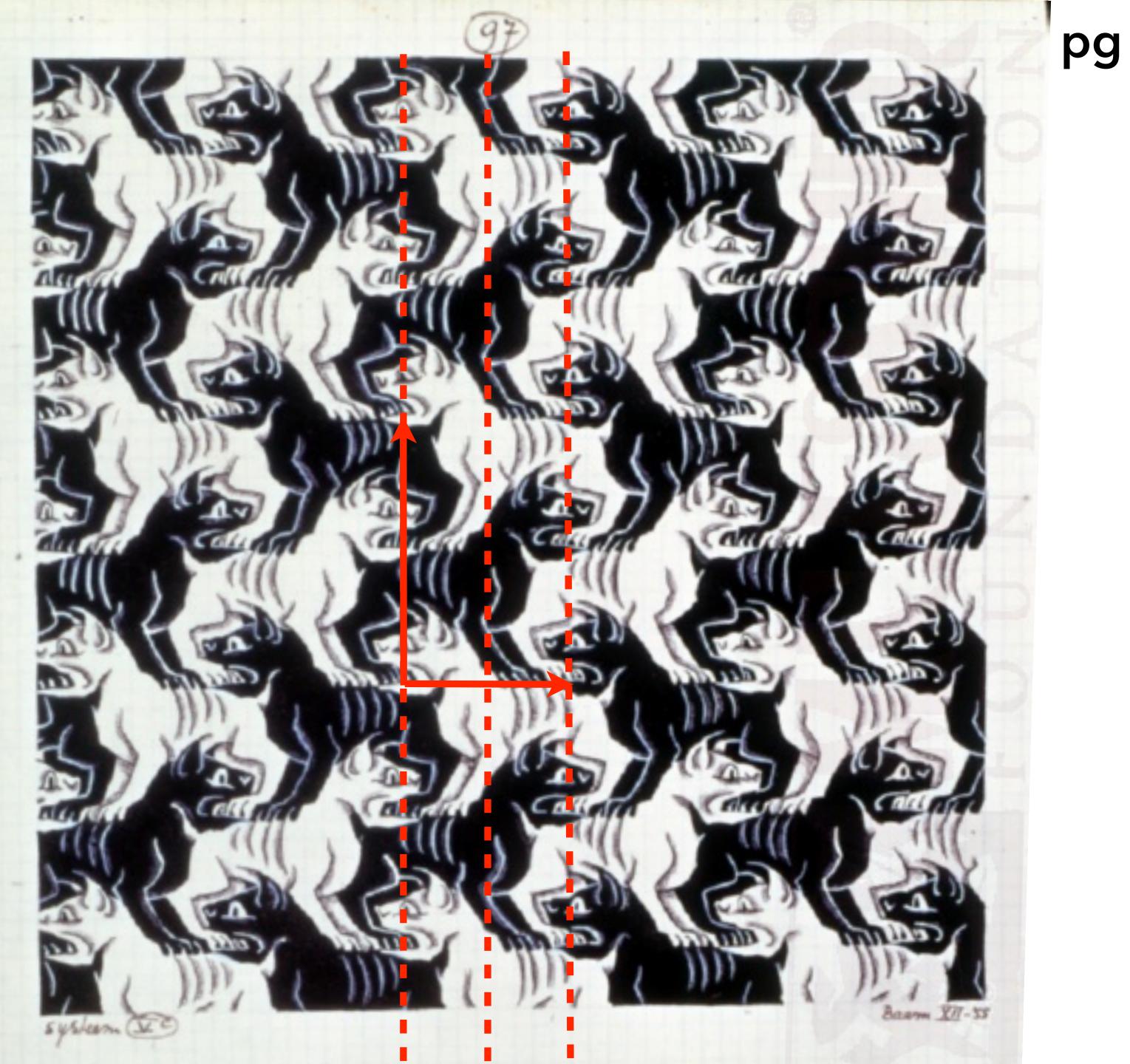


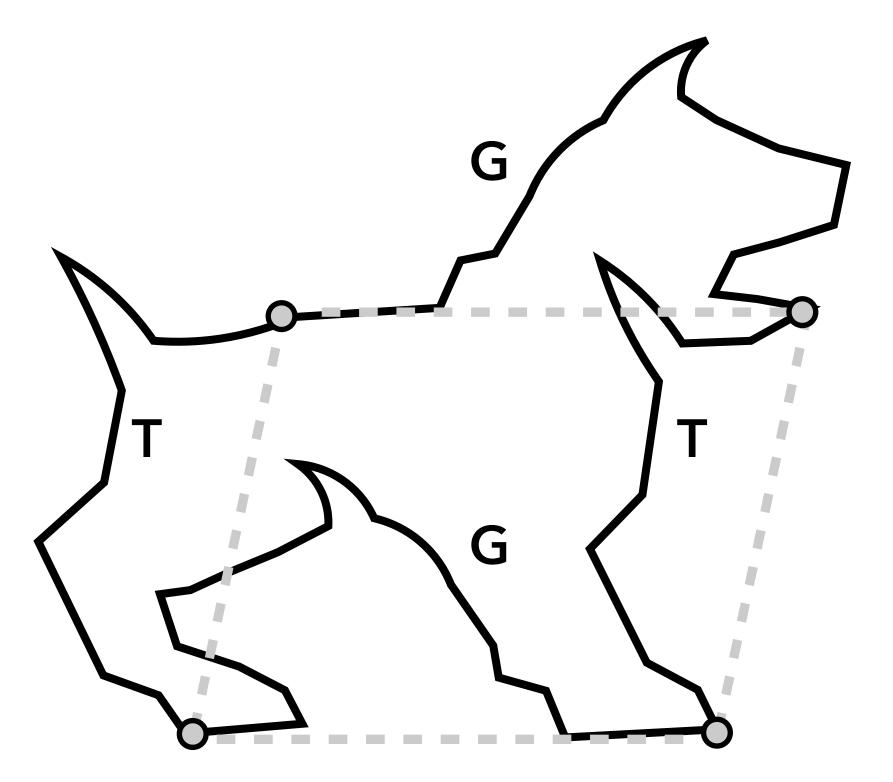




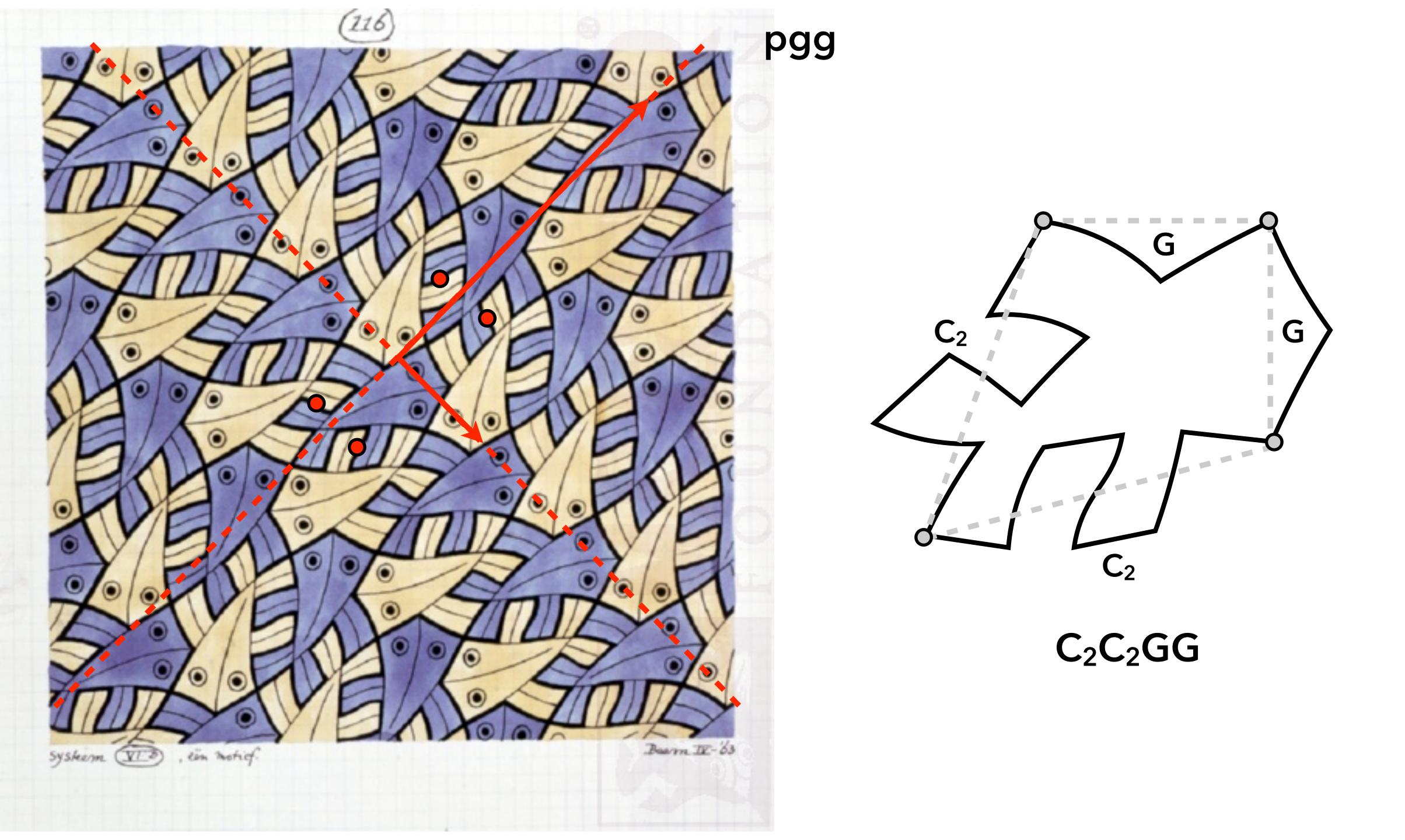
pg

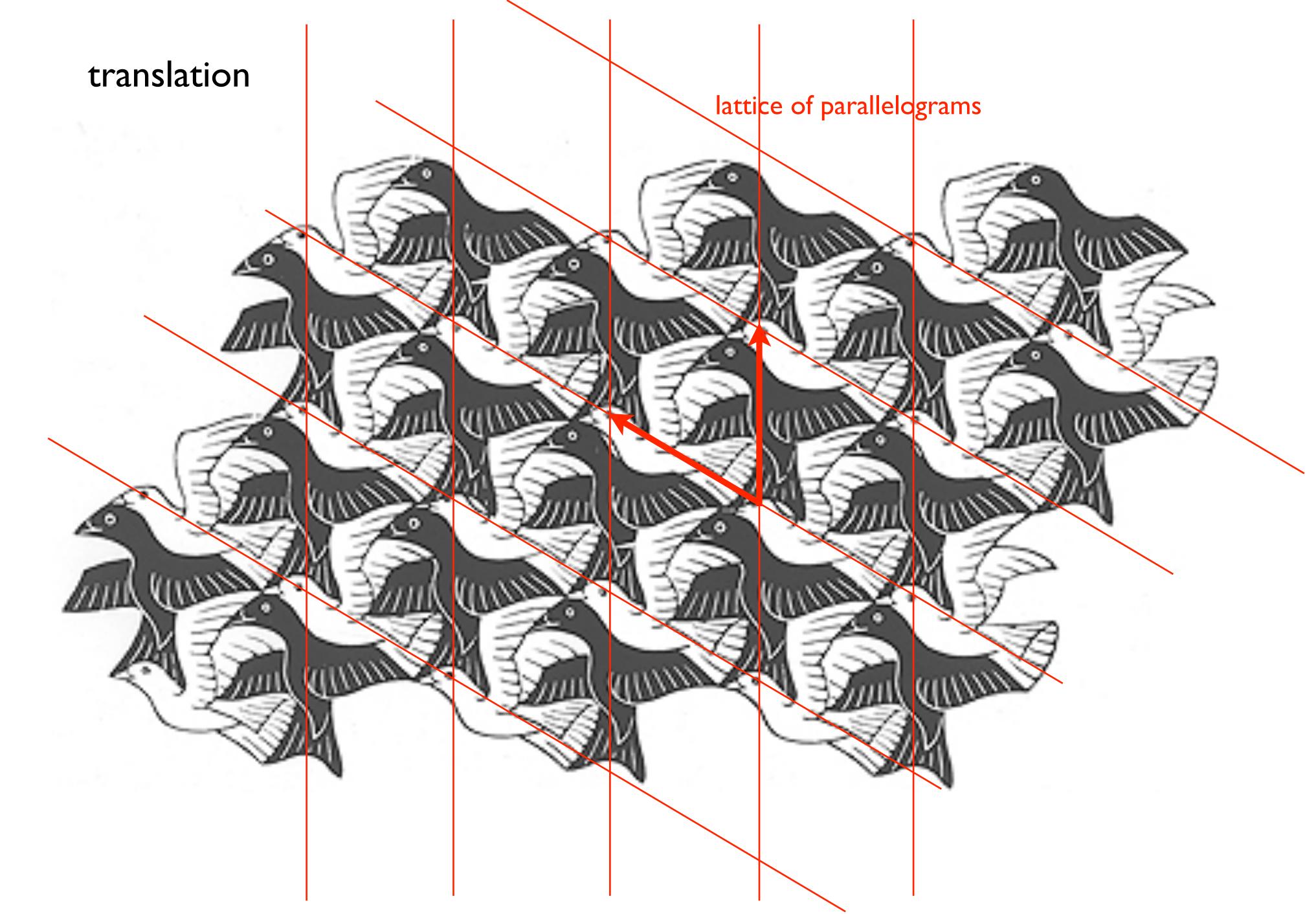
 $G_1G_1G_2G_2$

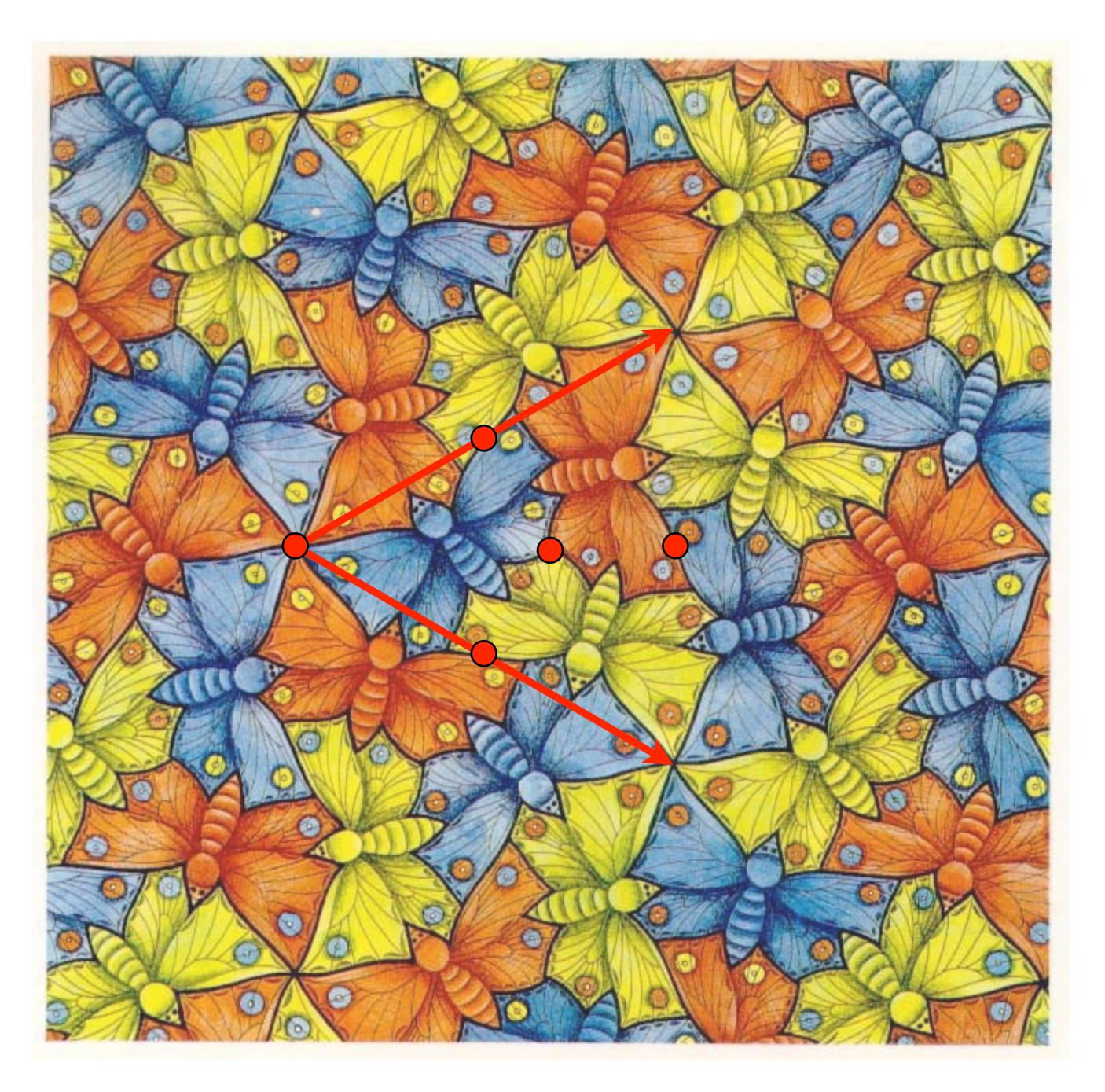




TGTG

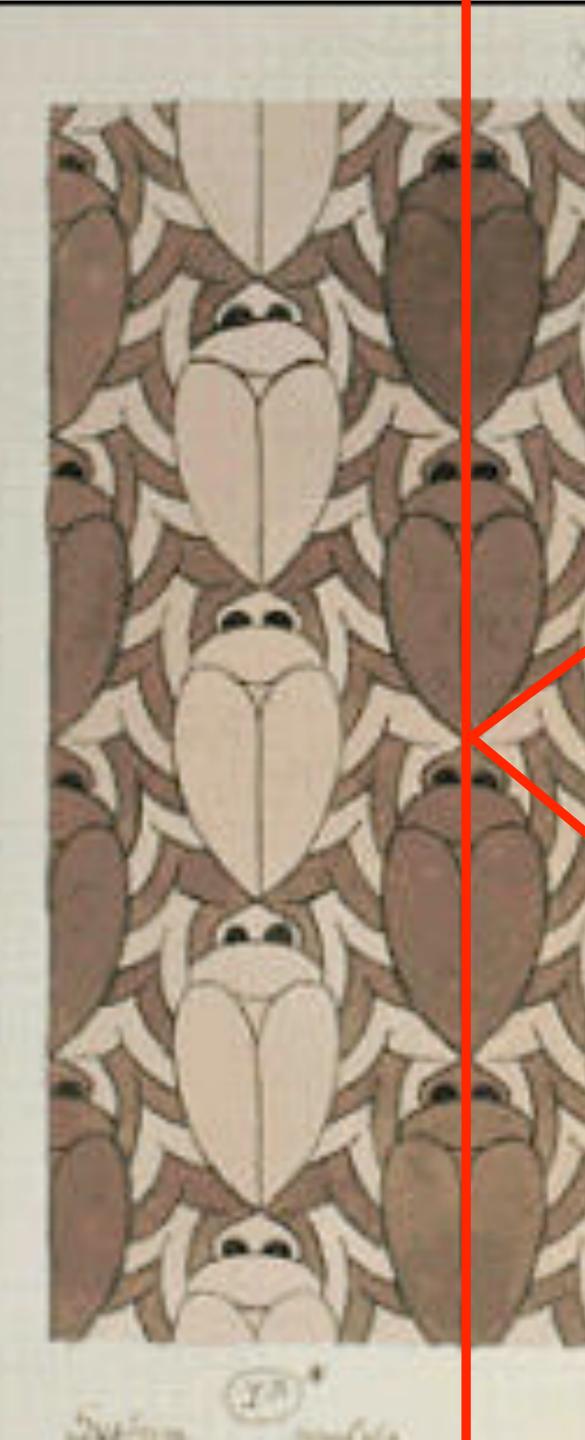


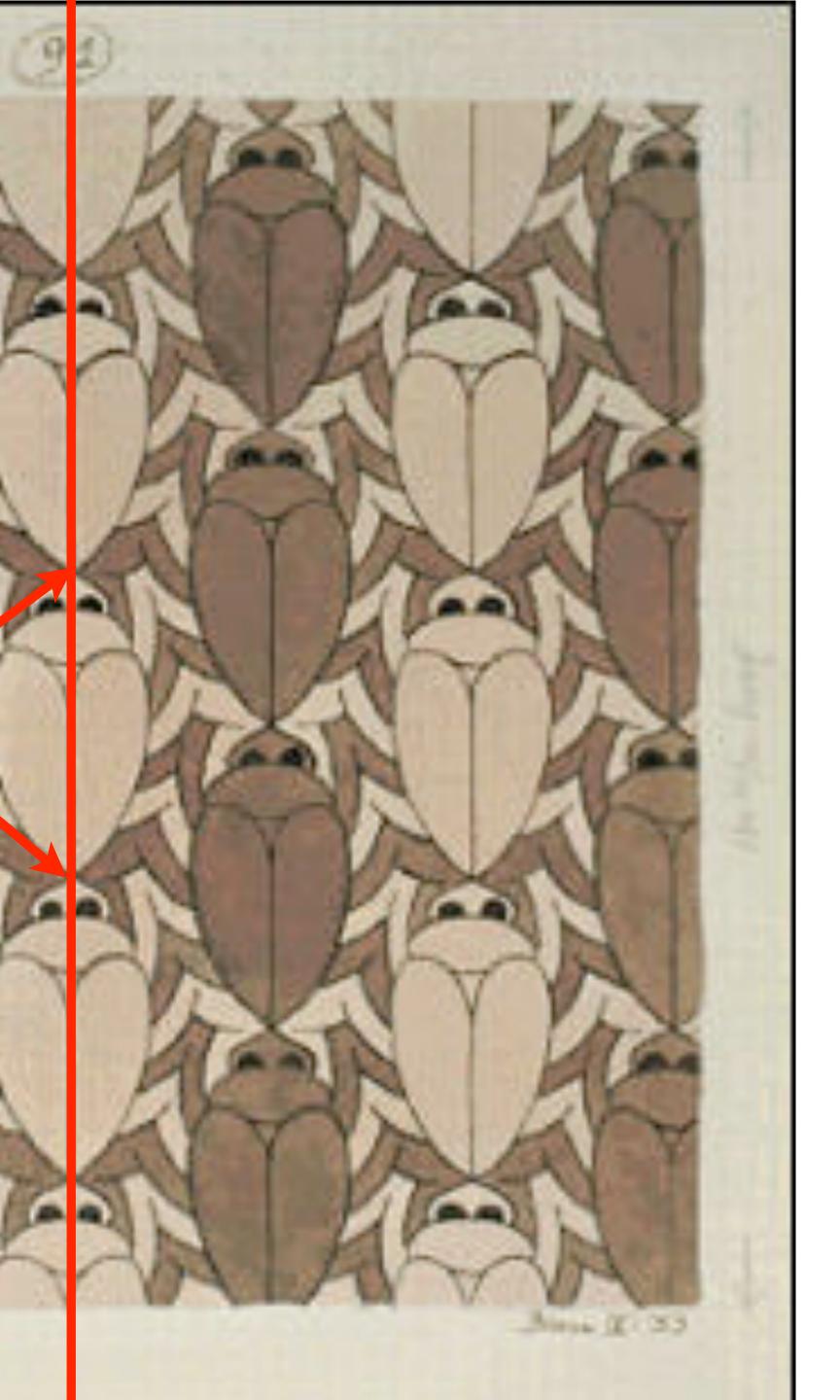


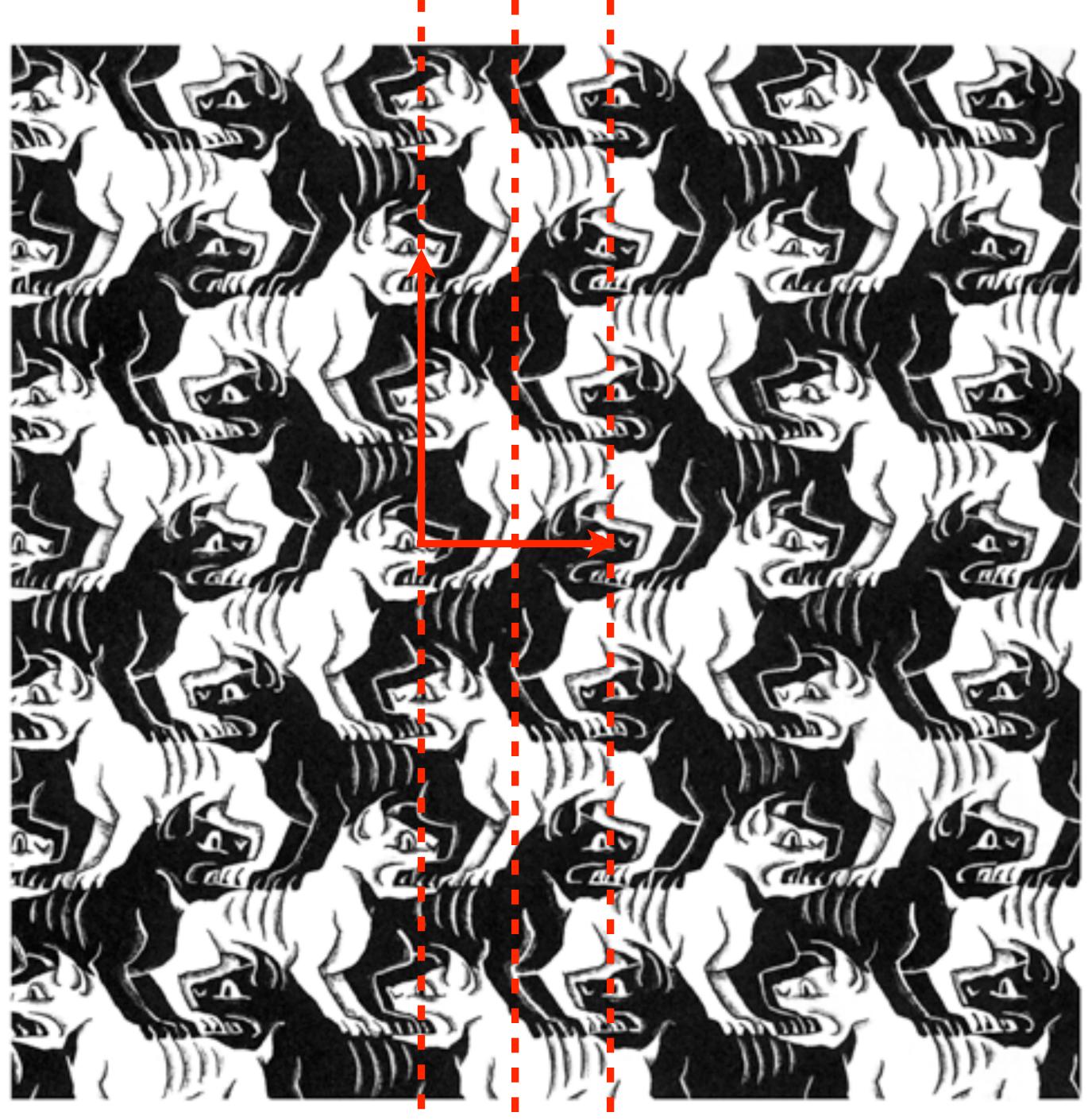


rotation (2, 3, 6)

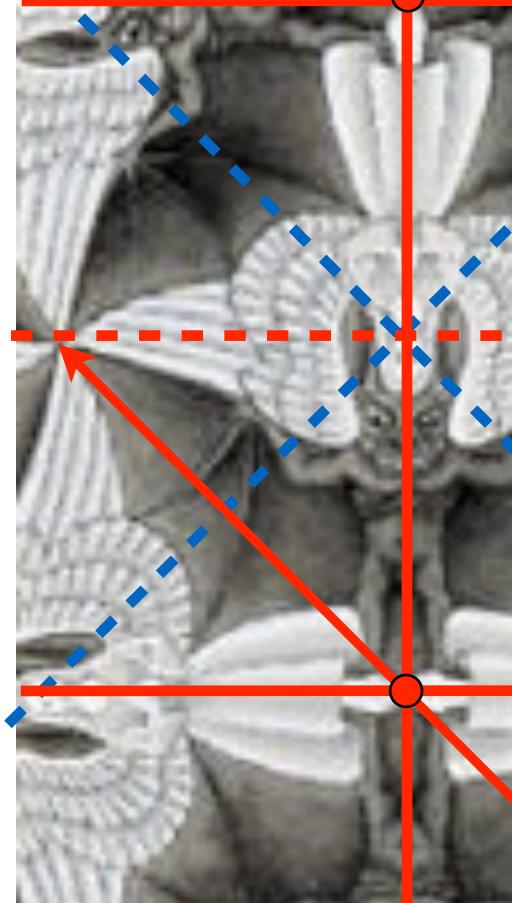
reflection

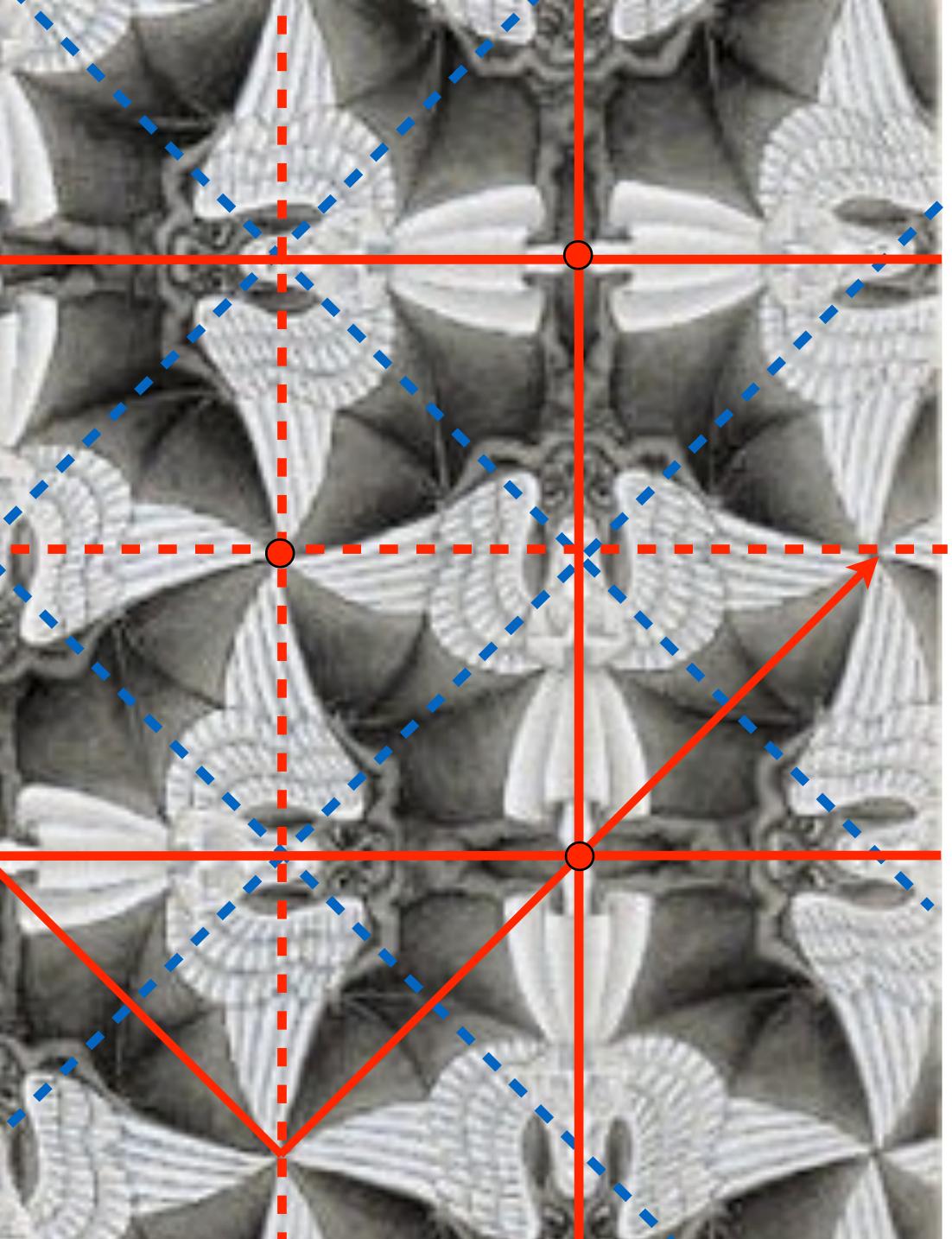






translation, rotation, reflection, and glide reflection

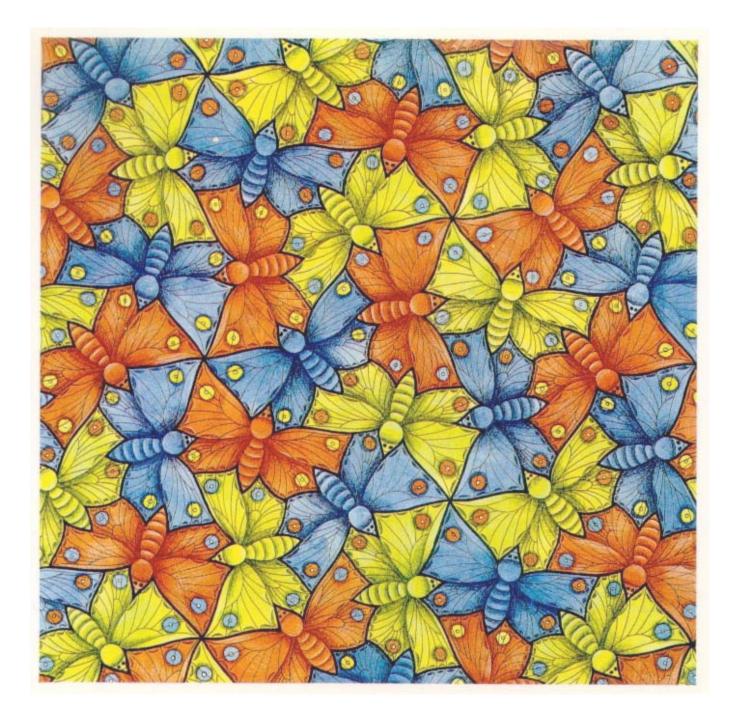




Q: How many different periodic wall tilings are there?

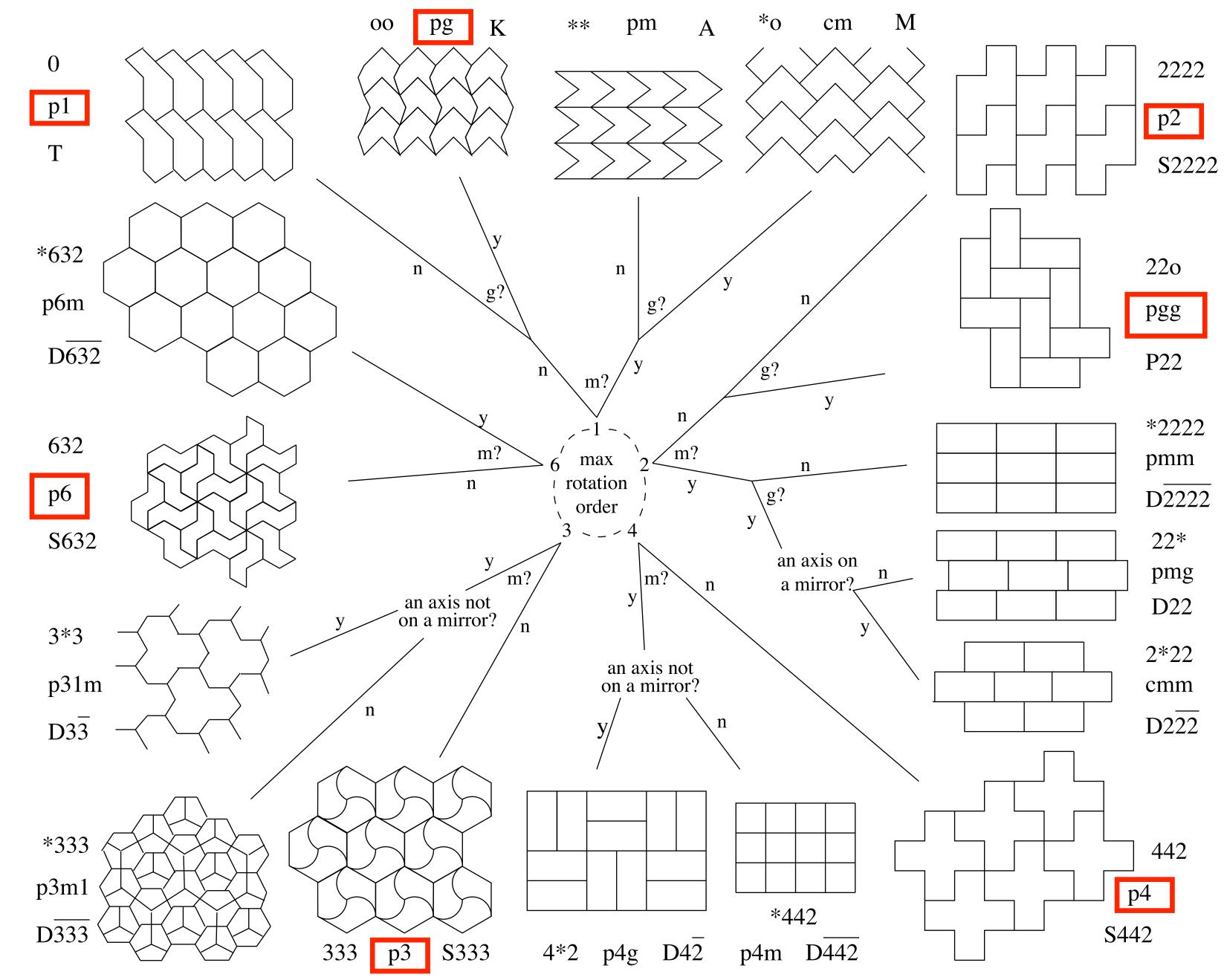
A) Three B) Seven C

Answer: 17 different 2-d wall tilings (Fedorov 1891, Polya 1924)

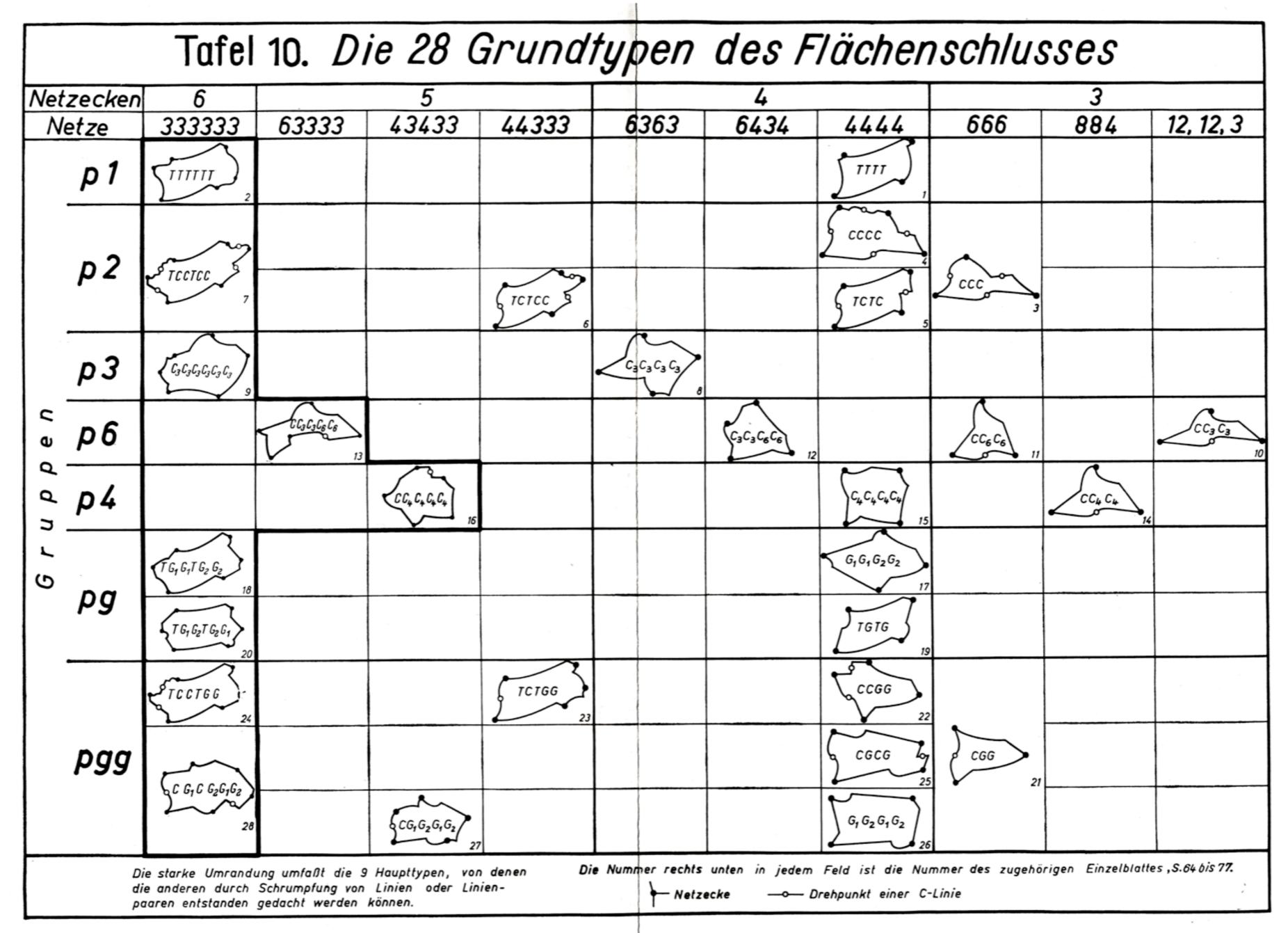


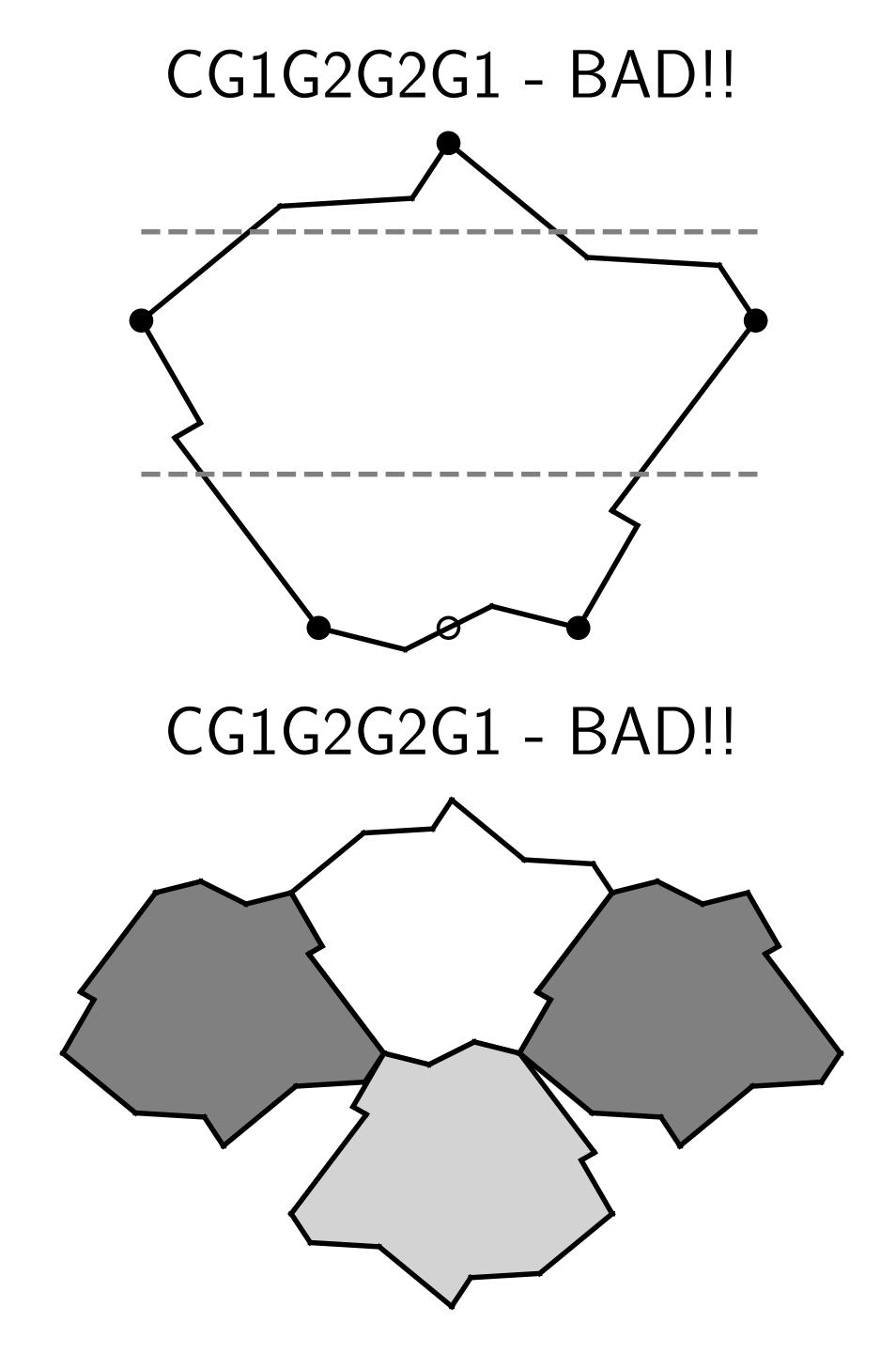
B) Seven C) Seventeen D) 230 E) Infinity

17 wallpaper symmetry patterns

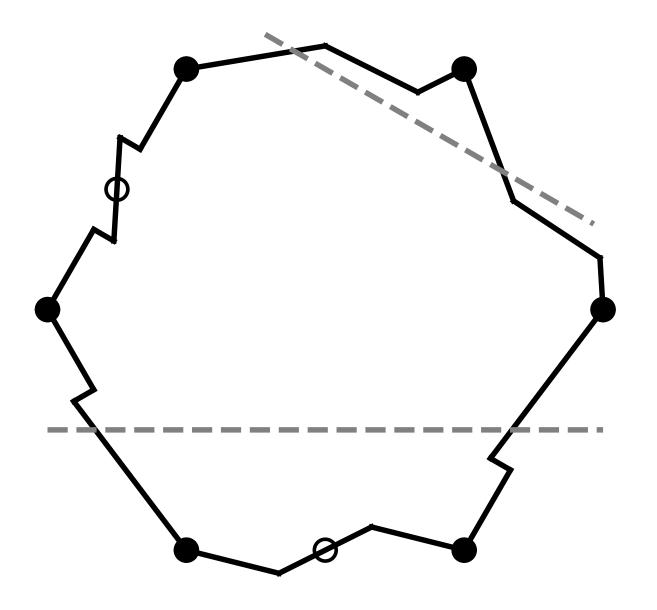


(from Brian Sanderson's webpage)

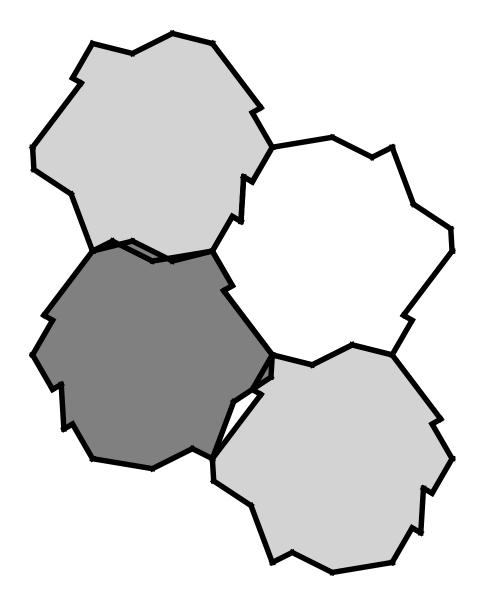




CG1CG2G2G1 - BAD!!

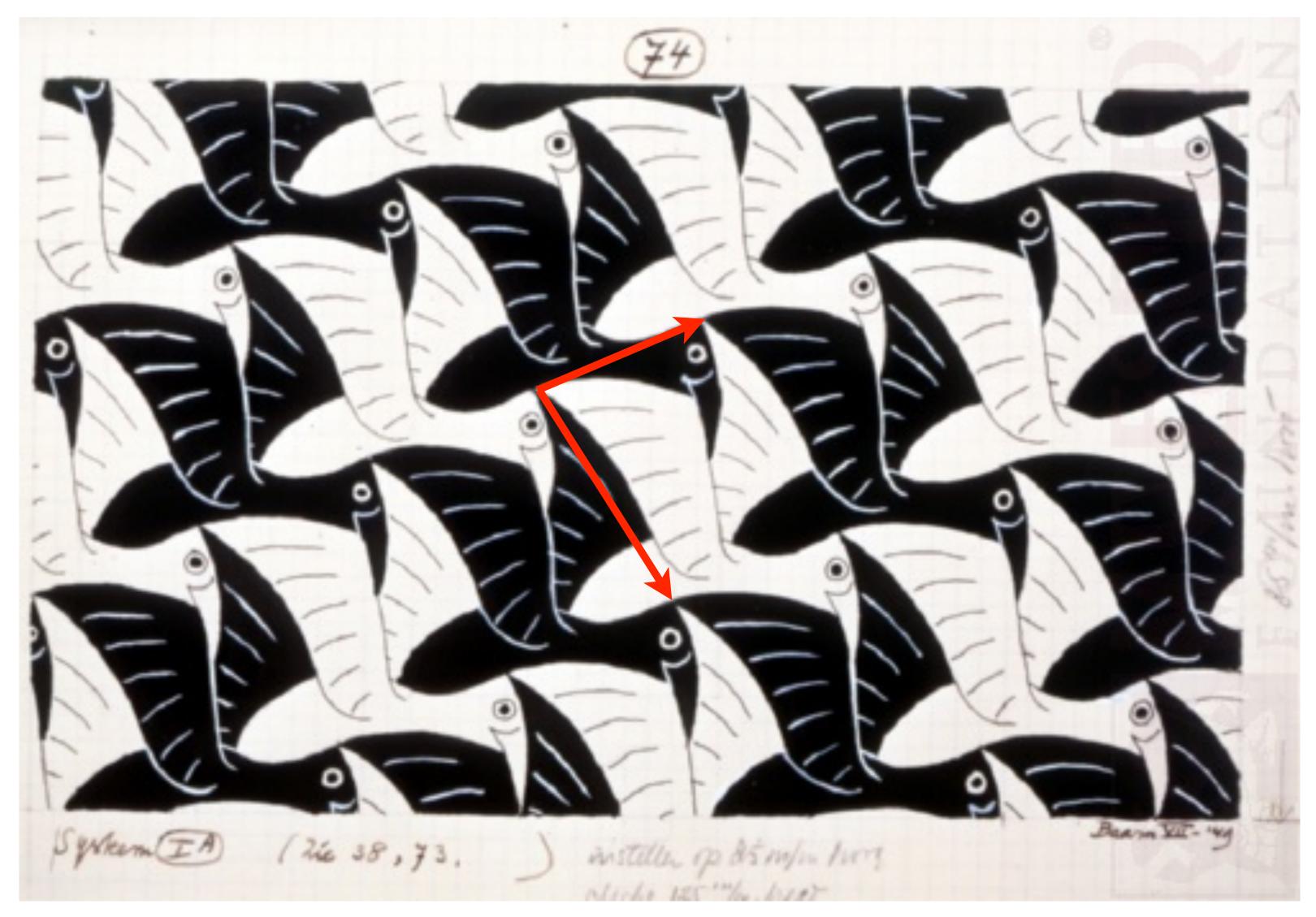


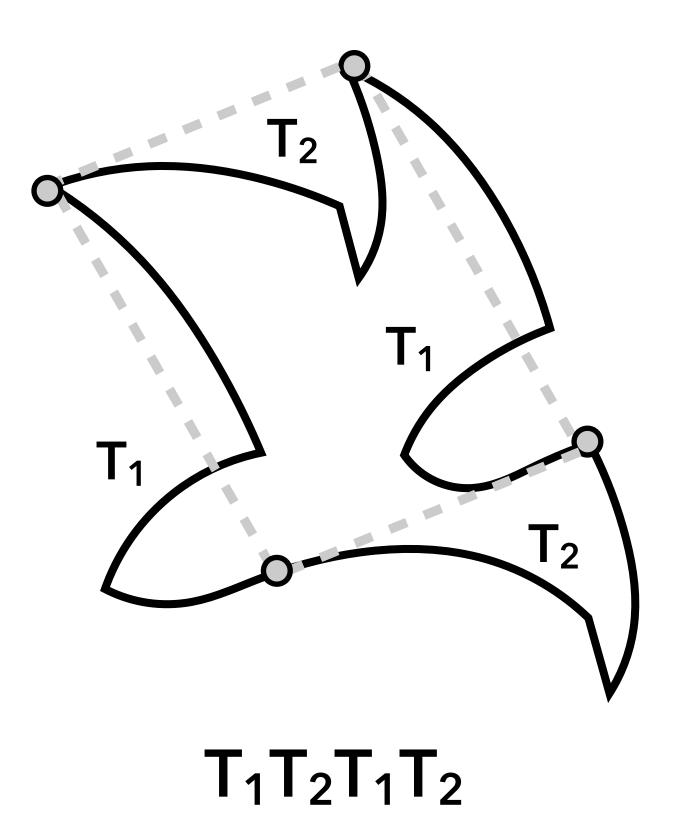
CG1CG2G2G1 - BAD!!

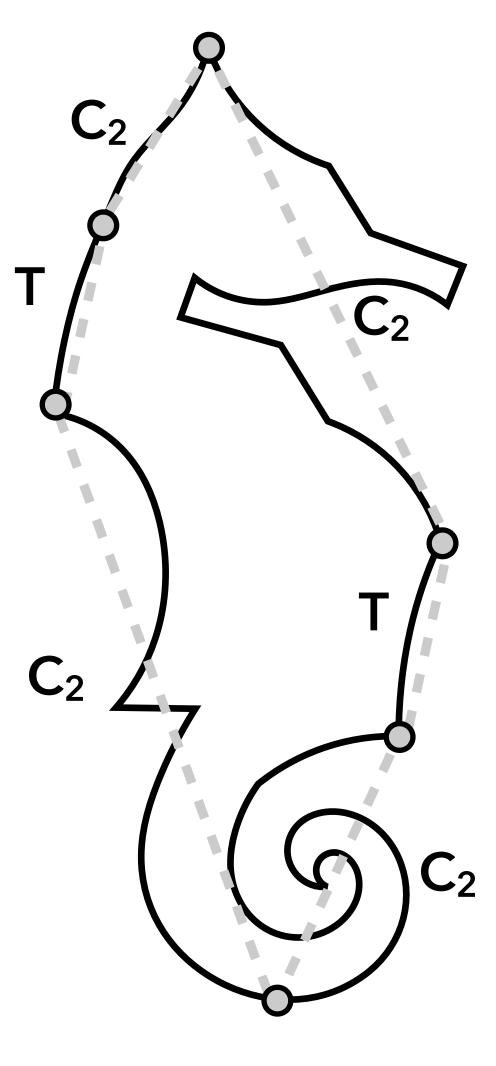


Extra slides

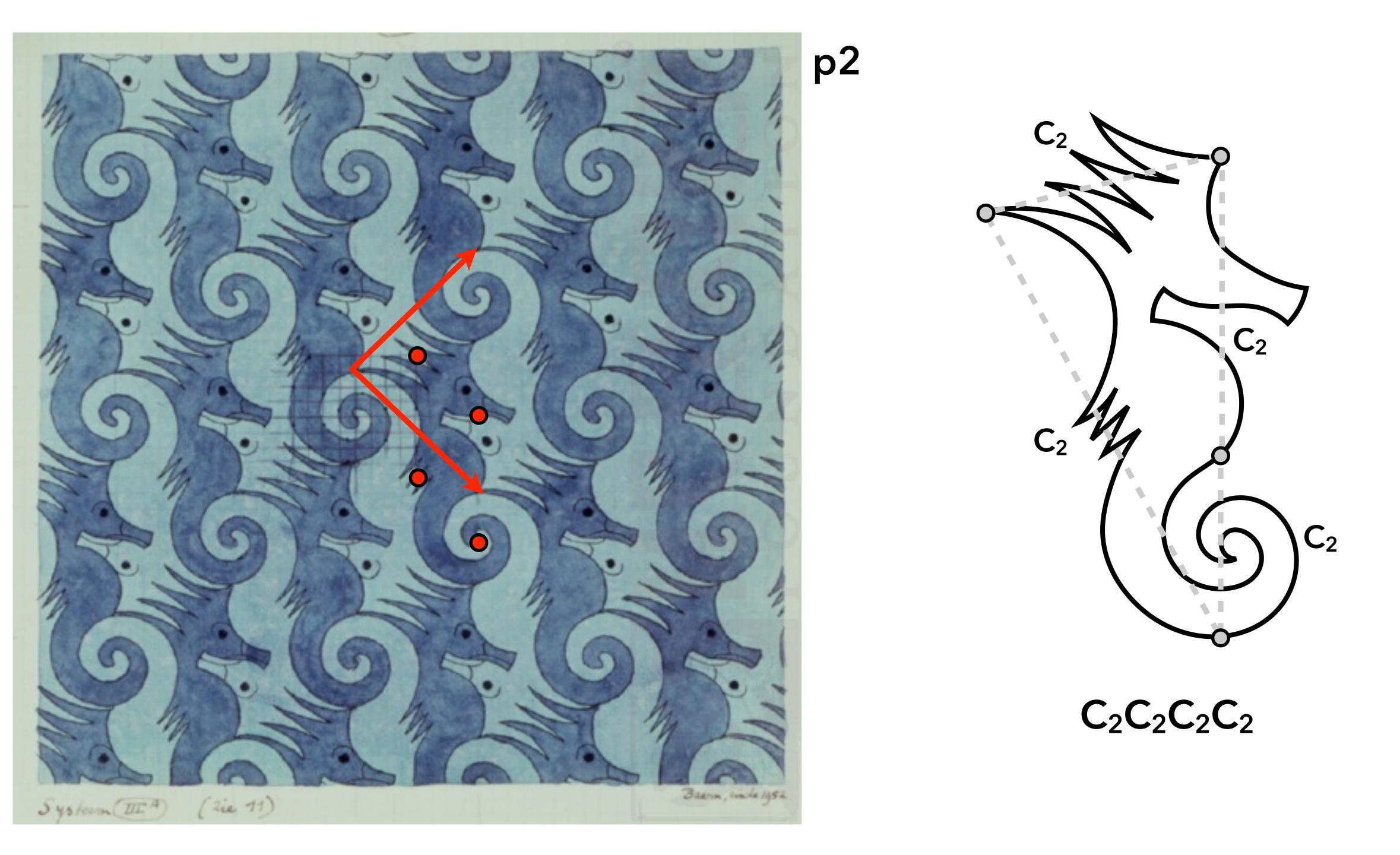
р1

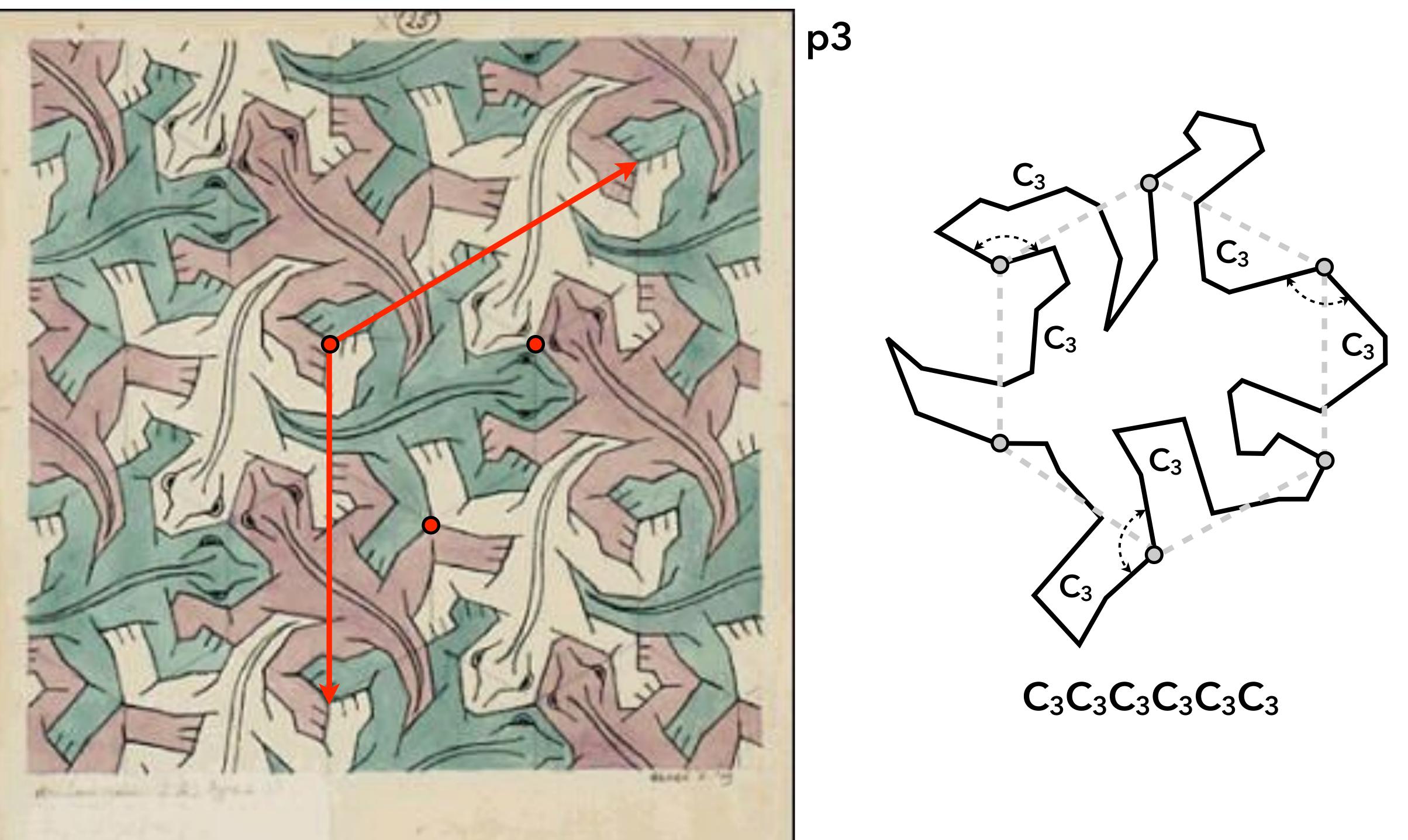


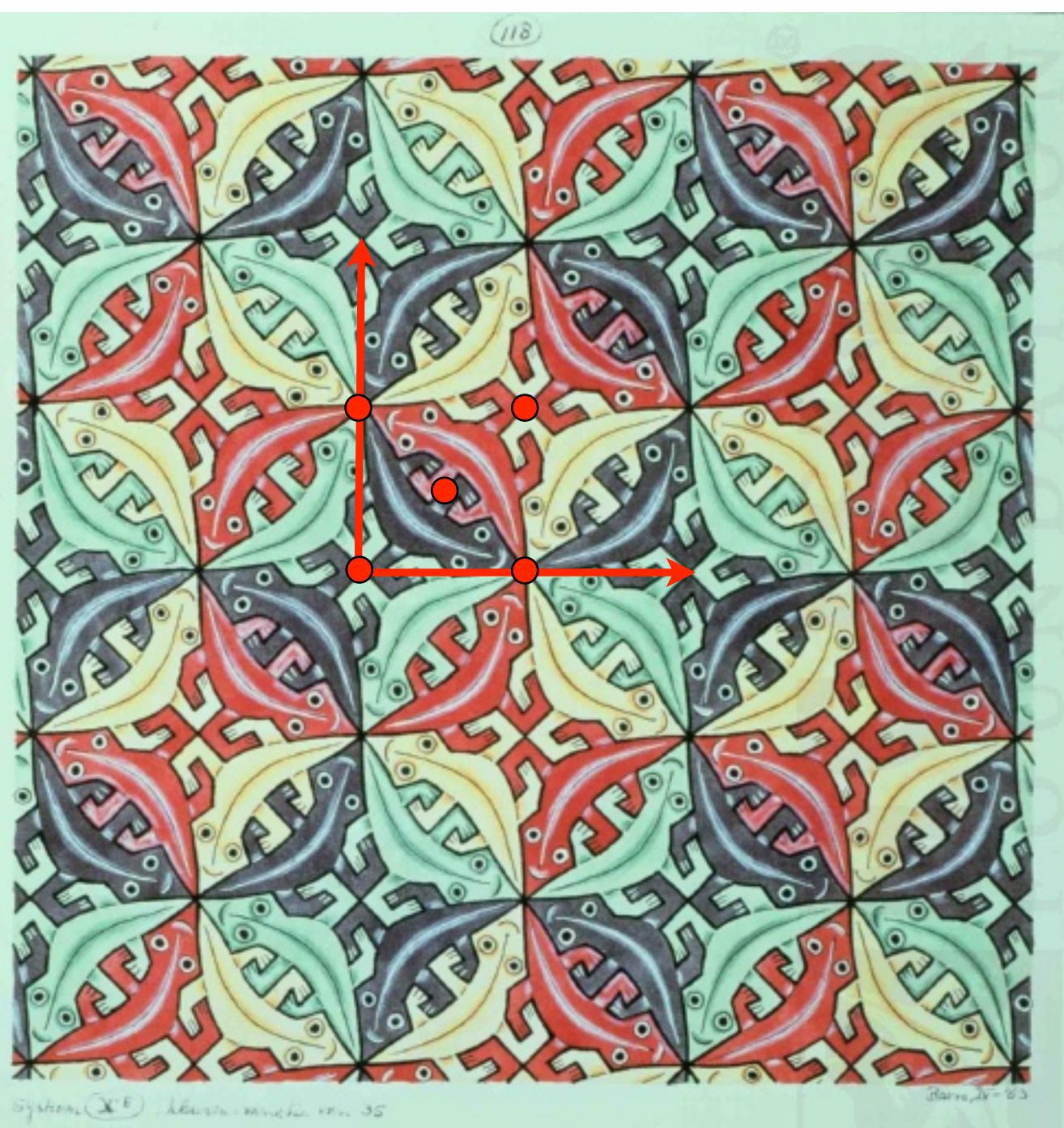


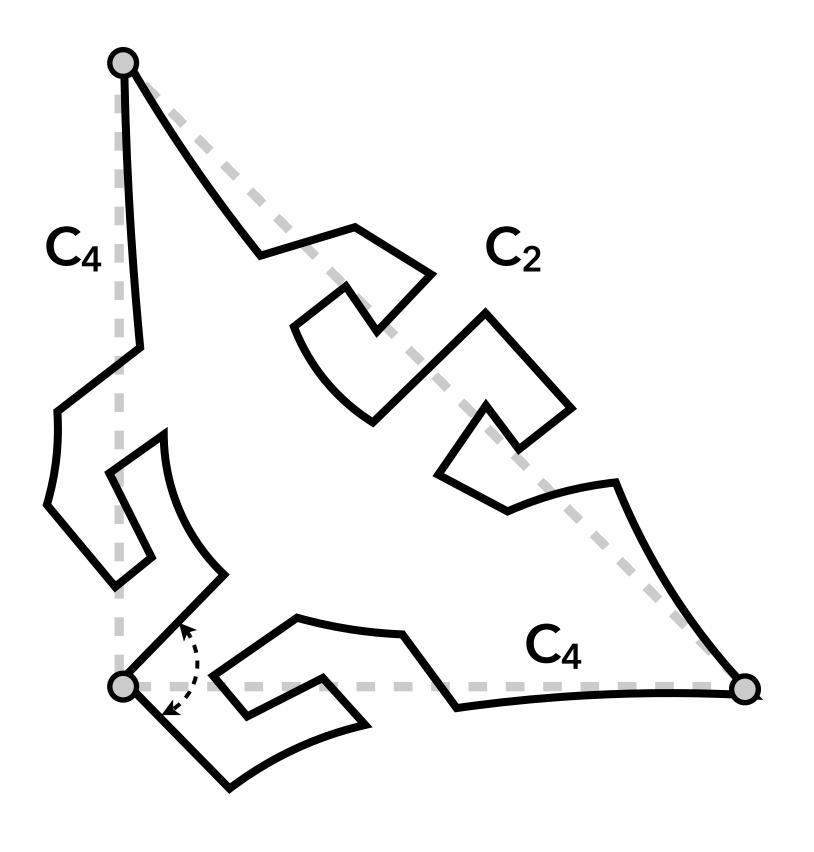


 $TC_2C_2TC_2C_2$

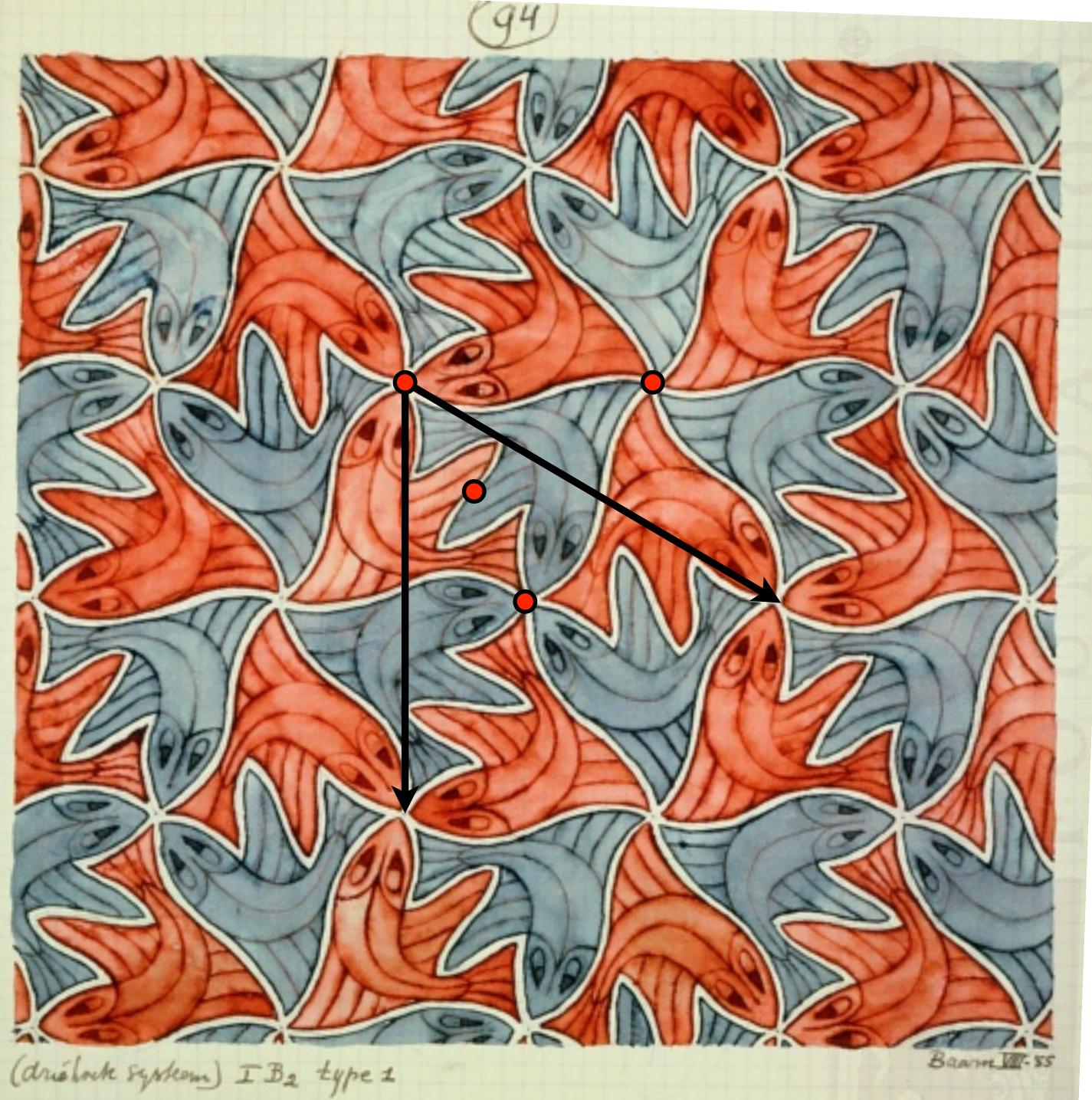


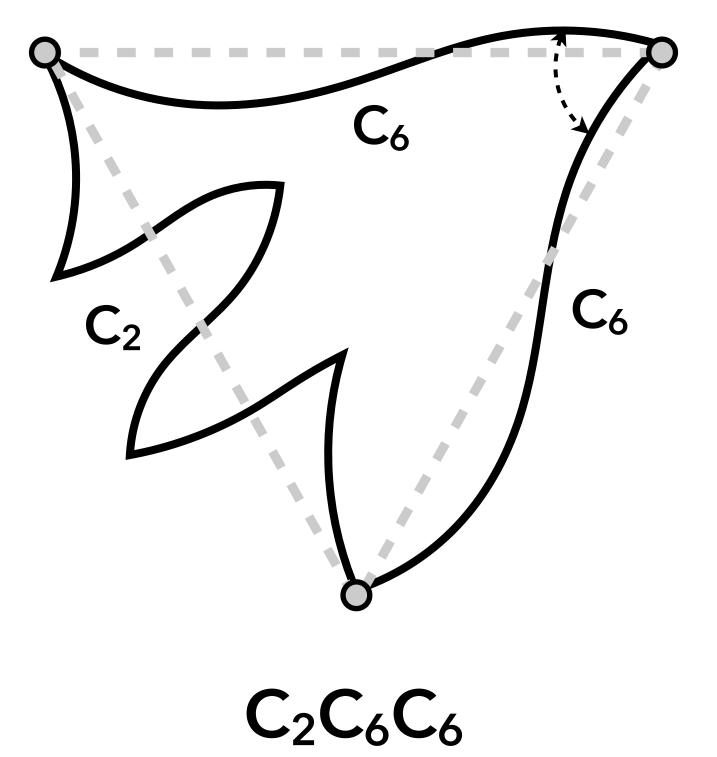


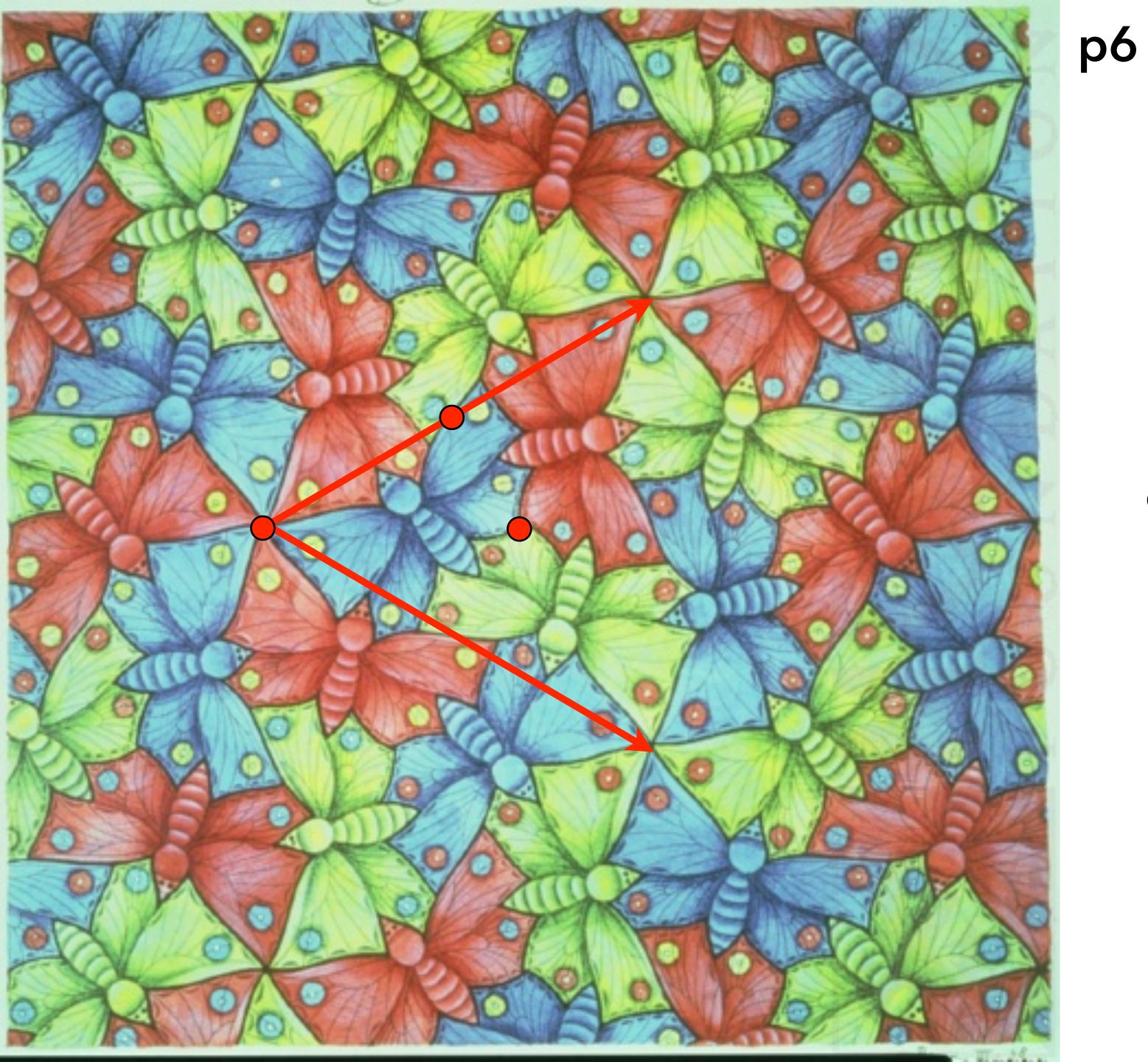


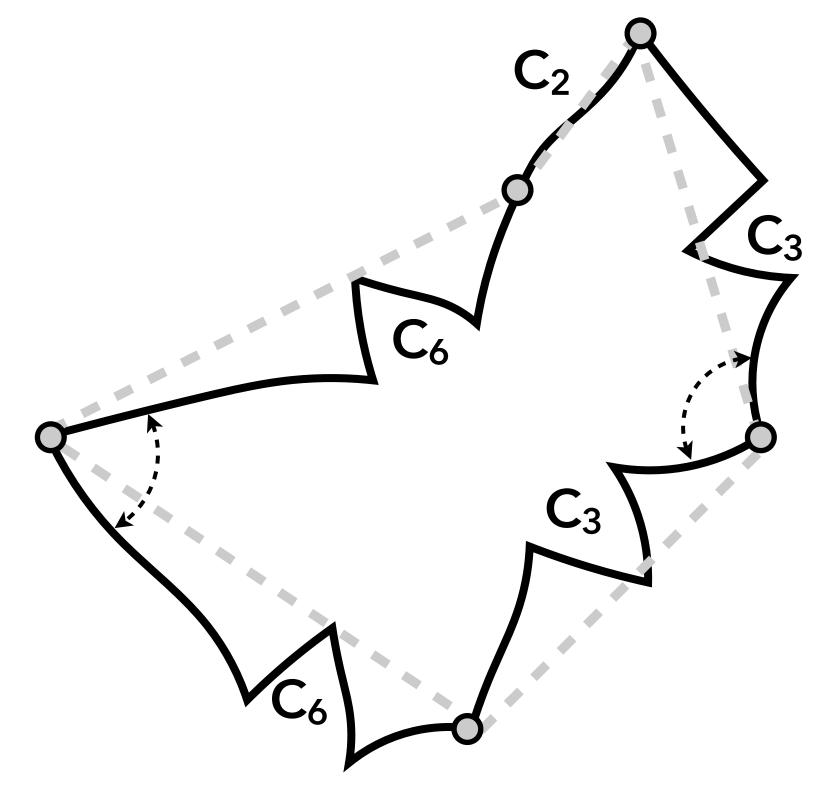


 $C_2C_4C_4$

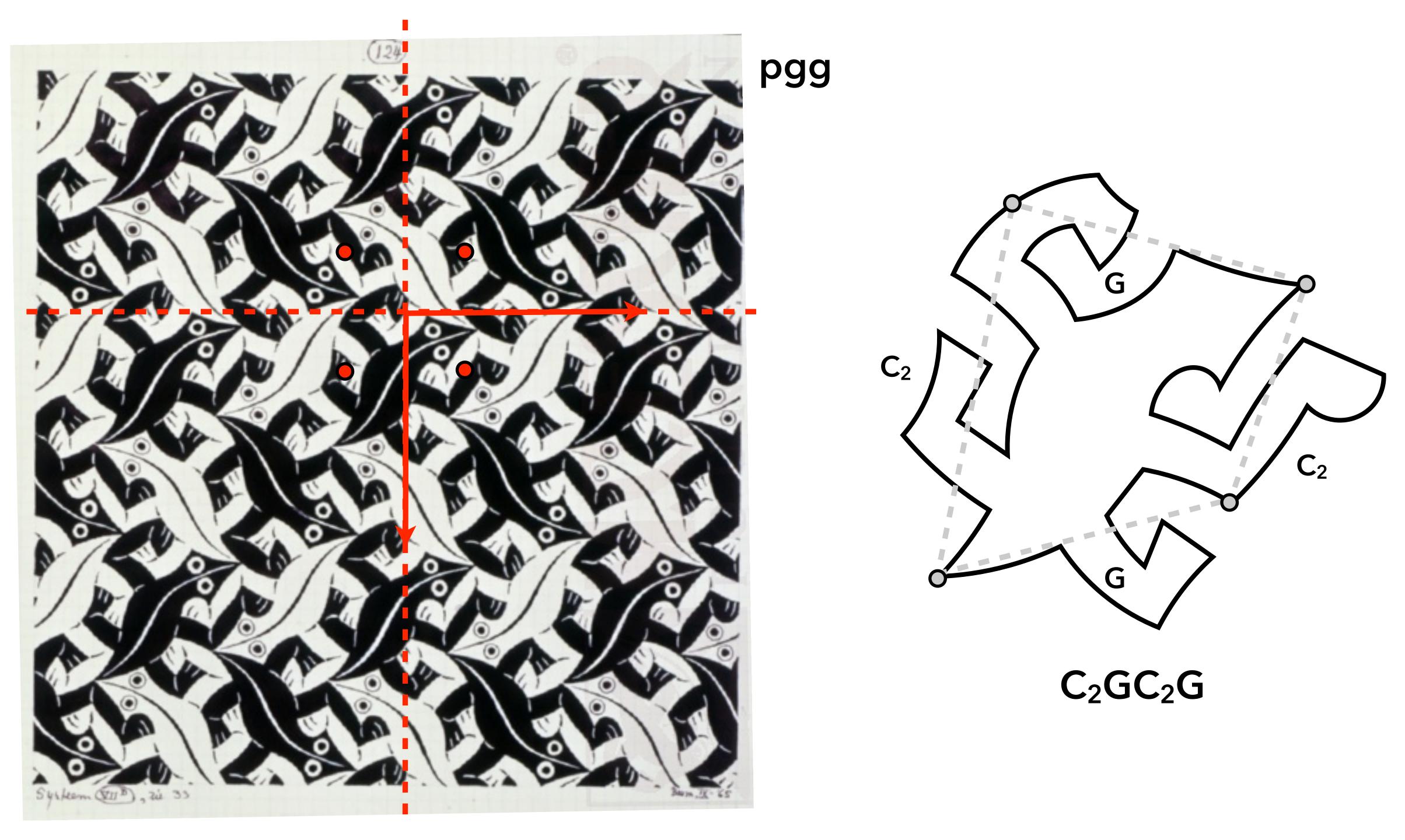


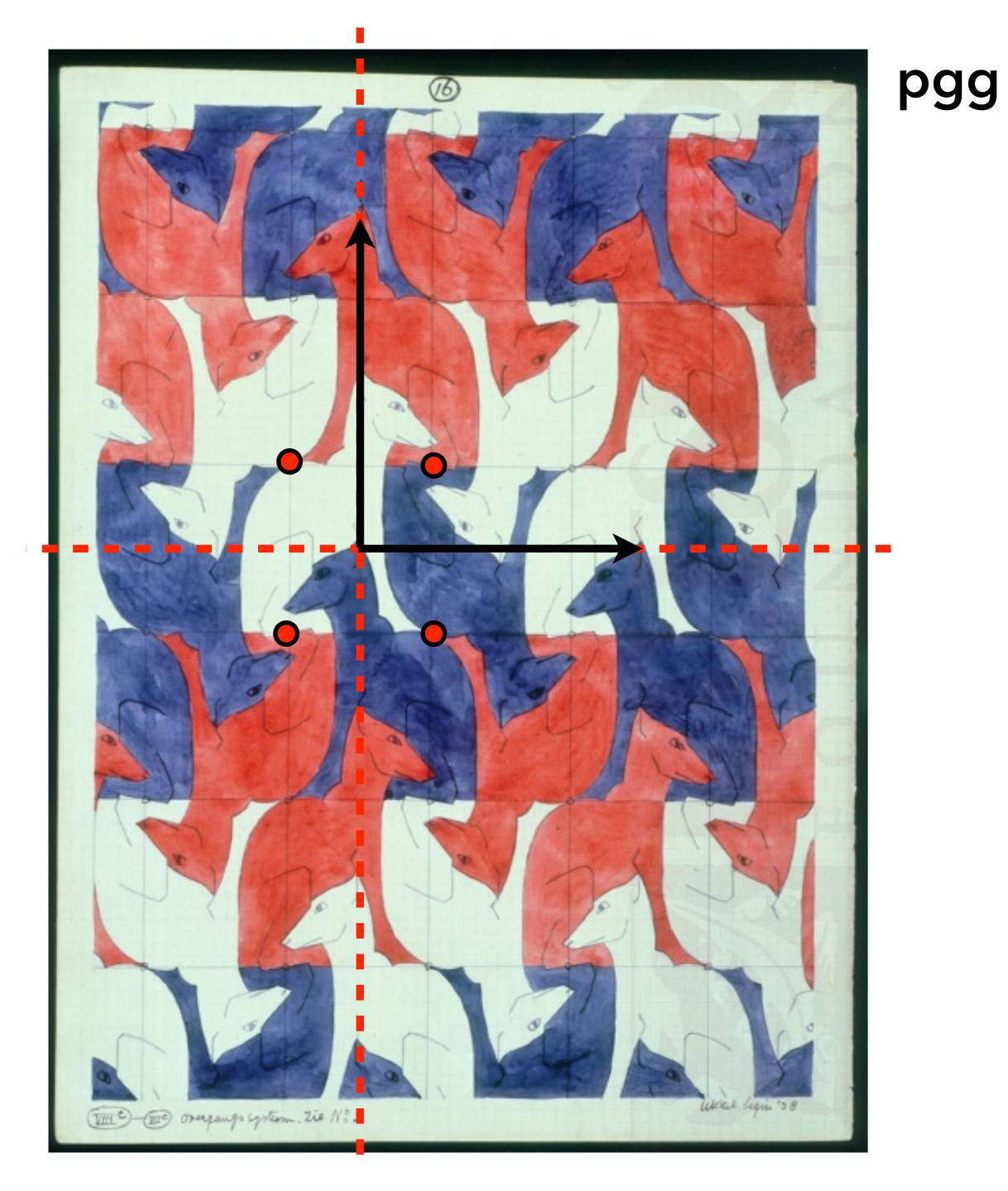


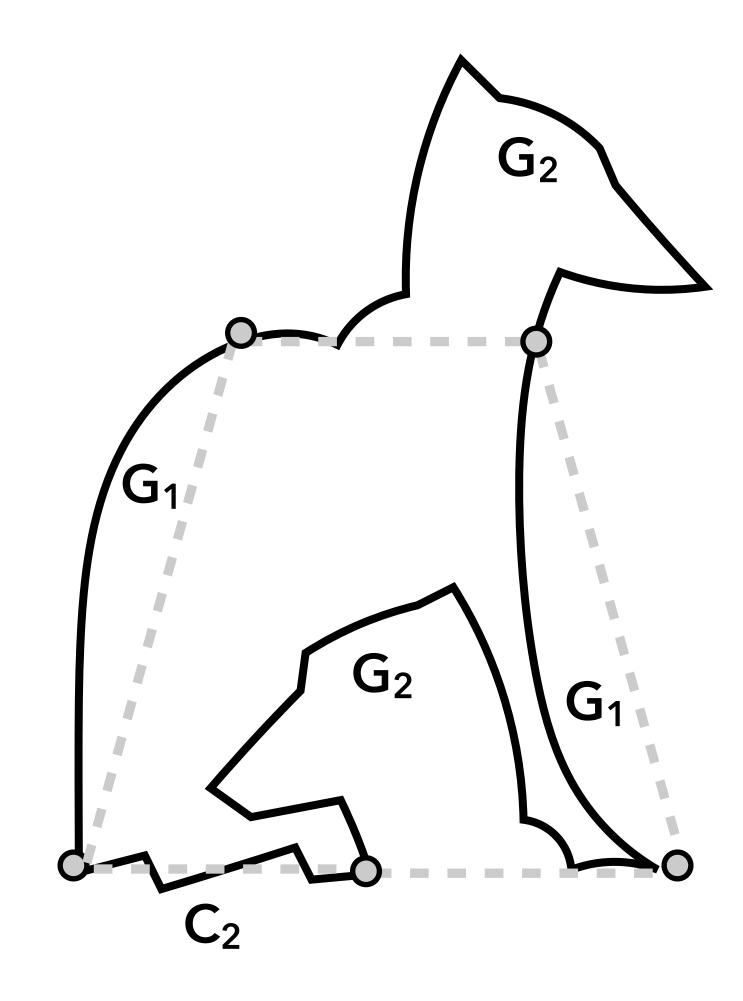




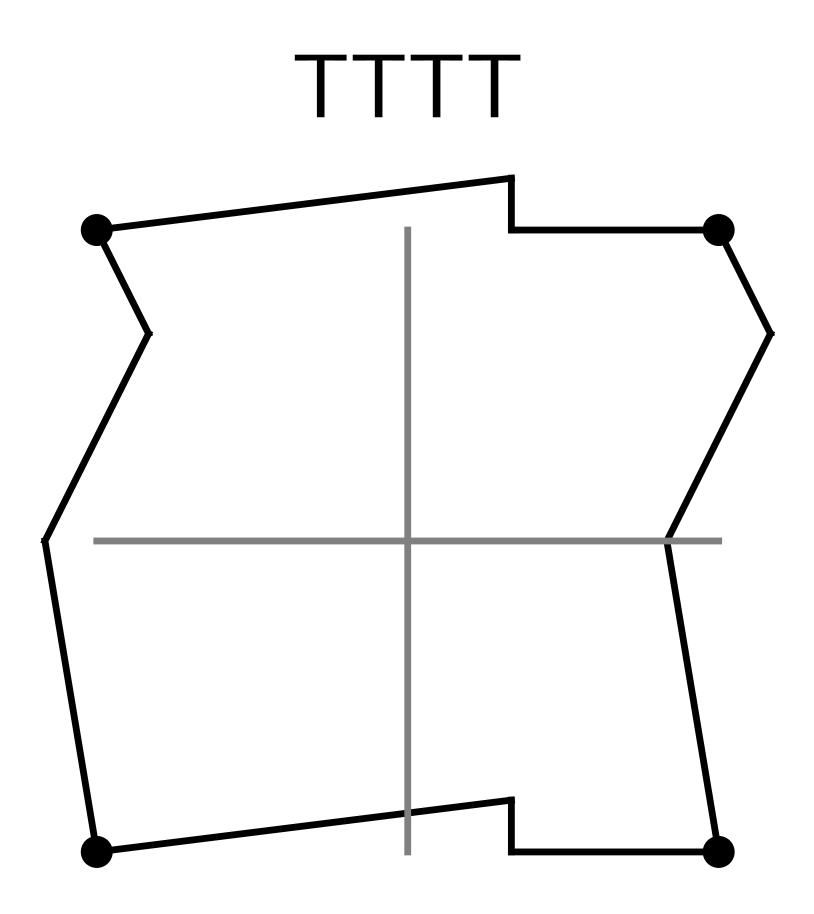
 $C_2C_3C_3C_6C_6$

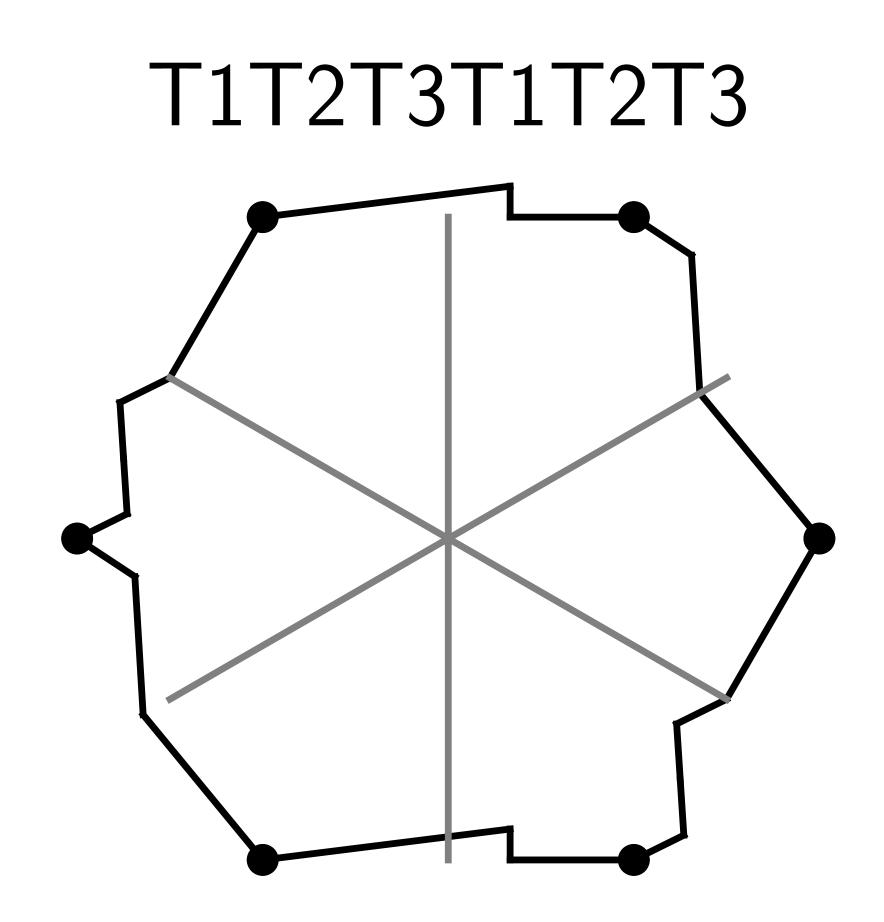


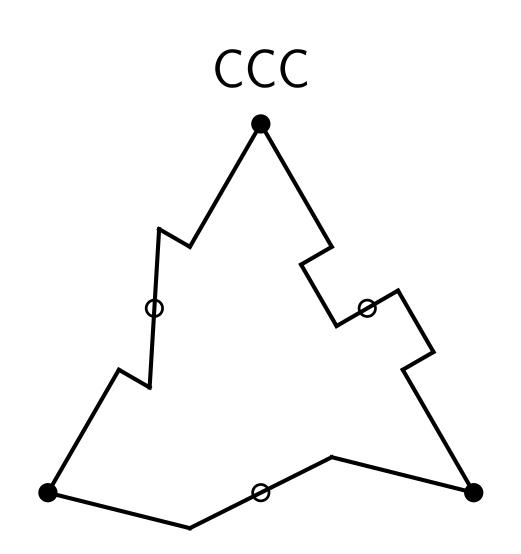


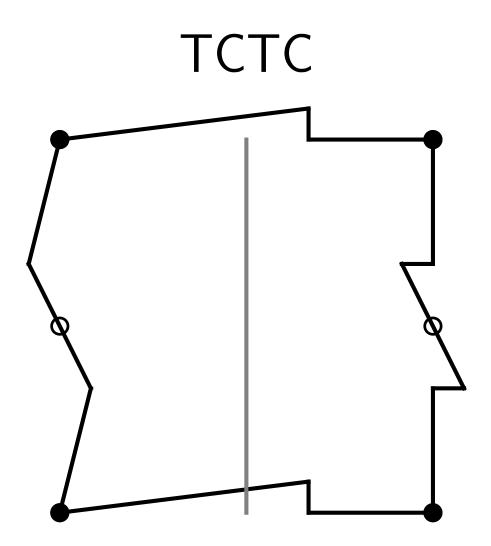


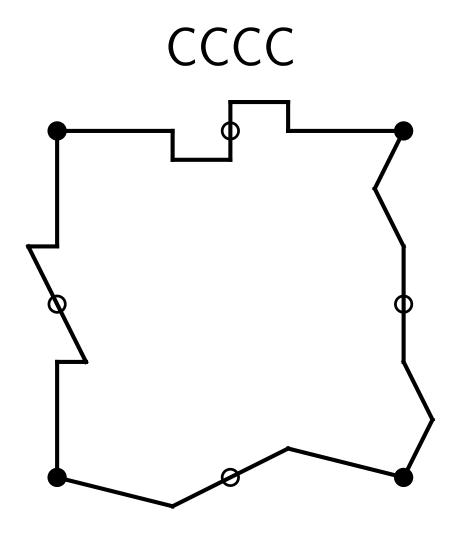
 $C_2G_1G_2G_1G_2$

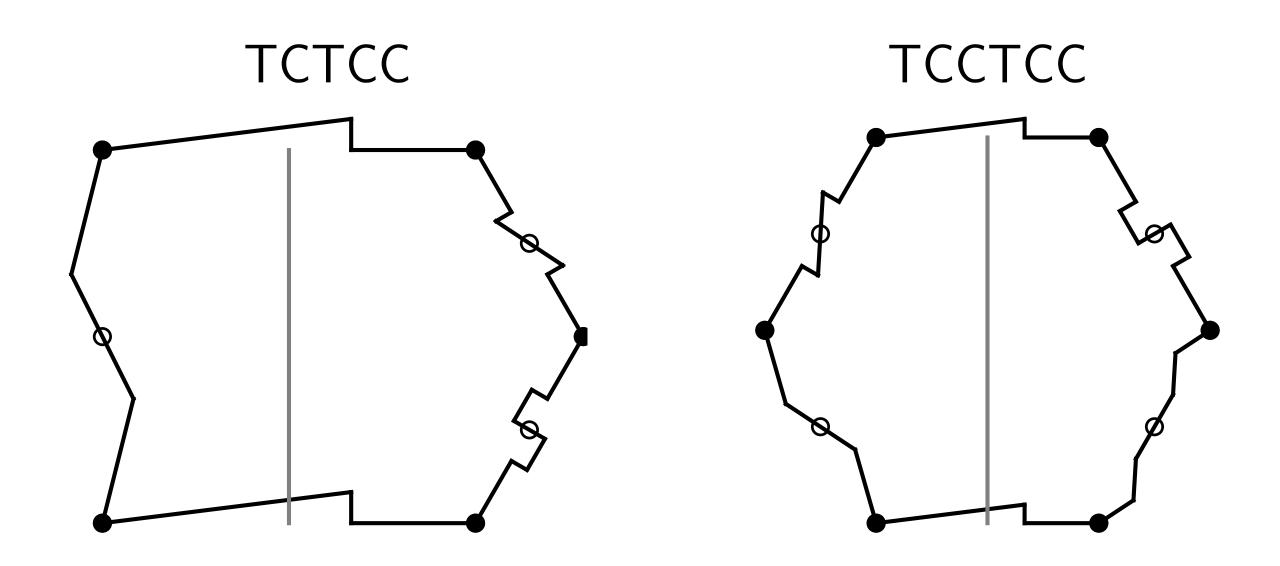


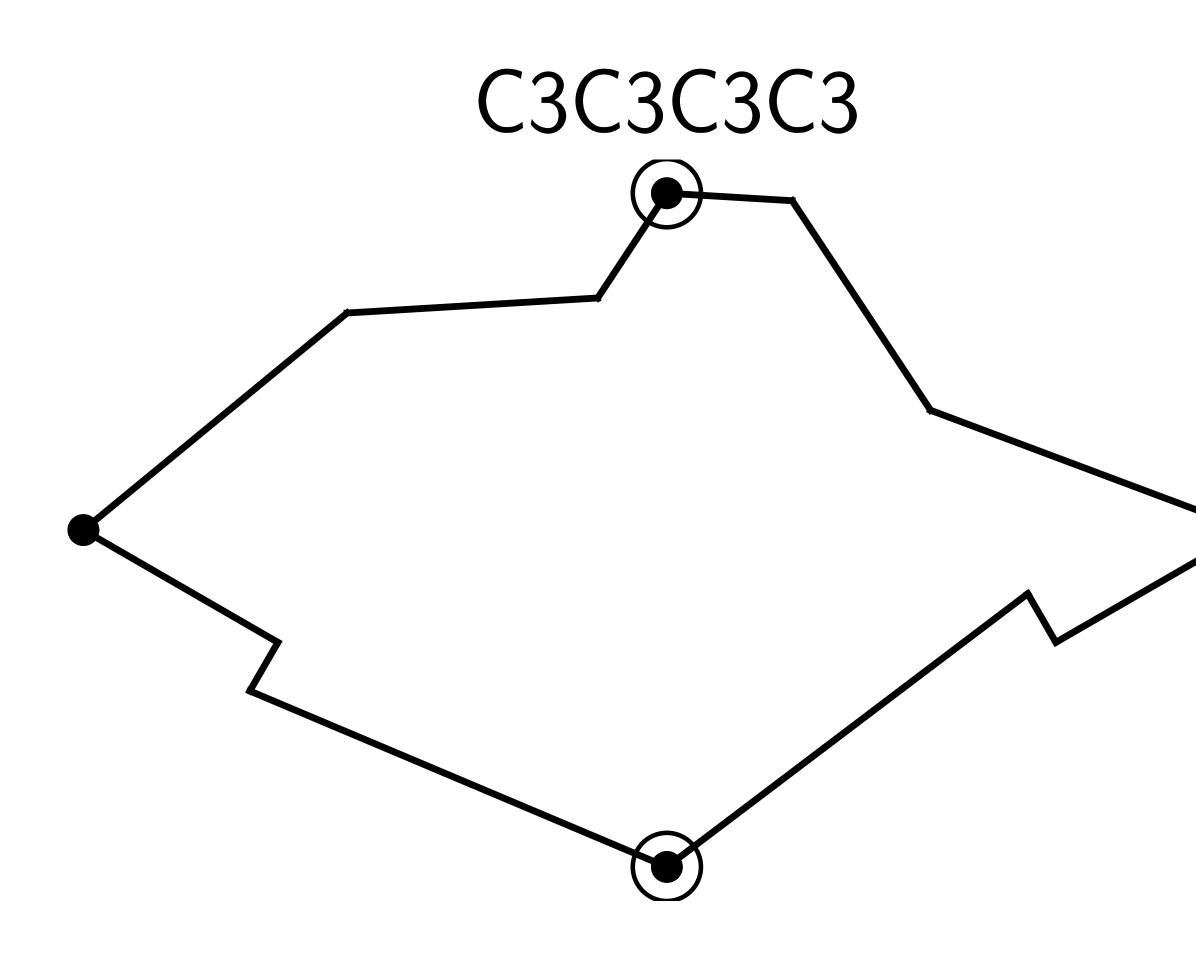




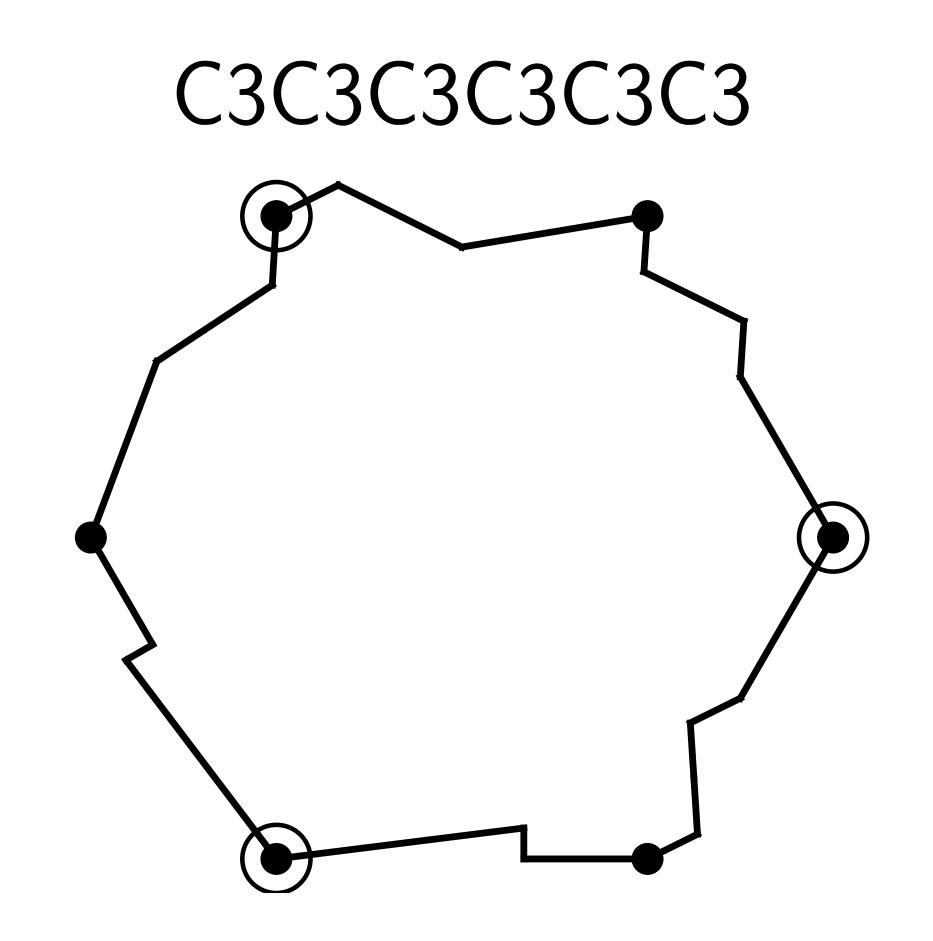


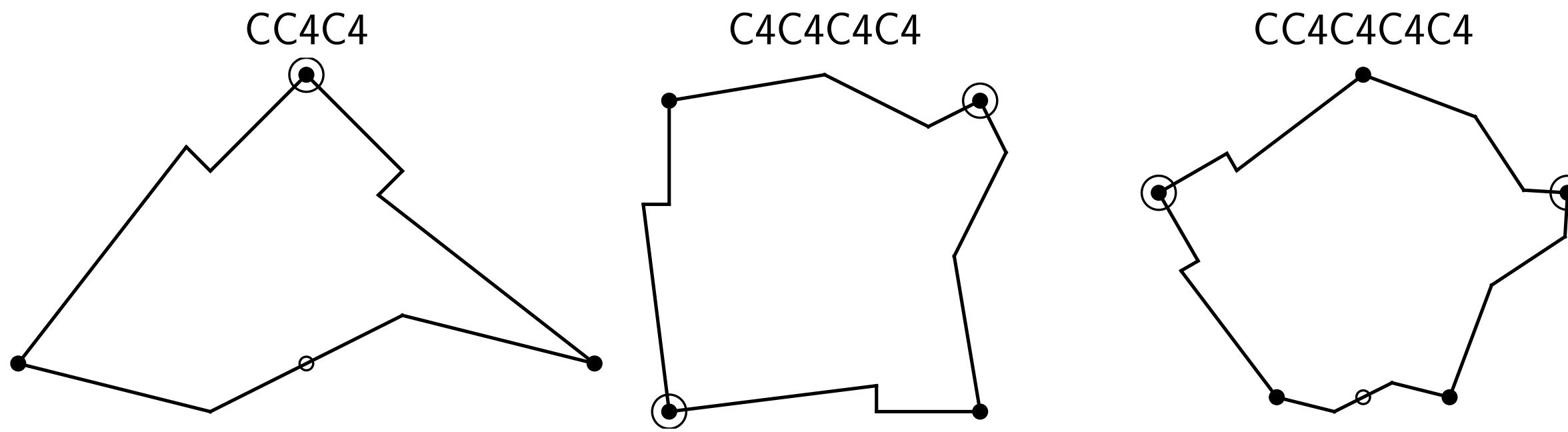




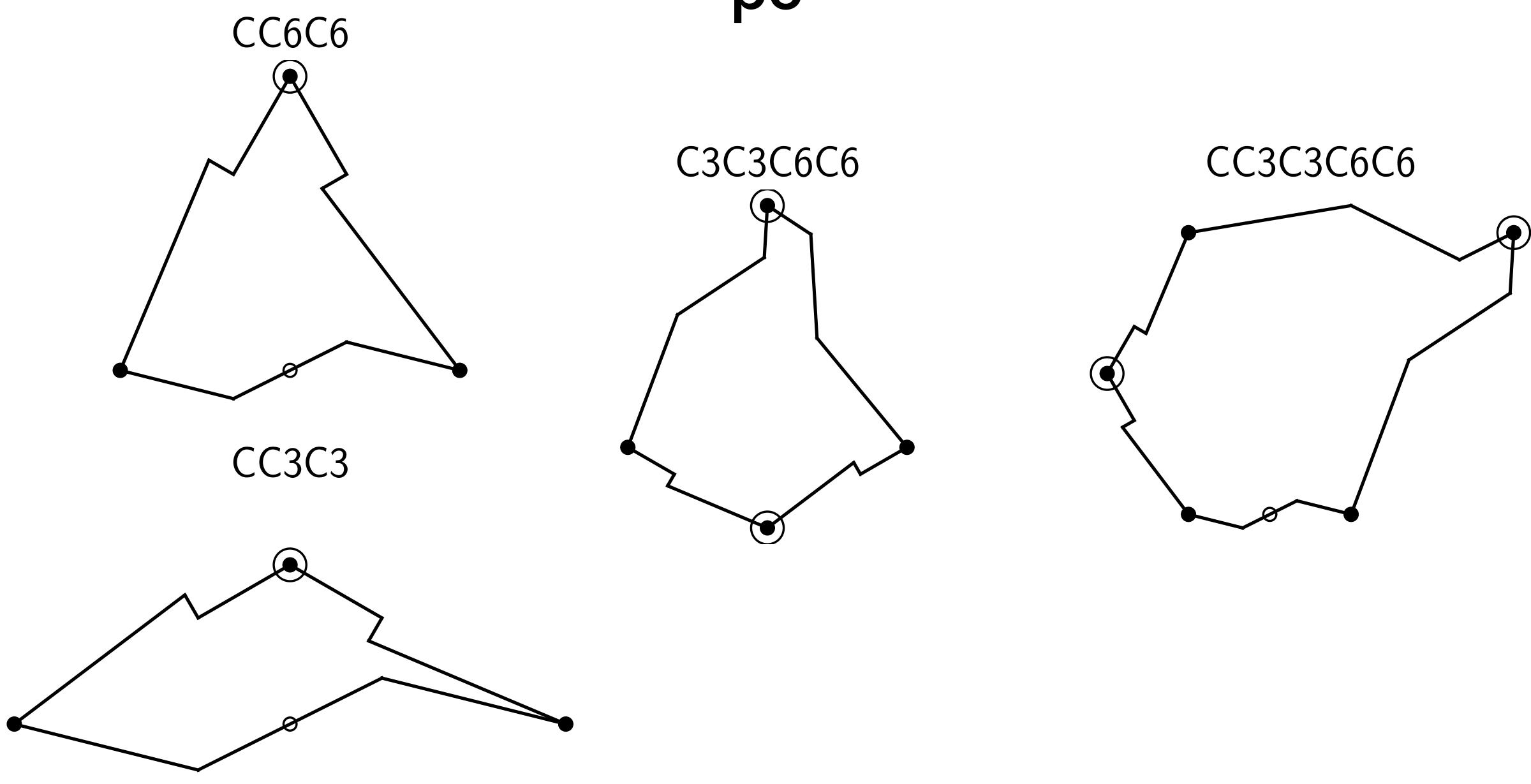


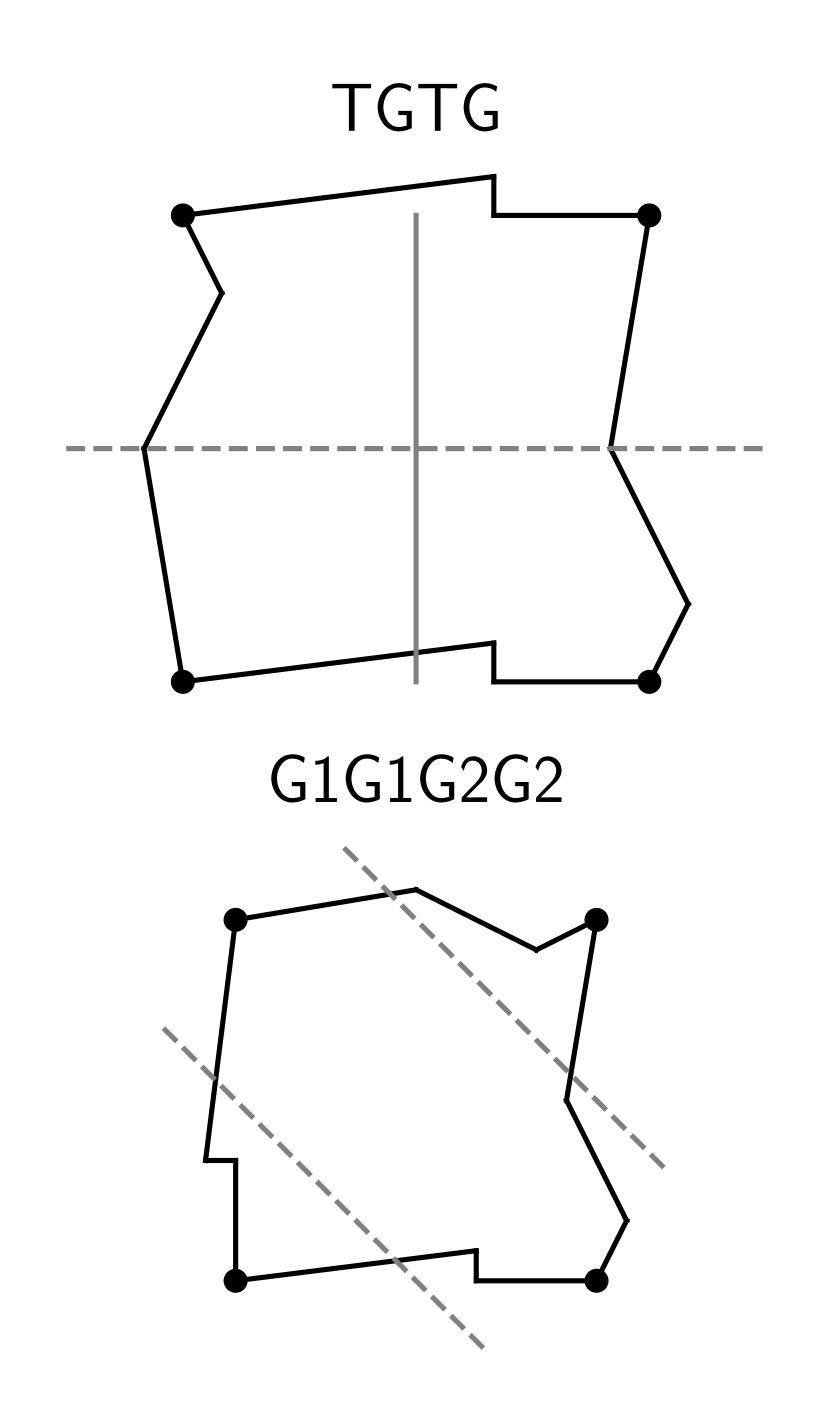
р3



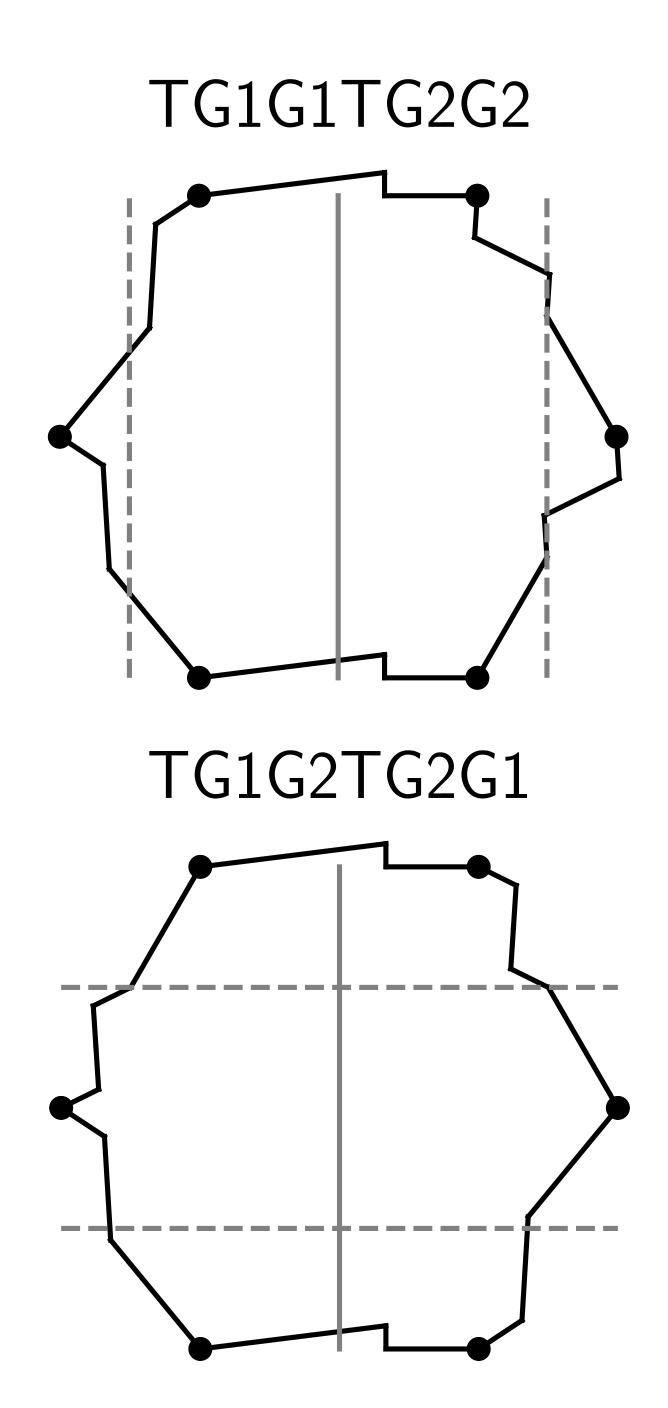


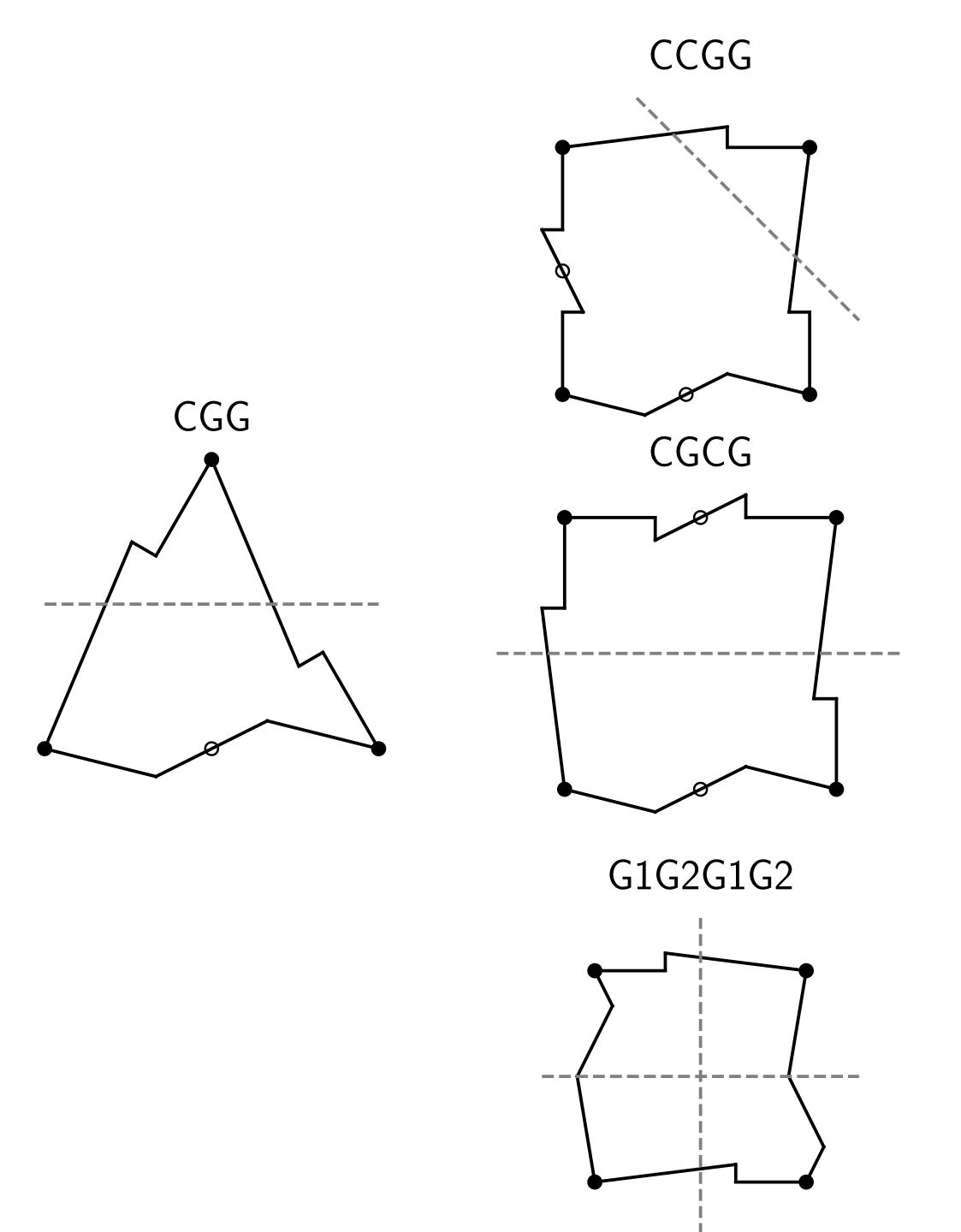
P





pg





pgg

