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3 Statistical inference

If your experiment needs statistics, you ought to have done a better experiment.
Ernest Rutherford

In this section, we review statistical inference from both the Bayesian and frequentist
perspectives. Our discussion of frequentist and Bayesian upper limits, and the example
given in Sect. 3.5 comparing Bayesian and frequentist analyses is modelled in part
after Röver et al. (2011). Readers interested in more details about Bayesian statistical
inference should see, e.g., Howson and Urbach (1991), Howson and Urbach (2006),
Jaynes (2003), Gregory (2005) and Sivia and Skilling (2006). For a description of
frequentist statistics, we recommend Helstrom (1968), Wainstein and Zubakov (1971)
and Feldman and Cousins (1998).

3.1 Introduction to Bayesian and frequentist inference

Statistical inference can be used to answer questions such as “Is a gravitational-wave
signal present in the data?” and, if so, “What are the physical characteristics of the
source?” These questions are addressed using the techniques of classical (also known
as frequentist) inference and Bayesian inference. Many of the early theoretical studies
and observational papers in gravitational-wave astronomy followed the frequentist
approach, but the use of Bayesian inference is growing in popularity. Moreover, many
contemporary analyses cannot be classified as purely frequentist or Bayesian.

The textbook definition states that the difference between the two approaches comes
down to their different interpretations of probability: for frequentists, probabilities are
fundamentally related to frequencies of events, while for Bayesians, probabilities
are fundamentally related to our own knowledge about an event. For example, when
inferring the mass of a star, the frequentist interpretation is that the star has a true, fixed
(albeit unknown) mass, so it is meaningless to talk about a probability distribution for
it. Rather, the uncertainty is in the data, and the relevant probability is that of observing
the data d, given that the star has massm. This probability distribution is the likelihood,
denoted p(d|m). In contrast, in the Bayesian interpretation the data are known (after
all, it is what is measured!), and the mass of the star is what we are uncertain about,5

so the relevant probability is that the mass has a certain value, given the data. This
probability distribution is the posterior, p(m|d). The likelihood and posterior are
related via Bayes’ theorem:

p(m|d) = p(d|m)p(m)

p(d)
, (3.1)

5 In some treatments, the Bayesian interpretation is equated to philosophical schools such as Berkeley’s
empiricist idealism, or subjectivism, which holds that things only exist to the extent that they are perceived,
while the frequentist interpretation is equated to Platonic realism, or metaphysical objectivism, holding that
things exist objectively and independently of observation. These equivalences are false. A physical object
can have a definite, Platonic existence, and Bayesians can still assign probabilities to its attributes since our
ability to measure is limited by imperfect equipment.
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where p(m) is the prior probability distribution for m, and the normalization constant,

p(d) =
∫

p(d|m)p(m) dm, (3.2)

is the marginalized likelihood, or evidence. For uniform (flat) priors the frequentist
confidence intervals for the parameters will coincide with the Bayesian credible inter-
vals, but the interpretation remains quiet distinct.

The choice of prior probability distributions is a source of much consternation and
debate, and is often cited as a weakness of the Bayesian approach. But the choice of
probability distribution for the likelihood (which is also important for the frequentist
approach) is often no less fraught. The prior quantifies what we know about the range
and distribution of the parameters in our model, while the likelihood quantifies what
we know about our measurement apparatus, and, in particular, the nature of the mea-
surement noise. The choice of prior is especially problematic in a new field where there
is little to guide the choice. For example, electromagnetic observations and population
synthesis models give some guidance about black hole masses, but the mass range and
distribution is currently not well constrained. The choice of likelihood can also be
challenging when the measurement noise deviates from the stationary, Gaussian ideal.
More details related to the choice of likelihood and choice of prior will be given in
Sect. 3.6.

In addition to parameter estimation, statistical inference is used to select between
competing models, or hypotheses, such as, “is there a gravitational-wave signal in
the data or not?” Thanks to GW150914 and GW151226, we know that gravitational-
wave signals are already present in existing data sets, but most are at levels where
we are unable to distinguish them from noise processes. For detection we demand
that a model for the data that includes a gravitational-wave signal be favored over a
model having no gravitational-wave signal. In Bayesian inference a detection might
be announced when the odds ratio between models with and without gravitational-
wave signals gets sufficiently large, while in frequentist inference a detection might
be announced when the p-value for some test statistic is less than some prescribed
threshold. These different approaches to deciding whether or not to claim a detection
(e.g., Bayesian model selection or frequentist hypothesis testing), as well as differences
in regard to parameter estimation, are described in the following subsections. Table 2
provides an overview of the key similarities and differences between frequentist and
Bayesian inference, to be described in detail below.

3.2 Frequentist statistics

As mentioned above, classical or frequentist statistics is a branch of statistical inference
that interprets probability as the “long-run relative occurrence of an event in a set of
identical experiments.” Thus, for a frequentist, probabilities can only be assigned
to propositions about outcomes of (in principle) repeated experiments (i.e., random
variables) and not to hypotheses or parameters describing the state of nature, which
have fixed but unknown values. In this interpretation, the measured data are drawn
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Table 2 Comparison of frequentist and Bayesian approaches to statistical inference

Frequentist Bayesian

Probabilities assigned only to
propositions about outcomes of
repeatable experiments (i.e.,
random variables), not to
hypotheses or parameters which
have fixed but unknown values

Probabilities can be assigned to hypotheses and
parameters since probability is degree of belief (or
confidence, plausibility) in any proposition

Assumes measured data are drawn
from an underlying probability
distribution, which assumes the
truth of a particular hypothesis or
model (likelihood function)

Same

Constructs a statistic to estimate a
parameter or to decide whether or
not to claim a detection

Needs to specify prior degree of belief in a particular
hypothesis or parameter

Calculates the probability
distribution of the statistic
(sampling distribution)

Uses Bayes’ theorem to update the prior degree of belief
in light of new data (i.e., likelihood “plus” prior yields
posterior)

Constructs confidence intervals and
p-values for parameter estimation
and hypothesis testing

Constructs posteriors and odds ratios for parameter
estimation and hypothesis testing/model comparison

See Sects. 3.2 and 3.3 for details

from an underlying probability distribution, which assumes the truth of a particular
hypothesis or model. The probability distribution for the data is just the likelihood
function, which we can write as p(d|H), where d denotes the data and H denotes an
hypothesis.

Statistics play an important role in the frequentist framework. These are random
variables constructed from the data, which typically estimate a signal parameter or
indicate how well the data fit a particular hypothesis. Although it is common to con-
struct statistics from the likelihood function (e.g., the maximum-likelihood statistic
for a particular parameter, or the maximum-likelihood ratio to compare a signal-plus-
noise model to a noise-only model), there is no a priori restriction on the form of a
statistic other than it be some function of the data. Ultimately, it is the goal of the
analysis and the cleverness of the data analyst that dictate which statistic (or statistics)
to use.

To make statistical inferences in the frequentist framework requires knowledge of
the probability distribution (also called the sampling distribution) of the statistic. The
sampling distribution can either be calculated analytically (if the statistic is sufficiently
simple) or via Monte Carlo simulations, which effectively construct a histogram of the
values of the statistic by simulating many independent realizations of the data. Given a
statistic and its sampling distribution, one can then calculate either confidence intervals
for parameter estimation or p-values for hypothesis testing. (These will be discussed in
more detail below). Note that a potential problem with frequentist statistical inference
is that the sampling distribution depends on data values that were not actually observed,
which is related to how the experiment was carried out or might have been carried
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Fig. 3 Definition of the p-value (or significance) for frequentist hypothesis testing. The value of p equals
the area under the probability distribution p(Λ|H0) for Λ ≥ Λobs

out. The so-called stopping problem of frequentist statistics is an example of such a
problem (Howson and Urbach 2006).

3.2.1 Frequentist hypothesis testing

Suppose, as a frequentist, you want to test the hypothesis H1 that a gravitational-wave
signal, having some fixed but unknown amplitude a > 0, is present in the data. Since
you cannot assign probabilities to hypotheses or to parameters like a as a frequentist,
you need to introduce instead an alternative (or null) hypothesis H0, which, for this
example, is the hypothesis that there is no gravitational-wave signal in the data (i.e., that
a = 0). You then argue for H1 by arguing against H0, similar to proof by contradiction
in mathematics. Note that H1 is a composite hypothesis since it depends on a range
of values of the unknown parameter a. It can be written as the union, H1 = ∪a>0Ha ,
of a set of simple hypotheses Ha each corresponding to a single fixed value of the
parameter a.

To rule either in favor or against H0, you construct a statistic Λ, called a test or
detection statistic, on which the statistical test will be based. As mentioned above,
you will need to calculate analytically or via Monte Carlo simulations the sampling
distribution for Λ under the assumption that the null hypothesis is true, p(Λ|H0). If
the observed value of Λ lies far out in the tails of the distribution, then the data are
most likely not consistent with the assumption of the null hypothesis, so you reject
H0 (and thus accept H1) at the p ∗ 100% level, where

p ≡ Prob(Λ > Λobs|H0) ≡
∫ ∞

Λobs

p(Λ|H0) dΛ. (3.3)

This is the so-called p-value (or significance) of the test; it is illustrated graphically in
Fig. 3. The p-value required to reject the null hypothesis determines a threshold Λ∗,
above which you reject H0 and accept H1 (e.g., claim a detection). It is related to the
false alarm probability for the test as we explain below.

The above statistical test is subject to two types of errors: (i) type I or false alarm
errors, which arise if the data are such that you reject the null hypothesis (i.e., Λobs >
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Λ∗) when it is actually true, and (ii) type II or false dismissal errors, which arise if the
data are such that you accept the null hypothesis (i.e., Λobs < Λ∗) when it is actually
false. The false alarm probability α and false dismissal probability β(a) are given
explicitly by

α ≡ Prob(Λ > Λ∗|H0), (3.4)

β(a) ≡ Prob(Λ < Λ∗|Ha), (3.5)

where a is the amplitude of the gravitational-wave signal, assumed to be present under
the assumption that H1 is true. To calculate the false dismissal probability β(a), one
needs the sampling distribution of the test statistic assuming the presence of a signal
with amplitude a.

Different test statistics are judged according to their false alarm and false dismissal
probabilities. Ideally, you would like your statistical test to have false alarm and false
dismissal probabilities that are both as small as possible. But these two properties
compete with one another as setting a larger threshold value to minimize the false
alarm probability will increase the false dismissal probability. Conversely, setting a
smaller threshold value to minimize the false dismissal probability will increase the
false alarm probability.

In the context of gravitational-wave data analysis, the gravitational-wave commu-
nity is (at least initially) reluctant to falsely claim detections. Hence the false alarm
probability is set to some very low value. The best statistic then is the one that mini-
mizes the false dismissal probability (i.e., maximizes detection probability) for fixed
false alarm. This is theNeyman–Pearson criterion. For medical diagnosis, on the other
hand, a doctor is very reluctant to falsely dismiss an illness. Hence the false dismissal
probability will be set to some very low value. The best statistic then is the one which
minimizes the false alarm probability for fixed false dismissal.

3.2.2 Frequentist detection probability

The value 1 − β(a) is called the detection probability or power of the test. It is the
fraction of times that the test statistic Λ correctly identifies the presence of a signal of
amplitude a in the data, for a fixed false alarm probability α (which sets the threshold
Λ∗). A plot of detection probability versus signal strength is often used to show how
strong a signal has to be in order to detect it with a certain probability. Since detection
probability does not depend on the observed data—it depends only on the sampling
distribution of the test statistic and a choice for the false alarm probability—detection
probability curves are often used as a figure-of-merit for proposed search methods for
a signal. Figure 4 shows a detection probability curve, with the value of a needed to
be detectable with 90% frequentist probability indicated by the dashed vertical line.
We will denote this value of a by a90%,DP. Note that as the signal amplitude goes to
zero, the detection probability reduces to the false alarm probability α, which for this
example was chosen to be 0.10.
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Fig. 4 Detection probability as a function of the signal amplitude for a false alarm probability equal to
10%. The value of a needed for 90% detection probability is indicated by the dashed vertical line and is
denoted by a90%,DP

Fig. 5 Graphical representation of a frequentist 90% confidence level upper limit. When a = a90%,UL,
the probability of obtaining a value of the detection statistic Λ ≥ Λobs is equal to 0.90

3.2.3 Frequentist upper limits

In the absence of a detection (i.e., if the observed value of the test statistic is less
than the detection threshold Λ∗), one can still set a bound (called an upper limit) on
the strength of the signal that one was trying to detect. The upper limit depends on
the observed value of the test statistic, Λobs, and a choice of confidence level, CL,
interpreted in the frequentist framework as the long-run relative occurrence for a set
of repeated identical experiments. For example, one defines the 90% confidence-level
upper limit a90%,UL as the minimum value of a for which Λ ≥ Λobs at least 90% of
the time:

Prob(Λ ≥ Λobs|a ≥ a90%,UL, Ha) ≥ 0.90. (3.6)

In other words, if the signal has an amplitude a90%,UL or higher, we would have
detected it in at least 90% of repeated observations. A graphical representation of a
frequentist upper limit is given in Fig. 5.
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3.2.4 Frequentist parameter estimation

The frequentist prescription for estimating the value of a particular parameter a, like
the amplitude of a gravitational-wave signal, is slightly different than the method used
to claim a detection. You need to first construct a statistic (called an estimator) â of the
parameter a you are interested in. (This might be a maximum-likelihood estimator of
a, but other estimators can also be used). You then calculate its sampling distribution
p(â|a, Ha). Note that statements like

Prob(a − ∆ < â < a + ∆) = 0.95, (3.7)

which one constructs from p(â|a, Ha) make sense in the frequentist framework, since
â is a random variable. Although the above inequality can be rearranged to yield

Prob(â − ∆ < a < â + ∆) = 0.95, (3.8)

this should not be interpreted as a statement about the probability of a lying within a
particular interval [â − ∆, â + ∆], since a is not a random variable. Rather, it should
be interpreted as a probabilistic statement about the set of intervals {[â − ∆, â + ∆]}
for all possible values of â. Namely, in a set of many repeated experiments, 0.95 is the
fraction of the intervals that will contain the true value of the parameter a. Such an
interval is called a 95% frequentist confidence interval. This is illustrated graphically
in Fig. 6.

It is important to point out that an estimator can sometimes take on a value of the
parameter that is not physically allowed. For example, if the parameter a denotes the
amplitude of a gravitational-wave signal (so physically a ≥ 0), it is possible for â < 0
for a particular realization of the data. Note that there is nothing mathematically wrong
with this result. Indeed, the sampling distribution for â specifies the probability of

Fig. 6 Definition of the frequentist confidence interval for parameter estimation. Each circle and line
represents a measured interval [â−∆, â+∆]. The set of all such intervals will contain the true value of the
parameter a (indicated here by the dotted vertical line) CL ∗ 100% of the time, where CL is the confidence
level
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obtaining such values of â. It is even possible to have a confidence interval [â−∆, â+∆]
all of whose values are unphysical, especially if one is trying to detect a weak signal
in noise. Again, this is mathematically allowed, but it is a little awkward to report a
frequentist confidence interval that is completely unphysical. We shall see that within
the Bayesian framework unphysical intervals and unphysical posteriors never arise, as
a simple consequence of including a prior distribution on the parameter that requires
a > 0.

3.2.5 Unified approach for frequentist upper limits and confidence intervals

Frequentists also have a way of avoiding unphysical or empty confidence intervals,
which at the same time unifies the treatment of upper limits for null results and
two-sided intervals for non-null results. This procedure, developed by Feldman and
Cousins (1998), also solves the problem that the choice of an upper limit or two-sided
confidence interval leads to intervals that do not have the proper coverage (i.e., the
probability that an interval contains the true value of a parameter does not match the
stated confidence level) if the choice of reporting an upper limit or two-sided con-
fidence interval is based on the data and not decided upon before performing the
experiment.

The basic idea underlying this unified approach to frequentist intervals is a new
specification (or ordering) of the values of the random variable to include in the
acceptance intervals for an unknown parameter. If we let a denote the parameter
whose value we are trying to determine, and â be an estimator of a with sampling
distribution p(â|a, Ha), then the choice of acceptance intervals becomes, for each
value of a, how do we choose [â1, â2] such that

Prob(â1 < â < â2) ≡
∫ â2

â1

p(â|a, Ha) dâ = CL, (3.9)

where CL is the confidence level, e.g., CL = 0.95. The ordering principle proposed
by Feldman and Cousins (1998) is based on the ranking function

R(â|a) ≡ p(â|a, Ha)

p(â|a, Ha)
∣∣
a=abest

, (3.10)

where abest is the value of the parameter a that maximizes the sampling distribution
p(â|a, Ha) for a given value of â. The prescription then for constructing the acceptance
intervals is to find, for each allowed value of a, values of â1 and â2 such that R(â1|a) =
R(â2|a) and for which (3.9) is satisfied. The set of all such acceptance intervals for
different values of a forms a confidence belt in the âa-plane, which is then used to
construct an upper limit or a two-sided confidence interval for a particular observed
value of the estimator â, as explained below and illustrated in Fig. 7.

As a specific example, let us suppose that â is Gaussian-distributed about a with
variance σ 2:

p(â|a, Ha) =
1√

2πσ
e− 1

2
(â−a)2

σ2 , (3.11)
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Fig. 7 Confidence belt for 95%
confidence-level intervals for a
Gaussian distribution with mean
a > 0. (The values for a and â
are given here in units of σ ). The
solid horizontal line shows the
acceptance interval for a = 2.0.
The two dashed vertical lines
correspond to two different
observed values for the estimator
â: â = −0.5, which has a 95%
confidence-level upper limit
a ≤ 1.5; and â = 2, which has a
95% confidence-level two-sided
interval a ∈ [0.35, 3.95]

and that the unknown parameter a represents the amplitude of a signal, so that a > 0.
(Recall that it is possible, however, for the estimator â to take on negative values).
Then abest = â if â > 0, while abest = 0 if â ≤ 0, for which

p(â|a, Ha)
∣∣∣
a=abest

=
{ 1√

2πσ
, â > 0

1√
2πσ

exp
[
− 1

2
â2

σ 2

]
, â ≤ 0

(3.12)

and

R(â|a) =





exp

[
− 1

2
(â−a)2

σ 2

]
, â > 0

exp
[
− 1

2
(−2âa+a2)

σ 2

]
, â ≤ 0

. (3.13)

The confidence belt constructed from this ranking function is shown in Fig. 7. The solid
horizontal line at a = 2 shows the corresponding 95% confidence-level acceptance
interval for this ranking function. The two dashed vertical lines correspond to two
different observed values for the estimator â, leading to a 95% confidence-level upper
limit and two-sided interval, respectively.

3.3 Bayesian inference

In the following subsections, we again describe parameter estimation and hypothesis
testing, but this time from the perspective of Bayesian inference.
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Fig. 8 Definition of a Bayesian credible interval for parameter estimation. Here we construct a symmetric
95% credible interval centered on the mode of the distribution

3.3.1 Bayesian parameter estimation

In Bayesian inference, a parameter, e.g., a, is estimated in terms of its posterior dis-
tribution, p(a|d), in light of the observed data d. As discussed in the introduction to
this section, the posterior p(a|d) can be calculated from the likelihood p(d|a) and the
prior probability distribution p(a) using Bayes’ theorem

p(a|d) = p(d|a)p(a)
p(d)

. (3.14)

The posterior distribution tells you everything you need to know about the parameter,
although you might sometimes want to reduce it to a few numbers—e.g., its mode,
mean, standard deviation, etc.

Given a posterior distribution p(a|d), a Bayesian confidence interval (often called
a credible interval given the Bayesian interpretation of probability as degree of belief,
or state of knowledge, about an event) is simply defined in terms of the area under
the posterior between one parameter value and another. This is illustrated graphically
in Fig. 8, for the case of a 95% symmetric credible interval, centered on the mode of
the distribution amode. If the posterior distribution depends on two parameters a and
b, but you really only care about a, then you can obtain the posterior distribution for
a by marginalizing the joint distribution p(a, b|d) over b:

p(a|d) =
∫

db p(a, b|d) =
∫

db p(a|b, d)p(b), (3.15)

where the second equality follows from the relationship between joint probabilities
and conditional probabilities, e.g., p(a|b, d)p(b) = p(a, b|d). Variables that you
don’t particularly care about (e.g., the variance of the detector noise as opposed to
the strength of a gravitational-wave signal) are called nuisance parameters. Although
nuisance parameters can be handled in a straight-forward manner using Bayesian
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inference, they are problematic to deal with (i.e., they are a nuisance!) in the context
of frequentist statistics. The problem is that marginalization doesn’t make sense to a
frequentist, for whom parameters cannot be assigned probability distributions.

The interpretation of Bayes’ theorem (3.14) is that our prior knowledge is updated
by what we learn from the data, as measured by the likelihood, to give our posterior
state of knowledge. The amount learned from the data is measured by the information
gain

I =
∫

da p(a|d) log
(
p(a|d)
p(a)

)
. (3.16)

Using a natural logarithm gives the information in nats, while using a base 2 logarithm
gives the information in bits. If the data tells us nothing about the parameter, then
p(d|a) = constant, which implies p(a|d) = p(a) and thus I = 0.

3.3.2 Bayesian upper limits

A Bayesian upper limit is simply a Bayesian credible interval for a parameter with the
lower end point of the interval set to the smallest value that the parameter can take.
For example, the Bayesian 90% upper limit on a parameter a > 0 is defined by:

Prob(0 < a < a90%,UL|d) = 0.90, (3.17)

where probability is interpreted as degree of belief, or state of knowledge, that the
parameter a has a value in the indicated range. One usually sets an upper limit on a
parameter when the mode of the distribution for the parameter being estimated is not
sufficiently displaced from zero, as shown in Fig. 9.

3.3.3 Bayesian model selection

Bayesian inference can easily be applied to multiple models or hypotheses, each with
a different set of parameters. In what follows, we will denote the different models

Fig. 9 Bayesian 90% credible upper limit for the parameter a

123



 2 Page 32 of 223 Living Rev Relativ  (2017) 20:2 

by Mα , where the index α runs over the different models, and the associated set of
parameters by the vector θα . The joint posterior distribution for the parameters θα is
given by

p(θα|d,Mα) =
p(d|θα,Mα)p(θα|Mα)

p(d|Mα)
, (3.18)

and the model evidence is given by

p(d|Mα) =
∫

p(d|θα,Mα)p(θα|Mα) dθα, (3.19)

where we marginalize over the parameter values associated with that model. The
posterior probability for model Mα is given by Bayes’ theorem as

p(Mα|d) =
p(d|Mα)p(Mα)

p(d)
, (3.20)

where the normalization constant p(d) involves a sum over all possible models:

p(d) =
∑

α

p(d|Mα)p(Mα). (3.21)

Since the space of all possible models is generally unknown, the sum is usually taken
over the subset of models being considered. The normalization can be avoided by
considering the posterior odds ratio between two models:

Oαβ(d) =
p(Mα|d)
p(Mβ |d)

= p(Mα)

p(Mβ)

p(d|Mα)

p(d|Mβ)
. (3.22)

The first ratio on the right-hand side of the above equation is the prior odds ratio for
models α,β, while the second term is the evidence ratio, or Bayes factor,

Bαβ(d) ≡ p(d|Mα)

p(d|Mβ)
. (3.23)

The prior odds ratio is often taken to equal unity, but this is not always justified. For
example, the prior odds that a signal is described by general relativity versus some
alternative theory of gravity should be much larger than unity given the firm theoretical
and observational footing of Einstein’s theory.

While the foundations of Bayesian inference were laid out by Laplace in the 1700s, it
did not see widespread use until the late twentieth century with the advent of practical
implementation schemes and the development of fast electronic computers. Today,
Monte Carlo sampling techniques, such as Markov Chain Monte Carlo (MCMC)
and Nested Sampling, are used to sample the posterior and estimate the evidence
(Skilling 2006; Gair et al. 2010). Successfully applying these techniques is something
of an art, but in principle, once the likelihood and prior have been written down, the
implementation of Bayesian inference is purely mechanical. Calculating the likelihood
and choosing a prior will be discussed in some detail in Sect. 3.6.
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3.4 Relating Bayesian and frequentist detection statements

It is interesting to compare the Bayesian model selection calculation discussed above
to frequentist hypothesis testing based on the maximum-likelihood ratio. For con-
creteness, let us assume that we have two models M0 (noise-only) and M1 (noise
plus gravitational-wave signal), with parameters θn and {θn, θh}, respectively. The
frequentist detection statistic will be defined in terms of the ratio of the maxima of the
likelihood functions for the two models:

ΛML(d) ≡ maxθn maxθh p(d|θn, θh,M1)

maxθ ′
n
p(d|θ ′

n,M0)
. (3.24)

As described above, the Bayes factor calculation also involves a ratio of two quantities,
the model evidences p(d|M1) and p(d|M0), but instead of maximizing over the
parameters, we marginalize over the parameters:

B10(d) =
∫
dθn

∫
dθh p(d|θn, θh,M1)p(θn, θh |M1)∫
dθ ′

n p(d|θ ′
n,M0)p(θ ′

n|M0)
. (3.25)

These two expressions can be related using Laplace’s approximation to individually
approximate the model evidences p(d|M1) and p(d|M0). This approximation is
valid when the data are informative—i.e., when the likelihood functions are peaked
relative to the joint prior probability distributions of the parameters. For an arbitrary
model M with parameters θ , the Laplace approximation yields:

∫
dθ p(d|θ ,M)p(θ |M) + p(d|θML,M)

∆VM
VM

, (3.26)

where θML ≡ θML(d) maximizes the likelihood with respect to variations of θ given
the data d; ∆VM is the characteristic spread of the likelihood function around its
maximum (the volume of the uncertainty ellipsoid for the parameters); and VM is the
total parameter space volume of the model parameters. Applying this approximation
to models M0 and M1 in (3.25), we obtain

B10(d) + ΛML(d)
∆V1/V1

∆V0/V0
, (3.27)

or, equivalently,

2 lnB10(d) + 2 ln (ΛML(d))+ 2 ln
(

∆V1/V1

∆V0/V0

)
. (3.28)

The second term on the right-hand side of the above equation is negative and penalizes
models that require a larger parameter space volume than necessary to fit the data. This
is basically an Occam penalty factor, which prefers the simpler of two models that
fit the data equally well. The first term has the interpretation of being the squared
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Table 3 Bayes factors and their interpretation in terms of the strength of the evidence in favor of one model
relative to the other

Bαβ (d) 2 lnBαβ (d) Evidence for model Mα relative to Mβ

<1 <0 Negative (supports model Mβ )

1–3 0–2 Not worth more than a bare mention

3–20 2–6 Positive

20–150 6–10 Strong

>150 >10 Very strong

Adapted from Kass and Raftery (1995)

signal-to-noise ratio of the data, assuming an additive signal in Gaussian-stationary
noise, and it can be used as an alternative frequentist detection statistic in place of
ΛML.

Table 3 from Kass and Raftery (1995) gives a range of Bayes factors and their
interpretation in terms of the strength of the evidence in favor of one model relative to
another. The precise levels at which one considers the evidence to be “strong” or “very
strong” is rather subjective. But recent studies (Cornish and Sampson 2016; Taylor
et al. 2016a) in the context of pulsar timing have been trying to make this correspon-
dence a bit firmer, using sky and phase scrambles to effectively destroy signal-induced
spatial correlations between pulsars while retaining the statistical properties of each
individual dataset. This is similar to doing time-slides for LIGO analyses, which are
used to assess the significance of a detection.

Taylor et al. (2016a) even go so far as to perform a hybrid frequentist-Bayesian
analysis, doing Monte Carlo simulations: (i) over different noise-only realizations,
and (ii) over different sky and phase scrambles, which null the correlated signal.
These simulations produce different null distributions for the Bayes factor, similar
to a null-hypothesis distribution for a frequentist detection statistic (in this case, the
log of the Bayes factor). The significance of the measured Bayes factor is then its
corresponding p-value with respect to one of these null distributions. The utility of
such a hybrid analysis is its ability to better assess the significance of a detection claim,
especially when there might be questions about the suitability of one of the models
(e.g., the noise model) used in the construction of a likelihood function.

3.5 Simple example comparing Bayesian and frequentist analyses

To further illustrate the relationship between Bayesian and frequentist analyses, we
consider in this section a very simple example—a constant signal with amplitude
a > 0 in white, Gaussian noise (zero mean, variance σ ):

di = a + ni , i = 1, 2, . . . , N , (3.29)

where the index i labels the individual samples of the data. The likelihood functions for
the noise-only and signal-plus-noise models M0 and M1 are thus simple Gaussians:
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p(d|M0) =
1

(2π)N/2σ N e− 1
2σ2

∑N
i=1 d

2
i , (3.30)

p(d|a,M1) =
1

(2π)N/2σ N e− 1
2σ2

∑N
i=1(di−a)2

. (3.31)

We will assume that the value of σ is known a priori. Thus, the noise model has no
free parameters, while the signal model has just one parameter, which is the amplitude
of the signal that we are trying to detect. We will choose our prior on a to be flat over
the interval (0, amax], so p(a) = 1/amax.

It is straight-forward exercise to check that the maximum-likelihood estimator of
the amplitude a is given by the sample mean of the data:

â ≡ aML(d) =
1
N

N∑

i=1

di ≡ d̄. (3.32)

This is an unbiased estimator of a and has variance σ 2
â = σ 2/N (the familiar variance

of the sample mean). Thus, the sampling distribution of â is simply

p(â|a,M1) =
1√

2πσâ
e
− 1

2σ2
â
(â−a)2

, (3.33)

where â can take on either positive or negative values (even though a > 0).
To compute the posterior distribution p(a|d,M1) for the Bayesian analysis, we

first note that
N∑

i=1

(di − a)2 = N (Var[d] + (a − â)2). (3.34)

The model evidence p(d|M1) is then given by

p(d|M1) =
e
− Var[d]

2σ2
â

[
erf

(
amax−â√

2σâ

)
+ erf

(
â√
2σâ

)]

2amax
√
N (2π)(N−1)/2σ (N−1)

, (3.35)

and the posterior distribution is given by

p(a|d,M1) =
1√

2πσâ
e
− (a−â)2

2σ2
â 2

[
erf

(
amax − â√

2σâ

)
+ erf

(
â√
2σâ

)]−1

. (3.36)

Note that this is simply a truncated Gaussian on the interval a ∈ (0, amax], with mean
â and variance σ 2

â .
The above calculation shows that â is a sufficient statistic for a. This means that the

posterior distribution for a can be written simply in terms of â, in lieu of the individual
samples d ≡ {d1, d2, . . . , dN }. The Bayes factor
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B10(d) =
p(d|M1)

p(d|M0)
, (3.37)

is given by

B10(d) = e
â2

2σ2
â

(√
2πσâ

amax

)
1
2

[
erf

(
amax − â√

2σâ

)
+ erf

(
â√
2σâ

)]
. (3.38)

In the limit where â is tightly peaked away from 0 and amax, the Bayes factor simplifies
to

B10(d) + e
â2

2σ2
â

(√
2πσâ

amax

)

. (3.39)

If we take the frequentist detection statistic to be twice the log of the maximum-
likelihood ratio, Λ(d) ≡ 2 ln ΛML(d), then

Λ(d) = â2

σ 2
â

= d̄2

σ 2/N
≡ ρ2, (3.40)

which is just the squared signal-to-noise ratio of the data. Furthermore, taking twice
the log of the approximate Bayes factor in (3.39) gives

2 lnB10(d) + Λ(d)+ 2 ln

(√
2πσâ

amax

)

, (3.41)

where the first term is just the frequentist detection statistic and second term expresses
the Occam penalty. This last result is consistent with the general relation (3.28) dis-
cussed in the previous subsection.

The statistical distribution of the frequentist detection statistic can be found in
closed form for this simple example. Since a linear combination of Gaussian random
variables is also Gaussian-distributed, Λ is the square of a (single) Gaussian random
variable ρ = d̄

√
N/σ . Moreover, since ρ has mean µ ≡ a

√
N/σ and unit variance,

the sampling distribution for Λ in the presence of a signal is a noncentral chi-squared
distribution with one degree of freedom and non-centrality parameter λ ≡ µ2 =
a2N/σ 2:

p(Λ|a,M1) =
1
2
e−(Λ+λ)/2

(
Λ

λ

)−1/4

I−1/2(
√

λΛ), (3.42)

where I−1/2 is a modified Bessel function of the first kind of order −1/2. In the absence
of a signal (i.e., when a and hence λ are equal to zero), Λ is given by an (ordinary)
chi-squared distribution with one degree of freedom:

p(Λ|M0) =
1√

2'(1/2)
Λ−1/2e−Λ/2, (3.43)
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Fig. 10 Equal-probability contour plot for the frequentist detection statistic Λ ≡ d̄2N/σ 2 for a signal with
amplitude a > 0. The contours correspond to the values p(Λ|a,M1) = 0.01, 0.03, 0.05, 0.07, and 0.09

where ' is the gamma function. Substituting explicit expressions for I−1/2(
√

λΛ) and
'(1/2), we find:

p(Λ|M0) =
1√

2πΛ
e−Λ/2, (3.44)

p(Λ|a,M1) =
1√

2πΛ

1
2

[
e− 1

2 (
√

Λ−
√

λ)2 + e− 1
2 (

√
Λ+

√
λ)2
]
. (3.45)

An equal-probability contour plot of the sampling distribution of the detection statistic
is shown in Fig. 10. The fact that we are able to write down analytic expressions for the
sampling distributions for the detection statistic Λ is due to the simplicity of the signal
and noise models. For more complicated real-world problems, these distributions
would need to be generated numerically using fake signal injections and time-shifts
to produce many different realizations of the data (signal plus noise) from which one
can build up the distributions.

It is also important to point out that Λ is not a sufficient statistic for a, due to the fact
that Λ involves the square of the maximum-likelihood estimate â—i.e., Λ = â2N/σ 2.
Thus, we cannot take p(Λ|a,M1) conditioned on Λ (assuming a flat prior on a from
[0, amax]) to get the posterior distribution for a given d, since we would be missing
out on data samples that give negative values for â. Another way to see this is to start
with p(Λ|a,M1) given by (3.45), and then make a change of variables from Λ to â
using the general transformation relation

pY (y) dy = pX (x) dx ⇒ pX (x) =
[
pY (y) | f ′(x)|

]
y= f (x) . (3.46)

This leads to

p̃(â|a,M1) =
1√

2πσâ

[

e
− 1

2σ2
â
(â−a)2

+ e
− 1

2σ2
â
(â+a)2

]

, (3.47)
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Fig. 11 Examples of simulated data for weak (left panel) and strong (right panel) signals injected into the
data—a0 = 0.05 and 0.3, respectively

which is properly normalized for â > 0, but differs from (3.33) due to the second
term involving â + a. Thus, we need to construct p(a|d) from (3.33)—and not from
(3.47)—if we want the posterior to have the proper dependence on a.

3.5.1 Simulated data

For our example, we will take N = 100 samples, σ = 1, and amax = 1.0. We also
simulate data with injected signals having amplitudes a0 = 0.05 and 0.3, respectively.
Since the expected signal-to-noise ratio, a

√
N/σ , is given by 0.5 and 3.0, these injec-

tions correspond to weak and (moderately) strong signals. Single realizations of the
data for the two different injections are shown in Fig. 11. The noise realization is the
same for the two injections.

3.5.2 Frequentist analysis

Given the values for N , σ , and the probability distributions (3.44) and (3.45) for the
frequentist detection statistic Λ, we can calculate the detection threshold for fixed
false alarm probability α (which we will take to equal 10%), and the corresponding
detection probability as a function of the amplitude a. The detection threshold turns
out to equal Λ∗ = 2.9 (so 10% of the area under the probability distribution p(Λ|M0)

is for Λ ≥ Λ∗). The value of the amplitude a needed for 90% confidence detection
probability with 10% false alarm probability is given by a90%,DP = 0.30. (These
results for the detection threshold and detection probability do not depend on the
particular realizations of the simulated data). The corresponding curves are shown in
Fig. 12.

The sample mean of the data for the two simulations are given by d̄ = 0.085
and 0.335, respectively. Since â = d̄ , these are also the values of the maximum-
likelihood estimator of the amplitude a. The corresponding values of the detection
statistic are Λobs = 0.72 and 11.2 for the two injections, and have p-values equal to
0.45 and 9.0 × 10−4, as shown in Fig. 13. The 95% frequentist confidence interval is
given simply by [â − 2σâ, â + 2σâ], since â is Gaussian-distributed, and has values
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Fig. 12 Left panel Probability distribution for the frequentist detection statistic Λ for the noise-only model.
The threshold value of the statistic for 10% false alarm probability is Λ∗ = 2.9. Right panel Detection
probability as a function of the amplitude a. The value of the amplitude needed for 90% confidence detection
probability with 10% false alarm probability is a90%,DP = 0.30

Fig. 13 Graphical representation of the p-value calculation for the weak (left panel) and strong (right panel)
injections. For the weak injection, Λobs = 0.72 is marked by the red vertical line, with corresponding p-
value 0.45. For the strong injection, Λobs = 11.2 is sufficiently large that the corresponding red vertical
line is not visible on this graph. The p-value for the strong injection is 9.0 × 10−4

[−0.11, 0.29] and [0.14, 0.54], respectively. These intervals contain the true value of
the amplitudes for the two injections, a0 = 0.05 and 0.3.

The 90% confidence-level frequentist upper limits are a90%,UL = 0.20 and 0.46,
respectively. Figure 14 shows the probability distributions for the detection statistic
Λ conditioned on these upper limit values for which the probability of obtaining
Λ ≥ Λobs is equal to 0.90.

3.5.3 Bayesian analysis

The results of the Bayesian analysis for the two different injections are summarized
in Fig. 15. The plots show the posterior distribution for the amplitude a given the
value of the maximum-likelihood estimator â, which (as we discussed earlier) is a
sufficient statistic for the data d. Recall that the posterior for a for this example is
simply a truncated Gaussian from 0 to amax centered on â, which could be negative,
see (3.36). The left two panels show the graphical construction of the Bayesian 90%
upper limit and 95% credible interval for the amplitude a for the weak injection,
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Fig. 14 Probability distributions for the frequentist detection statistic Λ, conditioned on the value of the
amplitude a for which the probability of obtaining Λ ≥ Λobs is equal to 0.90. These define the 90%
confidence-level frequentist upper limits a90%,UL = 0.20 and 0.46, respectively. The red vertical lines
mark the value of Λobs for the weak (left panel, Λobs = 0.72) and strong (right panel, Λobs = 11.2)
injections

Fig. 15 Posterior distributions for the amplitude a given the value of the maximum-likelihood estimator â.
The left two panels are for the weak injection; the right two panels are for the strong injection. The top two
plots illustrate the graphical construction of Bayesian 90% upper limits for the two injections; the bottom
two plots illustrate the graphical construction of the Bayesian 95% credible intervals. The dashed vertical
lines indicate the values of the injected signal amplitude a0, which equal 0.05 and 0.3, respectively

a90%,UL = 0.23 and [0, 0.26]. The right two panels show similar plots for the strong
injection, a90%,UL = 0.46 and [0.14, 0.54].

Finally, the Bayes factor for the signal-plus-noise model M1 relative to the noise-
only model M0 can be calculated by taking the ratio of the marginalized likelihood
p(d|M1) given by (3.35) to p(d|M0) given by (3.30). Doing this, we find 2 ln
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Table 4 Tabular summary of the frequentist and Bayesian analysis results for the simulated data (both
weak and strong injections)

(Weak injection, a0 = −0.05) (Strong injection, a0 = 0.3)
Frequentist Bayesian Frequentist Bayesian

Detection threshold (Λ∗) 2.9 – 2.9 –

Detection statistic (Λobs) 0.72 – 11.2 –

p-value 0.45 – 9.0 × 10−4 –

90% upper limit 0.20 0.23 0.46 0.46

95% interval [−0.11, 0.29] [0, 0.26] [0.14, 0.54] [0.14, 0.54]
ML estimator (â) 0.085 0.085 0.335 0.335

Bayes factor (2 lnB10) – −2.2 – 9.2

Laplace approximation – −2.0 – 8.5

A dash indicates that a particular quantity is not relevant for either the frequentist or Bayesian analysis

B10 = −2.2 and 9.2 for the weak and strong signal injections, respectively. The
Laplace approximation to this quantity is given by (3.41), with values −2.0 and 8.5,
respectively.

3.5.4 Comparison summary

Table 4 summarizes the numerical results for the frequentist and Bayesian analyses.
We see that the frequentist and Bayesian 90% upper limits and 95% intervals numer-
ically agree for the strong injection, but differ slightly for the weak injection. The
interpretation of these results is different, of course, for a frequentist and a Bayesian,
given their different definitions of probability. But for a moderately strong signal in
noisy data, we expect both approaches to yield a confident detection as they have for
this simple example.

3.6 Likelihoods and priors for gravitational-wave searches

To conclude this section on statistical inference, we discuss some issues related
to calculating the likelihood and choosing a prior in the context of searches for
gravitational-wave signals using a network of gravitational-wave detectors.

3.6.1 Calculating the likelihood

Defining the likelihood function (for either a frequentist or Bayesian analysis) involves
understanding the instrument response and the instrument noise. The data collected
by gravitational-wave detectors comes in a variety of forms. For ground-based inter-
ferometers such as LIGO and Virgo, the data comes from the error signal in the
differential arm-length control system, which is non-linearly related to the laser phase
difference, which in turn is linearly related to the gravitational-wave strain. For pulsar
timing arrays, the data comes from the arrival times of radio pulses (derived from
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the folded pulse profiles), which must be corrected using a complicated timing model
that takes into account the relative motion of the telescopes and the pulsars, along
with the spin-down of the pulsars, in addition to a variety of propagation effects. The
timing residuals formed by subtracting the timing model from the raw arrival times
contain perturbations due to gravitational waves integrated along the line of sight to
the pulsar. For future space-based gravitational-wave detectors such as LISA, the data
will be directly read out from phase meters that perform a heterodyne measurement
of the laser phase. Synthetic combinations of these phase read outs (chosen to cancel
laser phase noise) are then linearly proportional to the gravitational-wave strain.

Since gravitational waves can be treated as small perturbations to the background
geometry, the time delays or laser phase/frequency shifts caused by a gravitational
wave can easily be computed. These idealized calculations have then to be related
to the actual observations, either by propagating the effects through an instrument
response model, or, alternatively, inverting the response model to convert the measured
data to something proportional to the gravitational-wave strain. (For example, most
LIGO analyses work with the calibrated strain, rather than the raw differential error
signal). If we assume that the gravitational-wave signal and the instrument noise are
linearly independent, then the data taken at time t can be written as

d(t) = h(t)+ n(t), (3.48)

where h(t) is shorthand for the gravitational-wave metric perturbations hab(t, .x)
convolved with the instrument response function and converted into the appropriate
quantity—phase shift, time delay, differential arm length error, etc. (A detailed calcu-
lation of h(t) and the associated detector response functions will be given in Sect. 5.2).
As mentioned above, the data d(t) may be the quantity that is measured directly, or,
more commonly, some quantity that is derived from the measurements such as timing
residuals or calibrated strain. In any analysis, it is important to marginalize over the
model parameters used to make the conversion from the raw data.

The likelihood of observing d(t) is found by demanding that the residual

r(t) ≡ d(t) − h̄(t), (3.49)

be consistent with a draw from the noise distribution pn(x):

p(d(t)|h̄(t)) = pn(r(t)) = pn(d(t) − h̄(t)). (3.50)

Here h̄(t) is our model6 for the gravitational-wave signal. The likelihood of observing
a collection of discretely-sampled data d ≡ {d1, d2, . . . , dN }, where di ≡ d(ti ),
is then given by p(d|h̄) = pn(r), where r ≡ {r1, r2, . . . , rN } with ri ≡ r(ti ). Since
instrument noise is due to a large number of small disturbances combined with counting
noise in the large-number limit, the central limit theorem suggests that the noise
distribution can be approximated by a multi-variate normal (Gaussian) distribution:

6 Since the model h̄(t) will differ from the actual h(t), we use an overbar for the model to distinguish the
two.
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p(d|h̄) = 1√
det(2πCn)

e− 1
2
∑

i, j ri
(
C−1
n
)
i j r j , (3.51)

where Cn is the noise correlation matrix, with components

(Cn)i j = 〈nin j 〉 − 〈ni 〉〈n j 〉. (3.52)

If the noise is stationary, then the correlation matrix only depends on the lag |ti −
t j |, and the matrix Cn can be (approximately) diagonalized by transforming to the
Fourier domain, where ri should then be interpreted as r̃( fi ) (see Appendix D.6 for a
more careful treatment of discrete probability distributions in the time and frequency
domain). In practice, the noise observed in most gravitational-wave experiments is
neither stationary nor Gaussian (Sect. 9 and Appendix C), but (3.51) still serves as a
good starting point for more sophisticated treatments. The Gaussian likelihood (3.51)
immediately generalizes for a network of detectors:

p(d|h̄) = 1√
det(2πCn)

e− 1
2
∑

I i,J j rI i
(
C−1
n
)
I i,J j rJ j , (3.53)

where I , J labels the detector, and i , j labels the discrete time or frequency sample
for the corresponding detector. Note here that the parameters θ appearing in (3.18) are
the individual time or frequency samples h̄i .

3.6.2 Choosing a prior

For Bayesian inference, it is also necessary to define a model M for the gravitational-
wave signal, which is done by placing a prior p(h̄|M) on the samples h̄i . In some cases,
a great deal is known about the signal model, such as when approximate solutions to
Einstein’s equations provide waveform templates. In that case the prior can be written
as

p(h̄|M) = δ(h̄ − h̄(θ ,M)) p(θ |M). (3.54)

Marginalizing over h̄ converts the posterior p(h̄|d) to a posterior distribution for the
signal parameters p(θ |d,M). In other cases, such as for short-duration bursts associ-
ated with certain violent astrophysical events, much less is known about the possible
signals and weaker priors have to be used. Models using wavelets, which have finite
time-frequency support, and priors that favor connected concentrations of power in
the time-frequency plane are commonly used for these “unmodeled burst” searches.
At the other end of the spectrum from deterministic point sources are the statistically-
isotropic stochastic backgrounds that are thought to be generated by various processes
in the early Universe, or through the superposition of a vast number of weak astro-
physical sources. In the case of Gaussian stochastic signals, the prior for a signal
h̄ = (h̄+(n̂), h̄×(n̂)) coming from direction n̂ direction has the form

p(h̄|M) = 1
2π Sh

e−(h̄2
+(n̂)+h̄2

×(n̂))/2Sh , (3.55)
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where Sh is the power spectrum of the background. As we shall show in Sect. 4,
marginalizing over h̄ converts the posterior p(h̄|d) to a posterior p(Sh |d,M) for Sh .

4 Correlations

Correlation is not cause, it is just a ‘music of chance’. Siri Hustvedt

Stochastic gravitational waves are indistinguishable from unidentified instrumental
noise in a single detector, but are correlated between pairs of detectors in ways that
differ, in general, from instrumental noise. Cross-correlation methods basically use
the random output of one detector as a template for the other, taking into account the
physical separation and relative orientation of the two detectors. In this section, we
introduce cross-correlation methods in the context of both frequentist and Bayesian
inference, analyzing in detail a simple toy problem (the data are “white” and we ignore
complications that come from the separation and relative orientation of the detectors—
this we discuss in detail in Sect. 5). We also briefly discuss possible alternatives to
cross-correlation methods, e.g., using a null channel as a noise calibrator.

The basic idea of using cross-correlation to search for stochastic gravitational-
waves can be found in several early papers (Grishchuk 1976; Hellings and Downs
1983; Michelson 1987; Christensen 1990, 1992; Flanagan 1993). The derivation of
the likelihood function in Sect. 4.2 follows that of Cornish and Romano (2013); parts
of Sect. 4.4 are also discussed in Allen et al. (2003) and Drasco and Flanagan (2003).

4.1 Basic idea

The key property that allows one to distinguish a stochastic gravitational-wave back-
ground from instrumental noise is that the gravitational-wave signal is correlated
across multiple detectors while instrumental noise typically is not. To see this, con-
sider the simplest possible example, i.e., a single sample of data from two colocated
and coaligned detectors:

d1 = h + n1,

d2 = h + n2.
(4.1)

Here h denotes the common gravitational-wave signal and n1, n2 the noise in the two
detectors. To cross correlate the data, we simply form the product of the two samples,
Ĉ12 ≡ d1d2. The expected value of the correlation is then

〈Ĉ12〉 = 〈d1d2〉 = 〈h2〉 + 〈n1n2〉 +!!!"0〈hn2〉 +!!!"0〈n1h〉 = 〈h2〉 + 〈n1n2〉, (4.2)

since the gravitational-wave signal and the instrumental noise are uncorrelated. If the
instrumental noise in the two detectors are also uncorrelated, then

〈n1n2〉 = 0, (4.3)
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