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FrequenCst vs Bayesian “pre-test”
• An astronomer measures the mass of a NS in a binary pulsar system to be 

  with 90% confidence.  How do you interpret the 
quoted result? 

• Answer 1: You are 90% confident that the true mass of the NS lies in the 
interval  

• Answer 2: You interpret 90% as the long-term rela>ve frequency with 
which the true mass of the NS lies in the set of intervals 

 where  is the set of measured 
masses.

M = (1.39 ± 0.02)M⊙

[1.37M⊙,1.41M⊙]

{[M̂ − 0.02M⊙, M̂ + 0.02M⊙]} {M̂}
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FrequenCst vs Bayesian “affiliaCon”
• If you chose answer 1, then you are a Bayesian 

• If you chose answer 2, then you are a frequen>st
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Goal of science is to infer nature’s state from 
observaCons
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 conclusions are uncertain!!⟹

• Observa>ons are:

- incomplete (problem of induc>on)
- imprecise (measurement noise, quantum mechanics, …)

• ProbabilisCc inference (aka “plausible inference”, “sta>s>cal inference”) is a way of 
dealing with uncertainty

• Different from mathema>cal deduc>on



I. ProbabilisCc inference
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DefiniCons of probability

• Frequen>st defini>on:  Long-run relaCve frequency of occurrence of an 
event in a set of repeatable iden>cal experiments 

• Bayesian defini>on: Degree of belief (or confidence, plausibility) in any 
proposi>on  

NOTE: For the frequen>st defini>on, probabili>es can only be assigned to proposi>ons 
about outcomes of repeatable iden>cal experiments (i.e., random variables), not to 
hypotheses or parameters describing the state of nature,  which have fixed but unknown 
values
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Algebra of probability
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P(X = true) = 1
P(X = false) = 0
0 < P(X = not sure) < 1

• Possible values:

•  in general. Example X=“person is pregnant”, Y=“person is 
female”
P(X |Y) ≠ P(Y |X)
• NOTE:  is the probability of  condi>oned on  (assuming  is true)P(X |Y) X Y Y

P(X |Y)P(Y) = P(X, Y)
• Product rule:

P(X) + P(X̄) = 1• Sum rule:



Bayes’ theorem (a simple consequence of the product rule!!)
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where P(D) = P(D |H)P(H) + P(D | H̄)P(H̄)

P(H |D) =
P(D |H)P(H)

P(D)

posterior
likelihood

prior

evidence

“Learning from experience”: the probability of H being true (in light of new 
data) increases by the ra>o of the probability of obtaining the new data D 
when H is true to the probability of obtaining D in any case 



Bayes’ theorem (for parameters associated with a given 
hypothesis or model)
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where p(d |H) = ∫ da p(d |a, H)p(a |H)

p(a |d, H) =
p(d |a, H)p(a |H)

p(d |H)

“marginaliza>on” over a



Comparing frequenCst & Bayesian inference

Frequentist statistics Bayesian infererence

Probabilities are long-run relative occurrences of outcomes 
of repeatable expts —> can’t be assigned to hypotheses 

Probabilities are degree of belief —> can be assigned to 
hypotheses

Usually start with a likelihood function p(d|H) Same as frequentist

Construct a statistic (some function of the data d) for 
parameter estimation or hypothesis testing Need to specify priors for parameters and hypotheses

Calculate sampling distribution of the statistics 

(e.g., using time slide)

Use Bayes’ theorem to update degree of belief in a 
parameter or hypothesis

Calculates confidence intervals (for parameter estimation) 
and p-values (for hypothesis testing)

Construct posteriors (for parameter estimation) and odds 
ratios (Bayes factors) (for hypothesis testing)

12HUST GW Summer School 2022



II. FrequenCst staCsCcs
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FrequenCst parameter esCmaCon
• Construct a sta>s>c (esCmator)  for the parameter you are interested in 

• Calculate the sampling distribuCon  where  

• Statements like  make sense since  is a random 
variable 

• Statements like  with 90% confidence must be interpreted as 
statements about the randomness of the intervals—i.e., 90% is the long-
term rela>ve frequency with which the true value of the parameter lies in 
the set of intervals  where  is the set of measured 
parameter es>mates

̂a
p( ̂a |a, H1) H1 = ∪a>0 Ha

Prob(a − Δ < ̂a < a + Δ) ̂a

a = ̂a ± Δ

{[ ̂a − Δ, ̂a + Δ]} { ̂a}
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FrequenCst parameter esCmaCon
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3.2.4 Frequentist parameter estimation

The frequentist prescription for estimating the value of a particular parameter a, like
the amplitude of a gravitational-wave signal, is slightly different than the method used
to claim a detection. You need to first construct a statistic (called an estimator) â of the
parameter a you are interested in. (This might be a maximum-likelihood estimator of
a, but other estimators can also be used). You then calculate its sampling distribution
p(â|a, Ha). Note that statements like

Prob(a − ∆ < â < a + ∆) = 0.95, (3.7)

which one constructs from p(â|a, Ha) make sense in the frequentist framework, since
â is a random variable. Although the above inequality can be rearranged to yield

Prob(â − ∆ < a < â + ∆) = 0.95, (3.8)

this should not be interpreted as a statement about the probability of a lying within a
particular interval [â − ∆, â + ∆], since a is not a random variable. Rather, it should
be interpreted as a probabilistic statement about the set of intervals {[â − ∆, â + ∆]}
for all possible values of â. Namely, in a set of many repeated experiments, 0.95 is the
fraction of the intervals that will contain the true value of the parameter a. Such an
interval is called a 95% frequentist confidence interval. This is illustrated graphically
in Fig. 6.

It is important to point out that an estimator can sometimes take on a value of the
parameter that is not physically allowed. For example, if the parameter a denotes the
amplitude of a gravitational-wave signal (so physically a ≥ 0), it is possible for â < 0
for a particular realization of the data. Note that there is nothing mathematically wrong
with this result. Indeed, the sampling distribution for â specifies the probability of

Fig. 6 Definition of the frequentist confidence interval for parameter estimation. Each circle and line
represents a measured interval [â−∆, â+∆]. The set of all such intervals will contain the true value of the
parameter a (indicated here by the dotted vertical line) CL ∗ 100% of the time, where CL is the confidence
level
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FrequenCst hypothesis tesCng
• Suppose you want to test a hypothesis that a GW signal with some fixed 

but unknown amplitude  is present in the data ( ) 

• Since you can’t assign probabili>es to hypotheses as a frequen>st, you 
introduce the null hypothesis  (for this example, ), and then 
argue for  by arguing against  (like proof by contradic>on) 

• So you construct a test staCsCc  and calculate its sampling distribu>ons 
 and  condi>oned on  and  

• If the observed value of  lies far out in the tail for the null distribu>on, 
, you reject  (accept ) at the  level where 

 is the so-called -value

H1
a > 0 H1 ≡ ∪a>0 Ha

H0 = H̄1 a = 0
H1 H0

Λ
p(Λ |H0) p(Λ |a, H1) H0 H1

Λ
p(Λ |H0) H0 H1 p × 100 %
p = Prob(Λ > Λobs |H0) p
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FrequenCst p-value
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Fig. 3 Definition of the p-value (or significance) for frequentist hypothesis testing. The value of p equals
the area under the probability distribution p(Λ|H0) for Λ ≥ Λobs

out. The so-called stopping problem of frequentist statistics is an example of such a
problem (Howson and Urbach 2006).

3.2.1 Frequentist hypothesis testing

Suppose, as a frequentist, you want to test the hypothesis H1 that a gravitational-wave
signal, having some fixed but unknown amplitude a > 0, is present in the data. Since
you cannot assign probabilities to hypotheses or to parameters like a as a frequentist,
you need to introduce instead an alternative (or null) hypothesis H0, which, for this
example, is the hypothesis that there is no gravitational-wave signal in the data (i.e., that
a = 0). You then argue for H1 by arguing against H0, similar to proof by contradiction
in mathematics. Note that H1 is a composite hypothesis since it depends on a range
of values of the unknown parameter a. It can be written as the union, H1 = ∪a>0Ha ,
of a set of simple hypotheses Ha each corresponding to a single fixed value of the
parameter a.

To rule either in favor or against H0, you construct a statistic Λ, called a test or
detection statistic, on which the statistical test will be based. As mentioned above,
you will need to calculate analytically or via Monte Carlo simulations the sampling
distribution for Λ under the assumption that the null hypothesis is true, p(Λ|H0). If
the observed value of Λ lies far out in the tails of the distribution, then the data are
most likely not consistent with the assumption of the null hypothesis, so you reject
H0 (and thus accept H1) at the p ∗ 100% level, where

p ≡ Prob(Λ > Λobs|H0) ≡
∫ ∞

Λobs

p(Λ|H0) dΛ. (3.3)

This is the so-called p-value (or significance) of the test; it is illustrated graphically in
Fig. 3. The p-value required to reject the null hypothesis determines a threshold Λ∗,
above which you reject H0 and accept H1 (e.g., claim a detection). It is related to the
false alarm probability for the test as we explain below.

The above statistical test is subject to two types of errors: (i) type I or false alarm
errors, which arise if the data are such that you reject the null hypothesis (i.e., Λobs >
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False alarm, false dismissal probabiliCes
• The  value needed to reject the null hypothesis defines a threshold  

• There are two types of errors when using the test sta>s>c : 

• False alarm: Reject the null hypothesis ( ) when it is true  

• False dismissal: Accept the null hypothesis ( ) when it is false 

• Different test sta>s>cs are judged according to their false alarm and false 
dismissal probabiliCes 

• In GW data analysis, one typically sets the false alarm probability to some 
acceptably low level (e.g., 1 in 1000), then finds the test sta>s>c that 
minimizes the false dismissal probability for fixed false alarm probability 
(called the Neyman-Pearson criterion)

p Λ*

Λ
Λobs > Λ*

Λobs ≤ Λ*
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False alarm, false dismissal probabiliCes
•  is the false alarm probability (refers to ), e.g., 10%α H0
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Λ

p(Λ |H0)

α

Λ*



False alarm, false dismissal probabiliCes
•  is the false alarm probability (refers to ) 

•  is the false dismissal probability (refers to )

α H0

β(a) H1 ≡ ∪a>0 Ha
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Λ*

p(Λ |H0) p(Λ |a1, H1)

α

β(a1)

Λ



False alarm, false dismissal probabiliCes
•  is the false alarm probability (refers to ) 

•  is the false dismissal probability (refers to )

α H0

β(a) H1 ≡ ∪a>0 Ha
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Λ*

p(Λ |H0) p(Λ |a = a1, H1) p(Λ |a = a2, H1)

αβ(a2)

β(a1)

Λ



DetecCon probability
•  is the frac>on of the >me that the test sta>s>c  

correctly idenCfies the presence of a signal with amplitude 
γ(a) ≡ 1 − β(a) Λ

a
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Fig. 4 Detection probability as a function of the signal amplitude for a false alarm probability equal to
10%. The value of a needed for 90% detection probability is indicated by the dashed vertical line and is
denoted by a90%,DP

Fig. 5 Graphical representation of a frequentist 90% confidence level upper limit. When a = a90%,UL,
the probability of obtaining a value of the detection statistic Λ ≥ Λobs is equal to 0.90

3.2.3 Frequentist upper limits

In the absence of a detection (i.e., if the observed value of the test statistic is less
than the detection threshold Λ∗), one can still set a bound (called an upper limit) on
the strength of the signal that one was trying to detect. The upper limit depends on
the observed value of the test statistic, Λobs, and a choice of confidence level, CL,
interpreted in the frequentist framework as the long-run relative occurrence for a set
of repeated identical experiments. For example, one defines the 90% confidence-level
upper limit a90%,UL as the minimum value of a for which Λ ≥ Λobs at least 90% of
the time:

Prob(Λ ≥ Λobs|a ≥ a90%,UL, Ha) ≥ 0.90. (3.6)

In other words, if the signal has an amplitude a90%,UL or higher, we would have
detected it in at least 90% of repeated observations. A graphical representation of a
frequentist upper limit is given in Fig. 5.
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FrequenCst upper limits
• If  one onen sets an UL on the amplitude  of the signal 

•  is the value of  for which 

Λobs < Λ* a

a90%,UL a Prob (Λ ≥ Λobs |a = a90%,UL, H1) = 0.90
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Fig. 4 Detection probability as a function of the signal amplitude for a false alarm probability equal to
10%. The value of a needed for 90% detection probability is indicated by the dashed vertical line and is
denoted by a90%,DP

Fig. 5 Graphical representation of a frequentist 90% confidence level upper limit. When a = a90%,UL,
the probability of obtaining a value of the detection statistic Λ ≥ Λobs is equal to 0.90

3.2.3 Frequentist upper limits

In the absence of a detection (i.e., if the observed value of the test statistic is less
than the detection threshold Λ∗), one can still set a bound (called an upper limit) on
the strength of the signal that one was trying to detect. The upper limit depends on
the observed value of the test statistic, Λobs, and a choice of confidence level, CL,
interpreted in the frequentist framework as the long-run relative occurrence for a set
of repeated identical experiments. For example, one defines the 90% confidence-level
upper limit a90%,UL as the minimum value of a for which Λ ≥ Λobs at least 90% of
the time:

Prob(Λ ≥ Λobs|a ≥ a90%,UL, Ha) ≥ 0.90. (3.6)

In other words, if the signal has an amplitude a90%,UL or higher, we would have
detected it in at least 90% of repeated observations. A graphical representation of a
frequentist upper limit is given in Fig. 5.
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III. Bayesian inference
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Bayesian parameter esCmaCon
• Bayesian parameter es>ma>on is via the posterior distribu>on  

• The posterior distribuCons contains all the informaCon about the 
parameter, but you can reduce it to a few numbers (e.g., mode, mean, 
stddev, …) 

• If the posterior distribu>on depends on several parameters, you can 
obtain the posterior for one parameter by marginalizing over the others, 

 

• A Bayesian credible interval or upper limit defined in terms of the area 
under the posterior distribu>on

p(a |d, H)

p(a |d, H) = ∫ db p(a, b |d, H) = ∫ db p(a |b, d, H)p(b |H)
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Bayesian credible interval
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Fig. 8 Definition of a Bayesian credible interval for parameter estimation. Here we construct a symmetric
95% credible interval centered on the mode of the distribution

3.3.1 Bayesian parameter estimation

In Bayesian inference, a parameter, e.g., a, is estimated in terms of its posterior dis-
tribution, p(a|d), in light of the observed data d. As discussed in the introduction to
this section, the posterior p(a|d) can be calculated from the likelihood p(d|a) and the
prior probability distribution p(a) using Bayes’ theorem

p(a|d) = p(d|a)p(a)
p(d)

. (3.14)

The posterior distribution tells you everything you need to know about the parameter,
although you might sometimes want to reduce it to a few numbers—e.g., its mode,
mean, standard deviation, etc.

Given a posterior distribution p(a|d), a Bayesian confidence interval (often called
a credible interval given the Bayesian interpretation of probability as degree of belief,
or state of knowledge, about an event) is simply defined in terms of the area under
the posterior between one parameter value and another. This is illustrated graphically
in Fig. 8, for the case of a 95% symmetric credible interval, centered on the mode of
the distribution amode. If the posterior distribution depends on two parameters a and
b, but you really only care about a, then you can obtain the posterior distribution for
a by marginalizing the joint distribution p(a, b|d) over b:

p(a|d) =
∫

db p(a, b|d) =
∫

db p(a|b, d)p(b), (3.15)

where the second equality follows from the relationship between joint probabilities
and conditional probabilities, e.g., p(a|b, d)p(b) = p(a, b|d). Variables that you
don’t particularly care about (e.g., the variance of the detector noise as opposed to
the strength of a gravitational-wave signal) are called nuisance parameters. Although
nuisance parameters can be handled in a straight-forward manner using Bayesian
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Bayesian credible upper limit
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inference, they are problematic to deal with (i.e., they are a nuisance!) in the context
of frequentist statistics. The problem is that marginalization doesn’t make sense to a
frequentist, for whom parameters cannot be assigned probability distributions.

The interpretation of Bayes’ theorem (3.14) is that our prior knowledge is updated
by what we learn from the data, as measured by the likelihood, to give our posterior
state of knowledge. The amount learned from the data is measured by the information
gain

I =
∫

da p(a|d) log
(
p(a|d)
p(a)

)
. (3.16)

Using a natural logarithm gives the information in nats, while using a base 2 logarithm
gives the information in bits. If the data tells us nothing about the parameter, then
p(d|a) = constant, which implies p(a|d) = p(a) and thus I = 0.

3.3.2 Bayesian upper limits

A Bayesian upper limit is simply a Bayesian credible interval for a parameter with the
lower end point of the interval set to the smallest value that the parameter can take.
For example, the Bayesian 90% upper limit on a parameter a > 0 is defined by:

Prob(0 < a < a90%,UL|d) = 0.90, (3.17)

where probability is interpreted as degree of belief, or state of knowledge, that the
parameter a has a value in the indicated range. One usually sets an upper limit on a
parameter when the mode of the distribution for the parameter being estimated is not
sufficiently displaced from zero, as shown in Fig. 9.

3.3.3 Bayesian model selection

Bayesian inference can easily be applied to multiple models or hypotheses, each with
a different set of parameters. In what follows, we will denote the different models

Fig. 9 Bayesian 90% credible upper limit for the parameter a
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Bayesian hypothesis tesCng / model selecCon
• Compare two hypotheses  and  by taking their posterior odds raCo: H1 H0
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p(H1 |d)
p(H0 |d)

=
p(d |H1)
p(d |H0)

p(H1)
p(H0)

posterior odds
prior oddsBayes factor   

(ra>o of marginalized  
likelihoods or “evidences”)

ℬ10(d)



RelaCng Bayes factors and maximum-likelihood raCos
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p(d |H) = ∫ da p(d |a, H)p(a |H)

• Calcula>on of the evidence (=likelihood of an hypothesis) usually involves 
marginalizaCon over the parameters associated with the hypothesis/model:

ℬ10(d) ≡
p(d |H1)
p(d |H0)

=
∫ da1 p(d |a1, H1)p(a1 |H1)
∫ da0 p(d |a0, H0)p(a0 |H0)

≃ ΛML(d)
ΔV1/V1

ΔV0/V0

• Bayes factor:

• The  factors penalize hypotheses that uses more parameter space volume  
than necessary to fit the data   (Occam’s penalty factor)

ΔV/V V
ΔV

p(d|aML , H)

V

V-1

ΔV

a

p(d |H) ≃ p(d |aML, H)p(aML |H)Δa = ℒML(d |H)ΔV/V

• When the data are informaCve:



Significance of Bayes factor values
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Table 3 Bayes factors and their interpretation in terms of the strength of the evidence in favor of one model
relative to the other

Bαβ (d) 2 lnBαβ (d) Evidence for model Mα relative to Mβ

<1 <0 Negative (supports model Mβ )

1–3 0–2 Not worth more than a bare mention

3–20 2–6 Positive

20–150 6–10 Strong

>150 >10 Very strong

Adapted from Kass and Raftery (1995)

signal-to-noise ratio of the data, assuming an additive signal in Gaussian-stationary
noise, and it can be used as an alternative frequentist detection statistic in place of
ΛML.

Table 3 from Kass and Raftery (1995) gives a range of Bayes factors and their
interpretation in terms of the strength of the evidence in favor of one model relative to
another. The precise levels at which one considers the evidence to be “strong” or “very
strong” is rather subjective. But recent studies (Cornish and Sampson 2016; Taylor
et al. 2016a) in the context of pulsar timing have been trying to make this correspon-
dence a bit firmer, using sky and phase scrambles to effectively destroy signal-induced
spatial correlations between pulsars while retaining the statistical properties of each
individual dataset. This is similar to doing time-slides for LIGO analyses, which are
used to assess the significance of a detection.

Taylor et al. (2016a) even go so far as to perform a hybrid frequentist-Bayesian
analysis, doing Monte Carlo simulations: (i) over different noise-only realizations,
and (ii) over different sky and phase scrambles, which null the correlated signal.
These simulations produce different null distributions for the Bayes factor, similar
to a null-hypothesis distribution for a frequentist detection statistic (in this case, the
log of the Bayes factor). The significance of the measured Bayes factor is then its
corresponding p-value with respect to one of these null distributions. The utility of
such a hybrid analysis is its ability to better assess the significance of a detection claim,
especially when there might be questions about the suitability of one of the models
(e.g., the noise model) used in the construction of a likelihood function.

3.5 Simple example comparing Bayesian and frequentist analyses

To further illustrate the relationship between Bayesian and frequentist analyses, we
consider in this section a very simple example—a constant signal with amplitude
a > 0 in white, Gaussian noise (zero mean, variance σ ):

di = a + ni , i = 1, 2, . . . , N , (3.29)

where the index i labels the individual samples of the data. The likelihood functions for
the noise-only and signal-plus-noise models M0 and M1 are thus simple Gaussians:
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squared SNR of the data



IV. Exercises / worked examples
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1. PracCcal applicaCon of Bayes’ theorem
• Suppose on your last visit to the doctor’s office you took a test for some 

rare disease.  This type of disease occurs in only 1 out of 10,000 people, as 
determined by a random sample of the popula>on.   The test that you took 
is rather effec>ve in that it can correctly iden>fy the presence of the 
disease 95% of the >me, but it gives false posi>ves 1% of the >me.   

• Suppose the test came up posi>ve.  What is the probability that you have 
the disease? 
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SoluCon to Bayes’ theorem problem
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• H = have the disease; + = test posi>ve

P(H) = 0.0001 P(H̄) = 0.9999
P( + |H) = 0.95 P( + | H̄) = 0.01

• Informa>on:

P(H | + ) =
P( + |H)P(H)

P( + )

P( + ) = P( + |H)P(H) + P( + | H̄)P(H̄)
= 0.95 × 0.0001 + 0.01 × 0.9999
≈ 0.01

• Calculate:

P(H | + ) ≈ 0.0095 ≈ 0.01
• Final result:



2. Comparing frequenCst and Bayesian analyses for a 
constant amplitude signal in white noise
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Key formulae
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p(d |ℳ0) = ( 1

2πσ )
N

exp [−
1

2σ2

N

∑
i=1

d2
i ]

p(d |a, ℳ1) = ( 1

2πσ )
N

exp [−
1

2σ2

N

∑
i=1

(di − a)2]

Likelihoods func>ons:

p(a |ℳ1) =
1

amax

Prior:

N = 100 , σ = 1 , 0 ≤ a ≤ amax , a0 = true value

Parameter choices:



Key formulae
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̂a ≡ aML(d) =
1
N

N

∑
i=1

di ≡ d̄ σ2
̂a =

σ2

N

Maximum-likelihood es>mator:

N

∑
i=1

(di − a)2 = ∑
i

d2
i − N ̂a2 + N(a − ̂a)2 = N (Var[d] + (a − ̂a)2)

Useful iden>ty:

p(d |a, ℳ1) = ( 1

2πσ )
N

exp [−
Var[d]

2σ2
̂a ] exp [−

(a − ̂a)2

2σ2
̂a ]

Likelihood func>on (in terms of ML es>mator):

p(d |ℳ1) =
exp [− Var[d]

2σ2
̂a ] [erf ( amax − ̂a

2σ ̂a ) + erf ( ̂a

2σ ̂a )]
2amax ( 2πσ)

N−1
N

Evidence:

p(a |d, ℳ1) =
1

2πσ ̂a

exp [−
(a − ̂a)2

2σ2
̂a ] 2 [erf ( amax − ̂a

2σ ̂a ) + erf ( ̂a

2σ ̂a )]
−1

Posterior distribu>on:



Key formulae

37HUST GW Summer School 2022

ℬ10(d) = exp [ ̂a2

2σ2
̂a ] (

2πσ ̂a

amax ) 1
2 [erf ( amax − ̂a

2σ ̂a ) + erf ( ̂a

2σ ̂a )] ≃ exp [ ̂a2

2σ2
̂a ] (

2πσ ̂a

amax )
Bayes factor:

p(Λ |ℳ0) =
1

2πΛ
e−Λ/2

p(Λ |a, ℳ1) =
1

2πΛ

1
2 [e− 1

2 ( Λ− λ)2 + e− 1
2 ( Λ+ λ)2] λ = ⟨ρ⟩2 =

Na2

σ2

Sampling distribu>ons of the test sta>s>c:

Λ(d) ≡ 2 ln ΛML(d) =
̂a2

σ2
̂a
= (

Nd̄
σ )

2

≡ ρ2
Frequen>st test sta>s>c:

ΛML(d) = exp ( ̂a2

2σ2
̂a )

Maximum likelihood ra>o sta>s>c:



See romano_notes1.pdf and romano_code1.ipynb for 
soluCons
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