
4 Boundary value problems

• Goal: Solve Poisson’s equation

r2� = � ⇢

✏0
(182)

for �, subject to non-trivial boundary conditions.

• The following subsections present techniques for doing this.

4.1 Laplace’s equation

• In regions of space where the charge density ⇢ = 0, Poission’s equation reduces to Laplace’s
equation

r2� = 0 (183)

• Solutions to Laplace’s equation are the ‘smoothest’ possible functions that satisfy the
boundary conditions, having no local maxima or minima. This statements will be made
more precise below.

• In 1-dimension, Laplace’s equation is simply

d2�

dx2
= 0 (184)

• The most general solution is a straight line:

�(x) = mx+ b (185)

where the constants m and b are fixed by boundary conditions.

• Suppose the region of interest is the interval x 2 [x1, x2]. Then possible boundary condi-
tions are:

(i) Specify � at both of the endpoints x1 and x2.

(ii) Specify � and d�/dx at one of the endpoints, x1 or x2.

Note that specifying d�/dx at both endpoints will either be redundant (if they have the
same value) or inconsistent (if they have di↵erent values).

• Note that

�(x) =
1

2
[�(x+ a) + �(x� a)] (186)

which implies that �(x) has no local maxima or minima. (See Figure 29.)

• In 2-dimensions, in Cartesian coordinates, Laplace’s equation is

@2�

@x2
+
@2�

@y2
= 0 (187)

• One can show that

�(x, y) =
1

2⇡R

I

C
�(x0, y0) ds0 (188)

where C is a circle centered at (x, y). (See Figure 30.) This result implies that �(x, y) has
no local maxima or minima.
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Figure 29: In 1-dimension, the most general solution to Laplace’s equation r2� ⌘ d2�/dx2 = 0
is a straight line. Note that �(x) is the average of its values at two equally-displaced points,
�(x� a) and �(x+ a).

Figure 30: If � is a solution to Laplace’s equation in 2-dimensions, then the value of � at any
point (x, y) is the average of its values on a circle C of any radius centered at (x, y).
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• Exercise: Prove the above statement using Cauchy’s integral formula

f(a) =
1

2⇡i

I

C

f(z)

z � a
dz (189)

Here f(z) is a complex-valued function that is analytic (i.e., complex di↵erentiable) inside
and on some closed curve C, and a is any point inside C. Recall that if f(z) is analytic, then
the real-valued functions u(x, y), v(x, y) defined by f = u+ i v satisfy the Cauchy-Riemann
equations

@u

@x
=
@v

@y
,

@u

@y
= �@v

@x
(190)

which in turn imply that they individually satisfy Laplace’s equation

r2u = 0 , r2v = 0 (191)

Hint: Take C to be a circle of radius R centered at the point a = (x, y) so that z�a = Rei�

and dz = iR ei� d� for points on C. Then split Cauchy’s integral formula into its real and
imaginary parts.

• In 3-dimensions, one has

�(r) =
1

4⇡R2

I

S
�(r0) da0 (192)

where S is a 2-sphere centered at r. Again this implies that �(r) has no local maxima or
minima.

• Exercise: Prove this last expression for �(r), assuming a point source located anywhere
outside the sphere. For simplicity, you can take r = 0 and put the point source on the z-
axis, a distance d from the center of the sphere of radius R (d > R). (By the superposition
principle, the result is then valid any distribution of charge outside the sphere.)

4.2 Boundary conditions and uniqueness theorems

• Theorem: A solution to Poisson’s equation r2� = �⇢/✏0 inside a volume V is uniquely
determined (up to an additive constant) by specifying the charge density ⇢(r) in V and
either the potential � or its normal derivative @�/@n on the closed boundary surface S.

• Specifying the potential on the boundary is called Dirichlet boundary conditions. The
potential is uniquely determined for this case—i.e., the additive constant is zero.

• Specifying the normal derivative of the potential on the boundary is called Neumann
boundary conditions. The additive constant may be non-zero for this case.

• For both Dirichlet and Neumann boundary conditions, the electric field—being the gradient
of the potential—is uniquely determined. (The unspecified additive constant for Neumann
BCs vanishes when taking the gradient.)

• One can also specify mixed boundary conditions, corresponding to specifying � on parts
of S and @�/@n on the remaining parts of S.

• NOTE: Specifying both the potential and its normal derivative on the boundary surface
over-specifies the problem—i.e., the potential may not be able to satisfy both of these
conditions.

• Exercise: Prove the uniqueness theorem using Green’s 1st identity
Z

V
(rT ·rU + Tr2U) dV =

I

S
(TrU) · n̂ da (193)

by assuming that �1 and �2 are two solutions to Poisson’s equation, and then showing
that �1 and �2 di↵er at most by an additive constant. (Hint: Set T = U = �1 � �2,
noting that r2U = 0 and rT ·rU � 0.)
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• A related uniqueness theorem (see Gri�ths, 3rd edition, page 118) is the following: In a
volume V surrounded by conductors and containing a specified charge density, the electric
field is uniquely determined if the total charge on each conductor is given.

4.3 Green’s functions: Introduction

• Definition: A Green’s function is a solution to a di↵erential equation with a delta-function
source. For Poisson’s equation,

r02G(r, r0) = �4⇡ �(r� r
0) (194)

Note the prime on the Laplacian, meaning di↵erentiation wrt r
0. (The factor of �4⇡ is

chosen for convenience to simplify some of the expressions for Green’s functions.)

• Later we will show that G(r, r0) is symmetric under interchange of r and r
0—i.e.,

G(r, r0) = G(r0, r) (195)

Since the Dirac delta function is also symmetric, then it actually doesn’t matter whether
we are di↵erentiating G(r, r0) with respect to r or r0.

• Typically one thinks of r as the observation or field point and r
0 as the source point. The

symmetry of the Green’s function is related to the physical interchangeability of the source
and observation points.

• Recall that

r2

✓
1

|r� r0|

◆
= �4⇡ �(r� r

0) (196)

so 1/|r� r
0| is an example of a Green’s function.

• The most general solution is

G(r, r0) =
1

|r� r0| + F (r, r0) (197)

where F (r, r0) is a solution of Laplace’s equation r2F (r, r0) = 0.

• Exercise: Using Green’s theorem
Z

V
(Tr02U � Ur02T ) dV 0 =

I

S
(Tr0U � Ur0T ) · n̂0 da0 (198)

show that

�(r) =
1

4⇡✏0

Z

V
G(r, r0)⇢(r0) dV 0 +

1

4⇡

I

S


G(r, r0)

@�(r0)

@n0 � �(r0)
@G(r, r0)

@n0

�
da0 (199)

(Hint: Set T = �(r0), U = G(r, r0).)

• The above equation for �(r) is an integral equation for �(r). The RHS cannot be used
to calculate �(r) given arbitrary values for � and @�/@n on the boundary S, since that
would overspecify �(r).

• However, by using the freedom in F (r, r0), one can choose G(r, r0) so that �(r) has the
appropriate form for either Dirichlet or Neumann boundary conditions.

• For Dirichlet BCs, one chooses

GD(r, r0)
���
S
= 0 (200)

Then

�(r) =
1

4⇡✏0

Z

V
GD(r, r0)⇢(r0) dV 0 � 1

4⇡

I

S
�(r0)

@GD(r, r0)

@n0 da0 (201)
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• For Neumann BCs, one chooses

@GN (r, r0)

@n

����
S

= �4⇡

A
(202)

where A is the area of S. Then

�(r) =
1

4⇡✏0

Z

V
GN (r, r0)⇢(r0) dV 0 +

1

4⇡

I

S
GN (r, r0)

@�(r0)

@n0 da0 + h�iS (203)

where h�iS is the average of � over the boundary surface S.

• Note that one cannot simply choose @GN/@n0 = 0 on S, since the divergence theorem
implies

�4⇡ =

Z

V
r02GN (r, r0) dV 0 =

Z

V
r0 ·r0GN (r, r0) dV 0 =

I

S

@GN (r, r0)

@n0 da0 (204)

• Example: If S is the ‘boundary’ surface at r ! 1, then the associated Dirichlet Green’s
function is:

GD(r, r0) =
1

|r� r0| (for S boundary surface at r ! 1) (205)

This is because the only solution to r2F = 0 which vanishes as r ! 1 is F = 0.

• Exercise: Using Green’s theorem, prove that a Dirichlet Green’s function GD(r, r0) is
symmetric under interchange of r and r

0. Hint: Take U(r00) = GD(r, r00) and T (r00) =
GD(r0, r00), where r

00 is the integration variable. (Note: Symmetry for a Neumann Green’s
function GN (r, r0) is not automatic, but can imposed as a separate requirement.)

4.4 Method of images

• Basic idea: Solve Poisson’s equation for � in some region having non-trivial boundary con-
ditions by enlarging the region to include additional (‘image’) charges but no boundaries.

• The choice of image charges is such that the potential (or its normal derivative) originally
specified on the boundary is reproduced by the original charges together with the image
charges.

• The method of images is an indirectmethod of solving Poisson’s equation. The potential for
the problem of multiple charges without boundary was actually solved first; the physically
equivalent problem that is obtained by replacing one of the equipotential surfaces with a
conducting surface came afterward.

• Note that the solutions we obtain using the method of images for grounded conducting
surfaces (i.e., �|S = 0) will give us the Dirichlet Green’s functions associated with those
boundary surfaces.

4.4.1 Example 1: Point charge above an infinite, grounded conducting plane

• Consider a point charge q located at a distance d above an infinite, grounded conducting
plane. Find the potential in the region above the plane. (See Figure 31, panel (a).)

• Choose coordinates so that the conducting plane is given by z = 0 and the charge q is
located at z = d. (See Figure 31, panel (b).)

• An image charge qI = �q placed at z = �d together with q produces a potential

�(r) =
q

4⇡✏0

 
1p

x2 + y2 + (z � d)2
� 1p

x2 + y2 + (z + d)2

!
(206)

which vanishes when z = 0.

41



Figure 31: Panel (a): Point charge q a distance d above an infinite, grounded conducting plane.
Panel (b): Equivalent problem with image charge �q located a distance 2d from q. Note there
is no conducting plane for the equivalent image problem.

• By the uniqueness theorems, the above expression is the unique solution to Poisson’s equa-
tion in the region z > 0, satisfying � = 0 on the conducting plane (z = 0).

• The induced surface charge on the conducting plane is given by

� = �✏0
@�

@z

����
z=0

= � qd

2⇡

1

(x2 + y2 + d2)3/2
(207)

• The total induced charge, obtained by integrating � over the surface, is

Q ⌘
Z

S
� da = �q (208)

Note that this is the value of the image charge.

• The total force on the point charge q due to the induced charge on the conducting plane
is obtained by integrating (minus) the force-per-unit-area

f =
1

2

�2

✏0
n̂ (209)

over the surface. (Minus since f is the force-per-unit area acting on a patch of the con-
ducting surface.)

• The result is

Fq = � 1

4⇡✏0

q2

(2d)2
ẑ (210)

• This is the same as the force exerted on q by the image charge qI = �q at z = �d.

• The work required to bring the charge q in from infinity to its location a distance d above
the infinite, grounded conducting plane, is given by

W = �
Z d

1
Fq · ds = � 1

4⇡✏0

q2

4d
(211)

• Exercise: Prove this.

42



Figure 32: Panel (a): Point charge q a distance d from the center of a grounded conducting
sphere of radius a. Panel (b): Equivalent problem with image charge qI located a distance
dI from the center of the sphere. Note there is no conducting sphere for the equivalent image
problem.

• This is half the work required to assemble the configuration consisting of the point charge
q and image charge �q, without the conducting surface. The factor of 1/2 arises since
no work is done on the induced charge as it moves around on the conducting plane (an
equipotential surface) in response to the point charge q being brought in from infinity.

4.4.2 Example 2: Point charge exterior to a grounded conducting sphere

• Consider a point charge q located at a distance d > a from the center of grounded con-
ducting sphere of radius a. Find the potential outside the sphere—i.e., for r > a. (See
Figure 32, panel (a).)

• Choose spherical polar coordinates so that the center of the sphere is at the origin of
coordinates and the point charge is located at z = d.

• By symmetry, the image charge qI will also lie on the z axis at a distance dI from the
center. (See Figure 32, panel (b).)

• To find qI and dI , we note that the potential due to q and qI can be written as

�(r) =
1

4⇡✏0

 
qp

r2 + d2 � 2rd cos ✓
+

qIp
r2 + d2I � 2rdI cos ✓

!
(212)
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• When |r| = a, this can be written as

�(|r| = a) =
1

4⇡✏0

 
q/ap

1 + (d/a)2 � 2(d/a) cos ✓
+

qI/dIp
1 + (a/dI)2 � 2(a/dI) cos ✓

!
(213)

• Exercise: Prove the last equality.

• From this expression, one sees that if

d

a
=

a

dI
,

qI
dI

= � q

a
(214)

then �(|r| = a) = 0, as desired.

• Thus,

dI =
⇣a
d

⌘
a =

⇣a
d

⌘2
d , qI = �q

a

d
(215)

are the location and value of the image charge.

• Note that dI < a (since a < d), so the image charge is outside the region of interest (r > a)
as it should be.

• Substituting for qI and dI , the potential becomes

�(r) =
q

4⇡✏0

 
1p

r2 + d2 � 2rd cos ✓
� 1p

a2 + d2r2/a2 � 2rd cos ✓

!
(216)

• The induced charge density on the spherical surface is

� = �✏0
@�

@r

����
r=a

= � q

4⇡a

d2 � a2

(a2 + d2 � 2ad cos ✓)3/2
(217)

• The total induced charge is

Q ⌘
Z

S
� da = �q

a

d
(218)

As we saw for the other example, this is the value of the image charge.

• The total force on the point charge q due to the induced charge on the conducting sphere
is obtained by integrating the z-component (extra factor of cos ✓ in the integral) of the
force-per-unit area over the sphere:

Fq = �
Z

r=a

1

2

�2

✏0
r̂ cos ✓ da = � 1

4⇡✏0

a

d

q2d2

(d2 � a2)2
ẑ (219)

• This is the same as the force exerted on q by the image charge qI = �q(a/d) at z = dI =
a2/d.

• The work required to bring the charge q in from infinity to its location a distance d from
the center of the sphere, is given by

W = �
Z d

1
Fq · ds = � 1

4⇡✏0

q2R

2(d2 � a2)
(220)

• Exercise: Prove this.

• As for the previous example, this is half the work required to assemble the configuration
consisting of the point charge q and image charge qI = �q(a/d), without the conducting
surface.
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Figure 33: Relationship between the vectors r, r0, and r
0
I for the Dirichlet Green’s function for

an infinite plane. These three vectors label label the field location, source location, and image
charge location, respectively.

4.5 Green’s function for an infinite plane

• The Dirichlet Green’s function GD(r, r0) for an infinite plane is e↵ectively the potential for
a point charge in the presence of an infinite, grounded conducting plane. We just need to
write the potential in a form that is symmetric with respect to the field point r and point
source location r

0.

• Choose coordinates so the plane is at z = 0. Then

r
0 = x0

x̂+ y0ŷ + z0ẑ and r
0
I = x0

x̂+ y0ŷ � z0ẑ (221)

denote the point source and image charge locations. (See Figure 33.)

• In terms of these quantities, the potential �(r) for the method of images problem is

�(r) =
q

4⇡✏0

✓
1

|r� r0| �
1

|r� r
0
I |

◆
(222)

• Expressed in terms of Cartesian coordinates,

�(r) =
q

4⇡✏0

 
1p

(x� x0)2 + (y � y0)2 + (z � z0)2
� 1p

(x� x0)2 + (y � y0)2 + (z + z0)2

!

(223)
The RHS is manifestly symmetric under interchange r $ r

0, and vanishes on the plane
z = 0.
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Figure 34: The potential on an infinite plane is specified to equal �0 inside a circular disc of
radius a, and to equal zero outside.

• Thus, the Dirichlet Green’s function is

GD(r, r0) =
1p

(x� x0)2 + (y � y0)2 + (z � z0)2
� 1p

(x� x0)2 + (y � y0)2 + (z + z0)2

(224)

• In terms of GD(r, r0), the potential �(r) for z > 0 with arbitrarily prescribed values on
the plane z = 0 is given by

�(r) =
1

4⇡✏0

Z

V
GD(r, r0)⇢(r0) dV 0 � 1

4⇡

I

S
�(r0)

@GD(r, r0)

@n0 da0 (225)

• For the surface integral, we need

@GD(r, r0)

@n0

����
S

= �@GD(r, r0)

@z0

����
z0=0

= � 2z

[(x� x0)2 + (y � y0)2 + z2]3/2
(226)

The minus sign is because the outward pointing normal (away from the volume) is in the
direction of decreasing z—i.e., n̂ = �ẑ.

• If the charge distribution is zero (e.g, if we are interested in a solution of Laplace’s equation
in the region z > 0), then the volume integral vanishes and �(r) is given simply by the
surface integral.

• Exercise: (Jackson, Prob 2.7) Find the solution to Laplace’s equation for z > 0, where
the potential on the plane z = 0 is prescribed to have the value �0 for a circular disc
x2 + y2  a2, and � = �0 otherwise. Expand the integral in a power series of a/r, where
r2 = x2 + y2 + z2, keeping the first few terms. (See Figure 34.)

• Answer:

�(r) =
�0

2

⇣a
r

⌘2 ⇣z
r

⌘
1� 3

4

⇣a
r

⌘2
+

5

8

⇣a
r

⌘4✓
1 + 3

x2 + y2

a2

◆
+ · · ·

�
(227)

4.6 Green’s function exterior to a sphere

• Just as we saw for the infinite plane, the Dirichlet Green’s function GD(r, r0) exterior to
a sphere is given (up to an overall multiplicative constant) by the potential for a point
charge exterior to a grounded conducting sphere. We just need to write the potential in a
form that is symmetric with respect to the field point r and point source location r

0.
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Figure 35: Relationship between the vectors r, r
0, and r

0
I for the Dirichlet Green’s function

exterior to a sphere of radius a. These three vectors label label the field location, source location,
and image charge location, respectively. Note that both r, r0 > a while r0I < a.

• Since r
0 now denotes the location of the point source, the value of the image charge and

its location are given by

qI = �q
a

r0
, r

0
I =

⇣ a

r0

⌘2
r
0 (228)

(See Figure 35.)

• In terms of these quantities, the potential �(r) for the method of images problem is

�(r) =
q

4⇡✏0

 
1

|r� r0| �
(a/r0)

|r�
�
a
r0

�2
r0|

!
(229)

• Expressed in terms of spherical polar coordinates,

�(r) =
q

4⇡✏0

0

@ 1p
r2 + r02 � 2rr0 cos �

� 1q
a2 + r2r02

a2 � 2rr0 cos �

1

A (230)

where
cos � = cos ✓ cos ✓0 + sin ✓ sin ✓0 cos(�� �0) (231)

is the angle between r and r
0.

• Note that the RHS of the potential is manifestly symmetric under interchange r $ r
0, and

vanishes on the sphere r = a.

• Thus, the Dirichlet Green’s function is

GD(r, r0) =
1p

r2 + r02 � 2rr0 cos �
� 1q

a2 + r2r02

a2 � 2rr0 cos �
(232)

• In terms of GD(r, r0), the potential �(r) exterior to the sphere with arbitrarily prescribed
values on the surface of the sphere is given by

�(r) =
1

4⇡✏0

Z

V
GD(r, r0)⇢(r0) dV 0 � 1

4⇡

I

S
�(r0)

@GD(r, r0)

@n0 da0 (233)
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Figure 36: The potential on a sphere of radius a is specified to equal +�0 on the northern
hemisphere and ��0 on the southern hemisphere, respectively.

• For the surface integral, we need

@GD(r, r0)

@n0

����
S

= �@GD(r, r0)

@r0

����
r0=a

= � (r2 � a2)

a(r2 + a2 � 2ra cos �)3/2
(234)

The minus sign is because the outward pointing normal (away from the volume) is in the
direction of decreasing r—i.e., n̂ = �r̂.

• If the charge distribution is zero (e.g, if we are interested in a solution of Laplace’s equation
exterior to the sphere), then the volume integral vanishes and �(r) is given simply by the
surface integral.

• Exercise: Find the solution to Laplace’s equation outside a sphere of radius a with pre-
scribed potential ±�0 in the upper and lower hemispheres, respectively. Expand the inte-
gral in a power series of a/r, keeping the first few terms. (See Figure 36.)

• Answer:

�(r) =
3�0

2

⇣a
r

⌘2 
cos ✓ � 7

12

⇣a
r

⌘2✓5

2
cos3 ✓ � 3

2
cos ✓

◆
+ · · ·

�
(235)

• Note that the terms in the square brackets are proportional to the Legendre polynomials

P1(x) = x , P3(x) =
1

2
(5x3 � 3x) (236)

with x = cos ✓.

• Legendre polynomials will appear again when using separation of variables in spherical
coordinates to solve Laplace’s equation.
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4.7 Expansions in terms of orthonormal functions

• Basic idea: Expand a square-integrable function in terms of a set of orthonormal basis
functions, similar to the decomposition v =

P
i viêi for vectors in a finite-dimensional

vector space.

• Notation: Let ⇠ 2 [a, b] and f(⇠) denote any square-integrable function.

• If a discrete set of functions {Un(⇠)|n = 1, 2, · · · } satisfies

Z b

a
d⇠ U⇤

n(⇠)Um(⇠) = �nm (237)

then the functions are said to be orthonormal.

• The functions {Un(⇠)|n = 1, 2, · · · } form a basis (and are said to be complete) if any
square-integrable function can be expanded as

f(⇠) =
1X

n=1

An Un(⇠) (238)

• It follows from the orthonormality property of the Un(⇠) that

An =

Z b

a
d⇠ U⇤

n(⇠)f(⇠) (239)

• Substituting this expression for An back into the expansion for f(⇠), one finds

1X

n=1

U⇤
n(⇠

0)Un(⇠) = �(⇠ � ⇠0) (240)

This is another way of expressing the completeness of the functions Un(⇠).

• Exercise: Prove the last two statements.

4.7.1 Fourier series

• Let x 2 [�a/2, a/2]. Then

(r
2

a
sin

✓
n2⇡x

a

◆
,

r
2

a
cos

✓
n2⇡x

a

◆ ���� n = 1, 2, · · ·
)

(241)

form an orthonormal basis for functions defined on the interval [�a/2, a/2], or, equivalently,
for periodic functions defined for x 2 (�1,1) with period a.

• Orthonormality:

2

a

Z a/2

�a/2
dx sin

✓
n2⇡x

a

◆
sin

✓
m2⇡x

a

◆
= �nm (242)

2

a

Z a/2

�a/2
dx cos

✓
n2⇡x

a

◆
cos

✓
m2⇡x

a

◆
= �nm (243)

2

a

Z a/2

�a/2
dx sin

✓
n2⇡x

a

◆
cos

✓
m2⇡x

a

◆
= 0 (244)
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• Exercise: Prove the above using

sinA sinB =
1

2
(cos(A�B)� cos(A+B)) (245)

cosA cosB =
1

2
(cos(A�B) + cos(A+B)) (246)

sinA cosB =
1

2
(sin(A�B) + sin(A+B)) (247)

• Completeness:

f(x) =
A0

2
+

1X

n=1


An cos

✓
n2⇡x

a

◆
+Bn sin

✓
n2⇡x

a

◆�
(248)

where

A0 =
2

a

Z a/2

�a/2
dx f(x) (249)

An =
2

a

Z a/2

�a/2
dx f(x) cos

✓
n2⇡x

a

◆
(250)

Bn =
2

a

Z a/2

�a/2
dx f(x) sin

✓
n2⇡x

a

◆
(251)

• In terms of complex exponentials the equations simplify:

f(x) =
1X

n=�1
Cn e

in2⇡x/a (252)

where

Cn =
1

a

Z a/2

�a/2
dx f(x)e�in2⇡x/a (253)

• The orthonormal basis functions are now:
⇢

1p
a
e

in2⇡x
a

���� n = 0,±1,±2, · · ·
�

(254)

• Orthonormality:
1

a

Z a/2

�a/2
dx ei(n�m)2⇡x/a = �nm (255)

• Completeness:
1

a

1X

n=�1
ein2⇡(x�x0)/a = �(x� x0) (256)

• Parseval’s theorem:
1

a

Z a/2

�a/2
dx |f(x)|2 =

1X

n=�1
|Cn|2 (257)
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4.7.2 Fourier transform

• For square-integrable non-periodic functions defined over x 2 (�1,1), the Fourier series
expansion generalizes to the Fourier transform.

• The orthonormal basis functions are now labeled by a continuous index k 2 (�1,1):

Uk(x) =
1p
2⇡

eikx (258)

• For any square-integrable function f(x), we have

f(x) =

Z 1

�1
dk C(k)

1p
2⇡

eikx (259)

where

C(k) =

Z 1

�1
dx f(x)

1p
2⇡

e�ikx (260)

• f(x) and C(k) are said to be a Fourier transform pair.

• Some authors define the expansion of f(x) without the factor of 1/
p
2⇡, but then need a

factor of 1/2⇡ in the expression for C(k).

• One sometimes writes f̃(k) instead of C(k).

• Orthonormality:
1

2⇡

Z 1

�1
dx ei(k�k0)x = �(k � k0) (261)

• Note that the basis functions themselves are not square-integrable, as they are normalised
in the sense of equaling a Dirac delta function.

• Completeness:
1

2⇡

Z 1

�1
dk eik(x�x0) = �(x� x0) (262)

• Note the symmetry between the orthonormality and completeness relations.

• Parseval’s theorem: Z 1

�1
dx |f(x)|2 =

Z 1

�1
dk |C(k)|2 (263)

4.8 Separation of variables (rectangular coords)

• Separation of variables is an attempt to solve Laplace’s equation in some region by writing
�(r) as a product of functions, each of a single variable, reducing the partial di↵erential
equation to a set of ordinary di↵erential equations, which are easier to solve. (Note that
Laplace’s equation is separable in 11 di↵erent coordinate systems!)

• In rectangular (i.e., Cartesian) coordinates one writes

�(x, y, z) = X(x)Y (y)Z(z) (264)

• In terms of X, Y , and Z, Laplace’s equation

0 = r2� =
@2�

@x2
+
@2�

@y2
+
@2�

@z2
(265)

becomes
X 00Y Z +XY 00Z +XY Z 00 = 0 (266)

where 0 denotes ordinary derivative with respect to the (single) argument of the function—
e.g., X 0(x) = dX/dx.
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• Dividing by � = XY Z yields
X 00

X
+

Y 00

Y
+

Z 00

Z
= 0 (267)

• Note that this is a sum of three terms, which are functions of only x, y, and z, respectively.
The only way that such a sum can equal zero is for each term is equal to a constant (called
a separation constant), with the sum of constants equal to zero:

X 00

X
= C1 ,

Y 00

Y
= C2 ,

Z 00

Z
= C3 (268)

with
C1 + C2 + C3 = 0 (269)

• Whether the constants are positive or negative or zero depend on the particular BCs.

• For example, suppose that we are interested in solving Laplace’s equation inside a rectan-
gular region 0  x  a, 0  y  b, 0  z  c, where the potential is set to zero on all faces
except z = c, where it equals some prescribed function, �(x, y, c) = f(x, y).

• Then the appropriate choice of separation constants is

C1 ⌘ �↵2  0 , C2 ⌘ ��2  0 , C3 ⌘ �2 = ↵2 + �2 � 0 (270)

• The solutions of the individual equations for non-zero ↵, �, and � are

X(x) = A sin(↵x) +B cos(↵x) , (271)

Y (y) = C sin(�y) +D cos(�y) , (272)

Z(z) = E sinh(�z) + F cosh(�z) (273)

• The solutions of the individual equations for ↵, �, and � equal to zero are

X(x) = A0 x+B0 , (274)

Y (y) = C0 y +D0 , (275)

Z(z) = E0 z + F0 (276)

• The most general solution of Laplace’s equation is then a linear combination of the product
solutions XY Z for the di↵erent allowed values of ↵ and �.

• The BCs that the potential vanishes when x = 0, y = 0, and z = 0 imply

B = 0 , D = 0 , F = 0 , B0 = 0 , D0 = 0 , F0 = 0 , (277)

• The BCs that the potential vanishes when x = a and y = b imply

↵ =
n⇡

a
, � =

m⇡

b
, A0 = 0 , C0 = 0 (278)

where n, m are positive integers.

• We need only consider n and m positive, since n = 0 and m = 0 leads to the trivial
� = 0 solution of Laplace’s equation; while n and m negative introduce only an overall
sign change from n and m positive, which can be absorbed in the multiplicative constants.

• Although E0 is not constrained to vanish by the BCs, it will not enter into the final
expression for � since � = 0 i↵ ↵ = � = 0, and the X and Y solutions for ↵ = � = 0 are
identically zero (we saw above that A0, B0, C0, and D0 are all constrained to vanish).
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• Thus, the most general solution of Laplace’s equation satisfying all of the boundary con-
ditions except �(x, y, c) = f(x, y) can be written as

�(x, y, z) =
1X

n=1

1X

m=1

Anm sin
⇣n⇡x

a

⌘
sin
⇣m⇡y

b

⌘
sinh (�nmz) (279)

where

�nm =

r
n2⇡2

a2
+

m2⇡2

b2
(280)

• Imposing the final BC at z = c yields

f(x, y) =
1X

n=1

1X

m=1

Anm sin
⇣n⇡x

a

⌘
sin
⇣m⇡y

b

⌘
sinh (�nmc) (281)

• Orthonomality of the sine functions on the intervals x 2 [0, a] and y 2 [0, b], lead to the
solution

Anmsinh (�nmc) =
4

ab

Z a

0
dx

Z b

0
dy f(x, y) sin

⇣n⇡x
a

⌘
sin
⇣m⇡y

b

⌘
(282)

• To do the integration one needs to specify the explicit form of f(x, y).

• To solve Laplace’s equation inside the same rectangular region for more complicated BCs
(e.g., where more than one face has non-zero values), we can simply superimpose the
‘single-face’ solutions, which all have a form similar to the above solution.

• Exercise: Solve the 2-dimensional Laplace equation in the region 0  x  a, 0  y < 1
subject to the BCs that the potential vanishes on the ‘sides’ (i.e., at x = 0 and x = a) and
at the ‘top’ (i.e., y ! 1), and is equal to a constant �0 when y = 0.

• Answer:

�(x, y) =
1X

n=1

An sin
⇣n⇡x

a

⌘
e�n⇡y/a (283)

where

An =
2

a

Z a

0
dx�0 sin

⇣n⇡x
a

⌘
=

⇢
4�0
n⇡ n = 1, 3, · · ·
0 n = 2, 4, · · · (284)

• Exercise: Using
1

2
ln

✓
1 + z

1� z

◆
=

1X

n=odd

zn

n
(285)

show that one can explicitly evaluate the summation for �(x, y) yielding the analytical
expression

�(x, y) =
2�0

⇡
tan�1

✓
sin(⇡x/a)

sinh(⇡y/a)

◆
(286)

4.9 Separation of variables (spherical polar coords)

• In spherical polar coordinates, Laplace’s equation is

0 = r2� =
1

r2
@

@r

✓
r2
@�

@r

◆
+

1

r2 sin ✓

@

@✓

✓
sin ✓

@�

@✓

◆
+

1

r2 sin2 ✓

@2�

@�2
(287)

53



• If one assumes the product form

�(r, ✓,�) ⌘ R(r)P (✓)Q(�) (288)

Laplace’s equation reduces to the following ordinary di↵erential equations:

Q00(�) = �m2 Q(�) (289)

d

dr

✓
r2

dR

dr

◆
= l(l + 1)R(r) (290)

1

sin ✓

d

d✓

✓
sin ✓

dP

d✓

◆
+


l(l + 1)� m2

sin2 ✓

�
P (✓) = 0 (291)

where l and m are (at this stage) arbitrary real separation constants.

• Exercise: Prove the above.

• The solutions of the �-equation are

Q(�) = A0 +B0� , for m = 0 (292)

Q(�) = Aeim� +B e�im� , for m 6= 0 (293)

• If � can take on the full range of values � 2 [0, 2⇡], then the requirement that Q(�) be
single-valued (i.e., Q(�+2⇡n) = Q(�) for integer n) implies B0 = 0 and m equal an integer.
(This will normally be the case for the examples that we consider.)

• The radial equation has the general solution

R(r) = Arl +Br�(l+1) (294)

• Exercise: Prove this.

• Note that if l � 0, finiteness of �(r, ✓,�) at the origin (r = 0) implies B = 0. Similarly,
requiring �(r, ✓,�) ! 0 as r ! 1 implies A = 0.

• The ✓-equation can be put into more standard form by making a change of variables from
✓ to x = cos ✓:

d

dx


(1� x2)

dP

dx

�
+


l(l + 1)� m2

1� x2

�
P (x) = 0 (295)

and then expanding the derivative,

(1� x2)P 00(x)� 2xP 0(x) +


l(l + 1)� m2

1� x2

�
P (x) = 0 (296)

The above equation is called the associated Legendre’s equation.

• If m = 0, the above equation is called Legendre’s equation:

(1� x2)P 00(x)� 2xP 0(x) + l(l + 1)P (x) = 0 (297)

4.9.1 Legendre polynomials

• To find a power series solution to Legendre’s equation, we first note that x = 0 is a regular
point of the di↵erential equation.

• Substituting

P (x) =
1X

n=0

anx
n (298)

into Legendre’s equation and di↵erentiating term by term, we obtain the recurrence relation

an+2 =
n(n+ 1)� l(l + 1)

(n+ 1)(n+ 2)
an (299)
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• Exercise: Prove this.

• Since the recurrence relation relates an+2 to an, the two independent solutions to Legen-
dre’s equation are given by setting a0 = 1, a1 = 0 and a1 = 1, a0 = 0. These solutions will
be even and odd functions of x, respectively.

• One can show that the power series solutions diverge at x = ±1 (corresponding to the
North and South poles of the sphere) unless the series terminates after some finite value
of n.

• From the recurrence relation, we see that if l is a non-negative integer, l = 0, 1, · · · , one of
the power series solutions terminates (the even solution if l is even, and the odd solution
if l is odd). The other solution can be set to zero (by hand) by setting a1 = 0 (or a0 = 0).

• The finite solutions are polynomials of order l. When appropriately normalised, they are
called Legendre polynomials, denoted Pl(x).

• NOTE: If l is a negative integer, l = �1,�2, · · · , one also obtains a polynomial solution.
But these solutions are the same as those for l non-negative (e.g., l = �2 yields the same
solution as l = 1) so there is no loss of generality in restricting attention to l = 0, 1, · · · .

• Legendre polynomials are normalized by the condition that Pl(1) = 1.

• Exercise: Show that the first four Legendre polynomials are given by

P0(x) = 1 (300)

P1(x) = x (301)

P2(x) =
1

2
(3x2 � 1) (302)

P3(x) =
1

2
(5x3 � 3x) (303)

See Figures 37-40 for various graphical representations of these functions.

• Rodrigues’ formula:

Pl(x) =
1

2ll!

✓
d

dx

◆l

(x2 � 1)l (304)

• Note that
Pl(�x) = (�1)lPl(x) (305)

• Orthonormality: Z 1

�1
dxPl(x)Pl0(x) =

2

2l + 1
�ll0 (306)

Thus, Legendre polynomials form a set of orthogonal polynomials.

• Exercise: Prove the above. (Hint: The proof of orthogonality is simple if you integrate
Legendre’s equation times Pl0(x). The derivation of the normalization constant is harder,
but can proved using mathematical induction and Rodrigues’s formula for Pl(x).)

• Completeness: Any square-integrable function f(x) defined on the interval x 2 [�1, 1] can
be expanded in terms of Legendre polynomials:

f(x) =
1X

l=0

Al Pl(x) (307)

where

Al =
2l + 1

2

Z 1

�1
dx f(x)Pl(x) (308)
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Figure 37: First few Legendre polynomials Pl(x) plotted as functions of x 2 [�1, 1].

• Example: The function

f(x) =

⇢
+1 for x > 0
�1 for x < 0

(309)

can be expanded as

f(x) =
3

2
P1(x)�

7

8
P3(x) +

11

16
P5(x) + · · · (310)

See Figure 41.

• Exercise: Prove this.

• Thus, the general solution to Laplace’s equation for problems with azimuthal symmetry
(i.e., no �-dependence so m = 0) is

�(r, ✓) =
1X

l=0

⇣
Al r

l +Bl r
�(l+1)

⌘
Pl(cos ✓) (311)

• Exercise: Find the solution to Laplace’s equation outside a sphere of radius a with specified
potential

�(r = a, ✓) =

⇢
+�0 for 0  ✓ < ⇡/2
��0 for ⇡/2 < ✓  ⇡

(312)

• Answer:

�(r, ✓) = �0


3

2

⇣a
r

⌘2
P1(cos ✓)�

7

8

⇣a
r

⌘4
P3(cos ✓) +

11

16

⇣a
r

⌘6
P5(cos ✓) + · · ·

�
(313)

NOTE: We obtained this result earlier using the Dirichlet Green’s function exterior to the
sphere.
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Figure 38: The magnitude |Pl(cos ✓)| of the first few Legendre polynomials plotted as functions
of cos ✓ in the x-z (or y-z) plane. The angle ✓ is measured wrt the positive z-axis. Note that
by plotting the magnitude, information about the sign (i.e., ±) of the Legendre polynomials
Pl(cos ✓) is lost in this graphical representation.
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Figure 39: Same as Figure 38 but illustrated as surfaces of revolution (since there is no �-
dependence for the Legendre polynomials).
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Figure 40: First few Legendre polynomials Pl(cos ✓) represented as functions on the unit 2-
sphere. The color associated with each point on the sphere is the value of Pl(cos ✓) for that point
(✓,�). Note that in contrast to Figures 38 and 39, information about the sign of the Legendre
polynomials is preserved in this graphical representation.
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Figure 41: Expansion of the function f(x) = ±1 for x ? 0, in terms Legendre polynomials. This
plot shows how the approximation to f(x) improves as more terms in the expansion are used.
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• Generating function:
1p

1� 2xt+ t2
=

1X

n=0

Pn(x) t
n (314)

• Using the generating function, one can derive the following recurrence relations:

(n+ 1)Pn+1 = (2n+ 1)xPn � nPn�1 (315)

Pn = P 0
n+1 � 2xP 0

n + P 0
n�1 (316)

nPn = xP 0
n � P 0

n�1 (317)

(n+ 1)Pn = P 0
n+1 � xP 0

n (318)

(2n+ 1)Pn = P 0
n+1 � P 0

n�1 (319)

(1� x2)P 0
n = n(Pn�1 � xPn) (320)

• Note that Legendre’s equation

(1� x2)P 00
n � 2xP 0

n + n(n+ 1)Pn = 0 (321)

can be obtained by di↵erentiating (320) wrt x and then using (317). In addition, the
normalization Pn(1) = 1 also follows simply from the generating function.

• Exercise: Prove the above relations by di↵erentiating the generating function wrt t and x
separately, and then combining the various expressions.

• Another important result that follows trivially from the generating function expression is
an expansion of the potential of a point charge in terms of Legendre polynomials:

1

|r� r0| =
1X

l=0

rl<
rl+1
>

Pl(cos �) (322)

where r< (r>) is the smaller (larger) of r and r0, and � is the angle between r and r
0:

r̂ · r̂0 ⌘ cos � = cos ✓ cos ✓0 + sin ✓ sin ✓0 cos(�� �0) (323)

(See Figure 42.)

• Exercise: Prove the expansion for 1/|r� r
0|.

4.9.2 Associated Legendre functions

• When m 6= 0, we need to solve the associated Legendre’s equation

(1� x2)P 00 � 2xP 0 +


l(l + 1)� m2

(1� x2)

�
P = 0 (324)

• It turns out that power series solutions of this di↵erential equation also diverge at the poles
(x = ±1) unless l = 0, 1, · · · (as before) and m = �l,�l + 1, · · · , l.

• The finite solutions are called associated Legendre functions are are given by derivatives of
the Legendre polynomials:

Pm
l (x) = (�1)m(1� x2)m/2 dm

dxm
Pl(x) (325)

and

P�m
l (x) = (�1)m

(l �m)!

(l +m)!
Pm
l (x) (326)

for m > 0.
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Figure 42: Position vectors r and r
0, and the spherical coordinates (✓,�) and (✓0,�0) specifying

their directions. � is the angle between r and r
0. For this example r> = r and r< = r0.

• The above phase convention is that of Condon and Shortley.

• The associated Legendre functions are not polynomials in x on account of the square root
factor (1�x2)m/2 for odd m. But since we are ultimately interested in the replacement x =
cos ✓, these non-polynomial factors are just proportional to sinm ✓. Thus, the associated
Legendre functions can be written as polynomials in cos ✓ if m is even, and polynomials in
cos ✓ multiplied by sin ✓ if m is odd.

• Exercise: Show that the first few associated Legendre functions are given by:

l = 0:

P 0
0 (cos ✓) = 1 (327)

l = 1:

P 0
1 (cos ✓) = cos ✓ (328)

P 1
1 (cos ✓) = � sin ✓ (329)

l = 2:

P 0
2 (cos ✓) =

1

2

�
3 cos2 ✓ � 1

�
(330)

P 1
2 (cos ✓) = �3 sin ✓ cos ✓ (331)

P 2
2 (cos ✓) = 3(1� cos2 ✓) (332)
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Figure 43: The magnitude |Pm
l (cos ✓)| of the first few associated Legendre functions plotted

as surfaces of revolution. Similar to the plots in Figures 38 and 39, the sign (i.e., ±) of the
associated Legendre functions Pm

l (cos ✓) is lost in this graphical representation.

l = 3:

P 0
3 (cos ✓) =

1

2

�
5 cos3 ✓ � 3 cos ✓

�
(333)

P 1
3 (cos ✓) = �3

2
sin ✓

�
5 cos2 ✓ � 1

�
(334)

P 2
3 (cos ✓) = 15

�
cos ✓ � cos3 ✓

�
(335)

P 3
3 (cos ✓) = �15 sin ✓

�
1� cos2 ✓

�
(336)

See Figure 43 for plots of the magnitude of the first few of these functions.

• Using Rodrigues’ formula, we can write down a formula valid for both positive and negative
values of m:

Pm
l (x) =

(�1)m

2ll!
(1� x2)m/2 dl+m

dxl+m
(x2 � 1)l (337)

• Orthonormality: For each m
Z 1

�1
dxPm

l (x)Pm
l0 (x) =

2

2l + 1

(l +m)!

(l �m)!
�ll0 (338)
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• Completeness: For each m, the associated Legendre functions form a complete set (in the
index l) for square-integrable functions on x 2 [�1, 1]:

f(x) =
1X

l=0

Al P
m
l (x) (339)

where

Al =
2l + 1

2

(l �m)!

(l +m)!

Z 1

�1
dx f(x)Pm

l (x) (340)

4.9.3 Spherical harmonics

• Spherical harmonics are proportional to the product of the solutions of the angular equa-
tions for Laplace’s equation in spherical polar coordinates:

Ylm(✓,�) =

s
2l + 1

4⇡

(l �m)!

(l +m)!
Pm
l (cos ✓)eim� (341)

They are complex functions on the unit 2-sphere with spherical coordinates (✓,�).

• The proportionality constants have been chosen so that
Z

S2

d⌦ Y ⇤
lm(✓,�)Yl0m0(✓,�) = �ll0�mm0 (342)

where
d⌦ ⌘ d(cos ✓) d� = sin ✓ d✓ d� (343)

• Note that
Yl,�m(✓,�) = (�1)mY ⇤

lm(✓,�) (344)

• For the antipodal point on the sphere

Ylm(⇡ � ✓,�+ ⇡) = (�1)lYlm(✓,�) (345)

• For m = 0

Yl0 =

r
2l + 1

4⇡
Pl(cos ✓) (346)

• Expressions for the first few spherical harmonics:

l = 0:

Y00(✓,�) =

r
1

4⇡
(347)

l = 1:

Y11(✓,�) = �
r

3

8⇡
sin ✓ ei� (348)

Y10(✓,�) =

r
3

4⇡
cos ✓ (349)

Y1,�1(✓,�) =

r
3

8⇡
sin ✓ e�i� (350)
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l = 2:

Y22(✓,�) =
1

4

r
15

2⇡
sin2 ✓ e2i� (351)

Y21(✓,�) = �
r

15

8⇡
sin ✓ cos ✓ ei� (352)

Y20(✓,�) =

r
5

4⇡

✓
3

2
cos2 ✓ � 1

2

◆
(353)

Y2,�1(✓,�) =

r
15

8⇡
sin ✓ cos ✓ e�i� (354)

Y2,�2(✓,�) =
1

4

r
15

2⇡
sin2 ✓ e�2i� (355)

• Since Ylm(✓,�) di↵ers from Pm
l (✓) by only a constant multiplicative factor and phase eim�,

the magnitude |Y m
l (✓,�)| has the same shape as |Pm

l (✓)| (see Figure 43).

• Completeness: Any square-integrable function f(✓,�) on the unit 2-sphere can be expanded
in terms of spherical harmonics:

f(✓,�) =
1X

l=0

lX

m=�l

Alm Ylm(✓,�) (356)

where

Alm =

Z

S2

d⌦ f(✓,�)Y ⇤
lm(✓,�) (357)

• Equivalently, the completeness property can be written as

1X

l=0

lX

m=�l

Y ⇤
lm(✓0,�0)Ylm(✓,�) = �(⌦̂, ⌦̂0) (358)

where �(⌦̂, ⌦̂0) is the Dirac delta function on the 2-sphere:

�(⌦̂, ⌦̂0) = �(cos ✓ � cos ✓0)�(�� �0) =
1

sin ✓
�(✓ � ✓0)�(�� �0) (359)

• Thus, the general solution to Laplace’s equation in spherical polar coordinates is

�(r, ✓,�) =
1X

l=0

lX

m=�l

h
Alm rl +Blm r�(l+1)

i
Ylm(✓,�) (360)

• Addition theorem:
lX

m=�l

Y ⇤
lm(✓0,�0)Ylm(✓,�) =

2l + 1

4⇡
Pl(cos �) (361)

where
cos � = ⌦̂ · ⌦̂0 = cos ✓ cos ✓0 + sin ✓ sin ✓0 cos(�� �0) (362)

• Completeness of the spherical harmonics and the addition theorem imply

�(⌦̂, ⌦̂0) =
1X

l=0

2l + 1

4⇡
Pl(⌦̂ · ⌦̂0) , (363)

which is an expansion of the Dirac delta function on the 2-sphere in terms of the Legendre
polynomials.
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• Transformation under a rotation:

Ylm(R⌦̂) =
lX

m0=�l

Dlm,m0Ylm0(⌦̂) , (364)

where R denotes an arbitrary rotation.

• The fact that Ylm(R⌦̂) can be written as a linear combination of the Ylm0(⌦̂) with the
same l is a consequence of the spherical harmonics being eigenfunctions of the (rotationally-
invariant) Laplacian on the unit 2-sphere with eigenvalues depending only on l:

(2)r2Ylm(⌦̂) = �l(l + 1)Ylm(⌦̂) . (365)

• The coe�cients Dl
mm0 are closely related to the Clebsch-Gordan coe�cients. They satisfy

lX

m00=�l

Dlm,m00D⇤
lm0,m00 = �mm0 (366)

as a consequence of Z

S2

d⌦̂ Y ⇤
lm(R⌦̂)Yl0m0(R⌦̂) = �ll0�mm0 (367)

• Using the addition theorem, it follows that the potential for a point source can be written
as:

1

|r� r0| =
1X

l=0

lX

m=�l

4⇡

2l + 1

rl<
rl+1
>

Y ⇤
lm(✓0,�0)Ylm(✓,�) (368)

where r< (r>) is the smaller (larger) of r and r0.

• This expression is fully-factorized into a product of functions of the unprimed and primed
coordinates.

4.9.4 Proof of the addition theorem for spherical harmonics

• Goal: To prove the addition theorem

Pl(cos �) =
4⇡

2l + 1

lX

m=�l

Y ⇤
lm(✓0,�0)Ylm(✓,�) (369)

where
cos � = cos ✓ cos ✓0 + sin ✓ sin ✓0 cos(�� �0) (370)

• Definitions and coordinate systems:

1) Let ⌦̂ and ⌦̂
0 be two unit vectors, with dot product ⌦̂ · ⌦̂0 = cos �. We will keep ⌦̂

0

fixed, but allow ⌦̂ to vary.

2) Choose a coordinate system on the 2-sphere so that ⌦̂ has coordinates (✓,�) and ⌦̂
0

has coordinates (✓0,�0). (See Figure 44, panel (a).) Since ⌦̂0 is fixed, (✓0,�0) are constants.
(For example, they are not integrated over in any of the following expressions.) If � = 0,
then ⌦̂ and ⌦̂

0 correspond to the same point on the 2-sphere, so that (✓,�) = (✓0,�0).

3) We can also consider a rotated coordinate system on the 2-sphere with the North Pole
given by ⌦̂

0. Then ⌦̂ has spherical coordinates (�, ) wrt this rotated coordinate system,
where  is an arbitrary azimuthal coordinate, since choosing ⌦̂

0 as the North Pole of
the rotated coordinates doesn’t uniquely determine the zero of the azimuthal angle. (See
Figure 44, panel (b).)
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Figure 44: Panel (a): Coordinate system in which ⌦̂ and ⌦̂
0 have coordinates (✓,�) and (✓0,�0),

respectively. � is the angle between ⌦̂ and ⌦̂
0. The vector ⌦̂0 is kept fixed, while ⌦̂ is allowed

to vary. Panel (b): Same two unit vectors ⌦̂ and ⌦̂
0 as in panel (a), but with respect to a

coordinate system in which ⌦̂
0 is the North Pole. In this coordinate system, ⌦̂ has coordinates

(�, ).

4) At times, we will think of � as a function of (✓,�). At other times, we will think of
(✓,�) as functions of (�, ).

5) The Laplacian on the 2-sphere is invariant under rotations. Thus, if fl(✓,�) is a
eigenfunction of the (✓,�)-Laplacian on the 2-sphere with eigenvalue l, then fl(�, ) ⌘
fl(✓(�, ),�(�, )) is an eigenfunction of the (�, )-Laplacian on the 2-sphere with the
same eigenvalue l.

• Consider Pl(cos �), and view it as a function of (✓,�). Then we can write

Pl(cos �) =
lX

m=�l

Alm Ylm(✓,�) (371)

• The fact that there is no sum over an l0 index is a consequence of item 5 above as Pl(cos �)
is an eigenfunction of the (�, )-Laplacian on the 2-sphere (and hence also of the (✓,�)-
Laplacian) with eigenvalue l.

• Using the orthonormality of the spherical harmonics it follows that

Alm =

Z

S2

d⌦✓,� Pl(cos �)Y
⇤
lm(✓,�) (372)

where
d⌦✓,� ⌘ d(cos ✓) d� = sin ✓ d✓ d� (373)

• Since

Yl0(�, ) =

r
2l + 1

4⇡
Pl(cos �) (374)
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we can also write

Alm =

r
4⇡

2l + 1

Z

S2

d⌦✓,� Yl0(�, )Y
⇤
lm(✓,�) (375)

• By a similar argument (or by appealing to the transformation properties of the spherical
harmonics under a rotation), we can write

Ylm(✓,�) =
lX

m0=�l

Blm,m0Ylm0(�, ) (376)

where the (✓,�) variables on the LHS are to be thought of a functions of (�, ).

• The expansion coe�cients are given by

Blm,m0 =

Z

S2

d⌦�, Ylm(✓,�)Y ⇤
lm0(�, ) (377)

where
d⌦�, ⌘ d(cos �) d = sin � d� d (378)

• If we consider ⌦̂ to point in the same direction as ⌦̂0, then � = 0, which implies

Ylm(✓0,�0) = Ylm(✓,�)
��
�=0

=
lX

m0=�l

Blm,m0Ylm0(0, ) = Blm,0

r
2l + 1

4⇡
(379)

where the last equality follows from

Ylm(0, ) =

( q
2l+1
4⇡ if m = 0

0 otherwise
(380)

• The integral expression for the Blm,0 expansion coe�cient is given by equation (377):

Blm,0 =

Z

S2

d⌦�, Ylm(✓,�)Y ⇤
l0(�, ) (381)

• Comparing this with the integral expression for the Alm expansion coe�cient, we see that

A⇤
lm =

r
4⇡

2l + 1

Z

S2

d⌦✓,� Y
⇤
l0(�, )Ylm(✓,�) (382)

=

r
4⇡

2l + 1

Z

S2

d⌦�, Y ⇤
l0(�, )Ylm(✓,�) (383)

=

r
4⇡

2l + 1
Blm,0 (384)

=
4⇡

2l + 1
Ylm(✓0,�0) (385)

where we used the rotational invariance of the area element on the 2-sphere, d⌦✓,� = d⌦�, ,
to get the second equality.

• Thus,

Alm =
4⇡

2l + 1
Y ⇤
lm(✓0,�0) (386)

which gives us

Pl(cos �) =
4⇡

2l + 1

lX

m=�l

Y ⇤
lm(✓0,�0)Ylm(✓,�) (387)

as desired.
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4.10 Separation of variables (cylindrical coords)

• In cylindrical polar coordinates (⇢,�, z), Laplace’s equation is

0 = r2� =
1

⇢

@

@⇢

✓
⇢
@�

@⇢

◆
+

1

⇢2
@2�

@�2
+
@2�

@z2
(388)

• If one assumes the product form

�(⇢,�, z) ⌘ R(⇢)Q(�)Z(z) (389)

then Laplace’s equation reduces to

0 =
1

R

1

⇢

d

d⇢

✓
⇢
dR

d⇢

◆
+

1

⇢2
1

Q

d2Q

d�2
+

1

Z

d2Z

dz2
(390)

where we’ve divided the whole equation by � = RQZ.

• If the separation constants are chosen so that

Z 00(z) = k2Z(z) , (391)

Q00(�) = �⌫2Q(�) (392)

then

R00(⇢) +
1

⇢
R0(⇢) +

✓
k2 � ⌫2

⇢2

◆
R(⇢) = 0 (393)

• If we choose the separation constants with the opposite sign for the z-equation:

Z 00(z) = �k2Z(z) , (394)

Q00(�) = �⌫2Q(�) (395)

then

R00(⇢) +
1

⇢
R0(⇢)�

✓
k2 +

⌫2

⇢2

◆
R(⇢) = 0 (396)

• Exercise: Prove the above statements.

• The solutions to the z-equation with positive separation constant +k2 are

Z(z) = A sinh(kz) +B cosh(kz) (397)

or, equivalently,
Z(z) = A0 ekz +B0 e�kz (398)

This choice of separation constant is needed when solving Laplace’s equation with boundary
condition � ! 0 as z ! 1, or if the potential is specified to have some non-zero value on
the 2-d boundary surface z = constant.

• The solutions to the z-equation with negative separation constant �k2 are

Z(z) = A sin(kz) +B cos(kz) (399)

This choice of separation constant is needed when solving Laplace’s equation with � = 0
on the 2-d boundary surfaces z = a and z = b, where a, b are finite constants.

• The solutions to the �-equation are

Q(�) = C0 +B0� , for ⌫ = 0 (400)

Q(�) = C sin(⌫�) +D cos(⌫�) , for ⌫ 6= 0 (401)
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• If � can take on the full range of values � 2 [0, 2⇡], then the requirement that Q(�) be
single-valued implies B0 = 0 and ⌫ equal an integer.

• The ⇢-equations can be put into more standard form by making a change of variables
⇢! x = k⇢, with

y(x)
��
x=k⇢

⌘ R(⇢) (402)

The two di↵erent equations corresponding to the di↵erent choice of sign for the separation
constant ±k2 become

y00(x) +
1

x
y0(x) +

✓
1� ⌫2

x2

◆
y(x) = 0 (403)

or

y00(x) +
1

x
y0(x)�

✓
1 +

⌫2

x2

◆
y(x) = 0 (404)

• Equation (403) is called Bessel’s equation of order ⌫; equation (404) is called the modified
Bessel’s equation of order ⌫.

• Note that if y(x) is a solution of Bessel’s equation, then ȳ(x) ⌘ y(ix) is a solution of the
modified Bessel’s equation.

• Exercise: Prove the above.

4.10.1 Bessel functions

• To solve Bessel’s equation, we note that x = 0 is a regular singular point of the di↵erential
equation. (The functions p(x) ⌘ 1/x and q(x) ⌘ (1 � ⌫2/x2), which multiply y0(x) and
y(x), respectively, are singular at x = 0, but x p(x) and x2 q(x) are both finite at x = 0.)

• The method of Frobenius says that such a di↵erential equation will admit a power series
solution of the form

y(x) = x�
1X

n=0

anx
n (405)

• Substituting this expansion into Bessel’s equation and equating the coe�cients multiplying
like powers of x leads to

a0(�
2 � ⌫2) = 0 (406)

a1(1 + 2� + �2 � ⌫2) = 0 (407)

an+2 = � an
(n+ 2 + �)2 � ⌫2

(408)

• The first of the above equations is called the indicial equation. For a0 6= 0 it has the
solutions:

� = ±⌫ (409)

• Substituting these solutions for � into the second equation leads to

a1(1± 2⌫) = 0 (410)

• For ⌫ 6= ±1/2, this equation implies a1 = 0. But even for ⌫ = ±1/2, we can set a1 = 0.

• Thus, a1 = 0 together with the recurrence relation implies an = 0 for all odd values of n.

• For the even expansion coe�cients, we can rewrite the recurrence relation as

a2n = a0
(�1)n�(1 + ⌫)

22nn!�(n+ 1 + ⌫)
(411)

for n = 0, 1, 2, · · · .
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• Recall that the gamma function is defined by

�(z) =

Z 1

0
dx xz�1e�x (412)

for Re(z) > 0. The gamma function generalizes the factorial function to non-integer
arguments in the sense that

�(n+ 1) = n! for n = 0, 1, · · · (413)

�(z + 1) = z �(z) for Re(z) > 0 (414)

• If the normalization constant a0 is chosen to be

a0 =
1

2⌫�(1 + ⌫)
(415)

then

a2n =
(�1)n

22n+⌫n!�(n+ 1 + ⌫)
(416)

• The power series solution is thus

J⌫(x) =
1X

n=0

(�1)n

n!�(n+ 1 + ⌫)

⇣x
2

⌘2n+⌫
(417)

J⌫(x) is called Bessel’s function of the 1st kind.

• Asymptotic form:

x ⌧ 1 : J⌫(x) !
1

�(⌫ + 1)

⇣x
2

⌘⌫
(418)

x � 1, ⌫ : J⌫(x) !
r

2

⇡x
cos
⇣
x� ⌫⇡

2
� ⇡

4

⌘
(419)

• Thus, J0(0) = 1, J⌫(0) = 0 for all ⌫ 6= 0; while for large x, J⌫(x) behaves like a damped
sinusoid, and has infinitely many zeros x⌫n:

J(x⌫n) = 0 , for n = 1, 2, · · · (420)

See Figure 45.

• Exercise: Show that the zeros of J⌫(x) are given by

x⌫n ' n⇡ +

✓
⌫ � 1

2

◆
⇡

2
(421)

• If ⌫ is not an integer, then J�⌫(x) is the second independent solution to Bessel’s equation.

• If ⌫ = m is an integer, then one can show that J�m(x) is proportional to Jm(x):

J�m(x) = (�1)mJm(x) (422)

so J�m(x) is not an independent solution for this case.

• Exercise: Prove the above.

• A second solution, which is independent of J⌫(x) for all ⌫ (integer or not), is

N⌫(x) :=
J⌫(x) cos(⌫⇡)� J�⌫(x)

sin(⌫⇡)
(423)

N⌫(x) is called a Neumann function or Bessel’s function of the 2nd kind, and is sometimes
denoted by Y⌫(x).
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Figure 45: First few Bessel functions of the 1st kind for integer ⌫.

• For ⌫ = m an integer, one needs to use L’Hopital’s rule to show that the RHS of the
expression defining Nm(x) is well-defined.

• Asymptotic form:

x ⌧ 1 : N⌫(x) !
(

2
⇡

⇥
ln
�
x
2

�
+ 0.5772 · · ·

⇤
, ⌫ = 0

��(⌫)
⇡

�
2
x

�⌫
, ⌫ 6= 0

(424)

x � 1, ⌫ : N⌫(x) !
r

2

⇡x
sin
⇣
x� ⌫⇡

2
� ⇡

4

⌘
(425)

• Note that for all ⌫, N⌫(x) ! �1 as x ! 0.

• As we saw for J⌫(x), for large x, N⌫(x) behaves like a damped sinusoid, 90� out of phase
with J⌫(x). See Figure 46.

• Thus, the most general solution to the radial part of Laplace’s equation is

R(⇢) = AJ⌫(k⇢) +BN⌫(k⇢) (426)

• Since N⌫(x) blows up at x = 0, if ⇢ = 0 is in the region of interest, then all of the B
coe�cients must vanish to yield a finite value of the potential on the axis.

• Hankel functions (or Bessel functions of the 3rd kind) are defined by

H(1)
⌫ (x) := J⌫(x) + iN⌫(x) (427)

H(2)
⌫ (x) := J⌫(x)� iN⌫(x) (428)

• Modified (or hyperbolic) Bessel functions are defined by

I⌫(x) := i�⌫J⌫(ix) (429)

K⌫(x) :=
⇡

2
i⌫+1H(1)

⌫ (ix) (430)
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Figure 46: First few Bessel functions of the 2nd kind for integer ⌫.

Note the pure imaginary arguments on the RHS.

• These are two linearly independent solutions of the modified Bessel’s equation (404). See
Figures 47 and 48.

• Asymptotic form:

x ⌧ 1 : I⌫(x) !
1

�(⌫ + 1)

⇣x
2

⌘⌫
(431)

K⌫(x) !
(

�
⇥
ln
�
x
2

�
+ 0.5772 · · ·

⇤
, ⌫ = 0

�(⌫)
2

�
2
x

�⌫
, ⌫ 6= 0

(432)

x � 1, ⌫ : I⌫(x) !
1p
2⇡x

ex

1 +O

✓
1

x

◆�
(433)

K⌫(x) !
r

⇡

2x
e�x


1 +O

✓
1

x

◆�
(434)

• Thus, I0(0) = 1, I⌫(0) = 0 for all ⌫ 6= 0, while K⌫(x) ! 1 as x ! 0 for all ⌫.

• For large x, I⌫(x) ! 1 while K⌫(x) ! 0 for all ⌫.

• Thus, the most general solution to the radial part of Laplace’s equation for the choice of
negative separation constant �k2 is

R(⇢) = AI⌫(k⇢) +BK⌫(k⇢) (435)

• Since K⌫(x) blows up at x = 0, if ⇢ = 0 is in the region of interest, then all of the B
coe�cients must vanish to yield a finite value of the potential on the axis.

• Similarly, since I⌫(x) blows up as x ! 1, if the potential is to vanish as ⇢! 1, then all
of the A coe�cients must vanish.
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Figure 47: First few modified Bessel functions of the 1st kind for integer ⌫.
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Figure 48: First few modified Bessel functions of the 2nd kind for integer ⌫.

74



• Recurrence relations:

d

dx
(x⌫J⌫(x)) = x⌫J⌫�1(x) (436)

d

dx

�
x�⌫J⌫(x)

�
= �x�⌫J⌫+1(x) (437)

J 0
⌫(x) = �⌫

x
J⌫(x) + J⌫�1(x) (438)

J 0
⌫(x) =

⌫

x
J⌫(x)� J⌫+1(x) (439)

2J 0
⌫(x) = J⌫�1(x)� J⌫+1(x) (440)

2⌫

x
J⌫(x) = J⌫�1(x) + J⌫+1(x) (441)

• Exercise: Prove the above.

• Note that the recurrence relations also hold for N⌫(x), H
(1)
⌫ (x), H(2)

⌫ (x), since they are
relatively simple linear combinations of J⌫(x) and J�⌫(x).

• Orthogonality: Z b

a
d⇢ ⇢J⌫(k⇢)J⌫(k

0⇢) = 0 for k 6= k0 (442)

where

⇢


J⌫(k⇢)

dJ⌫
d⇢

(k0⇢)� J⌫(k
0⇢)

dJ⌫
d⇢

(k⇢)

� ����
b

⇢=a

= 0 (443)

• Exercise: Prove this. (Hint: Let f(⇢) = J⌫(k⇢), g(⇢) = J⌫(k0⇢), write down Bessel’s
equation for f and g, multiply these equations by g and f , subtract, and then integrate.)

• An explicit example satifying the above boundary condition is to choose a = 0, rename
b = a, and then choose k and k0 so that J⌫(ka) = 0 = J⌫(k0a). For this case k and k0 take
on discrete values

k ⌘ k⌫n =
x⌫n
a

, k0 ⌘ k⌫n0 =
x⌫n0

a
, n, n0 = 1, 2, · · · (444)

where x⌫n and x⌫n0 are the nth and n0th zeroes of J⌫(x).

• Note that the orthogonality of Bessel functions is wrt to di↵erent arguments x = k⇢ and
x0 = k0⇢ of a single function J⌫(x), and not wrt di↵erent functions J⌫(x) and J⌫0(x) of
the same argument x = k⇢. (This latter case held for the Legendre polynomials Pl(x) and
Pl0(x).)

• The orthogonality of Bessel functions is similar to the orthogonality of the sine functions
sin(n2⇡x/a) for di↵erent values of n.

• Normalization:

Z b

a
d⇢ ⇢J⌫(k⇢)J⌫(k⇢) =

1

2

✓
⇢2 � ⌫2

k2

◆
J2
⌫ (k⇢) + ⇢2[J 0

⌫(k⇢)]
2

� ����
b

⇢=a

(445)

where J 0
⌫(k⇢) denotes derivative wrt to its argument x = k⇢.

• Exercise: Prove the normalization condition. (Note: This is a rather tricky proof, requiring
some clever integration by parts and the use of Bessel’s equation to substitute for x2J⌫(x)
in one of the integrals.)
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• Again the RHS can be simplified for the case described above where we set a = 0, rename
b = a, and take k = x⌫n/a for some integer n. Then

Z a

0
d⇢ ⇢J⌫(x⌫n⇢/a)J⌫(x⌫n⇢/a) =

1

2
a2[J 0

⌫(x⌫n)]
2 =

1

2
a2J2

⌫+1(x⌫n) (446)

where a recurrence relation was used to get the last equality.

• Exercise: Prove this.

• We can put the orthogonality and normalisation equations together as a single equation:
Z a

0
d⇢ ⇢J⌫(x⌫n⇢/a)J⌫(x⌫n0⇢/a) =

1

2
a2J2

⌫+1(x⌫n) �nn0 (447)

where we have explicitly indicated the zeroes x⌫n and x⌫n0 of J⌫(x).

• If the interval [0, a] becomes infinite [0,1), then the orthogonality and normalisation
conditions actually become simpler

Z 1

0
d⇢ ⇢J⌫(k⇢)J⌫(k

0⇢) =
1

k
�(k � k0) (448)

where k now takes on a continuous range of values.

• This is similar to the transition from Fourier series (basis functions eiknx with kn = n2⇡/a)
to Fourier transforms (basis functions eikx with k a real variable):

Z a/2

�a/2
dx ei2⇡(n�n0)x/a = a �nn0 �!

Z 1

�1
dx ei(k�k0)x = 2⇡ �(k � k0) (449)

4.10.2 Spherical Bessel functions

• Spherical Bessel functions are defined by

jn(x) :=

r
⇡

2x
Jn+ 1

2
(x) (450)

nn(x) :=

r
⇡

2x
Nn+ 1

2
(x) (451)

where n = 0, 1, 2, · · · .

• One can also define

h(1)
n (x) := jn(x) + inn(x) (452)

h(2)
n (x) := jn(x)� inn(x) (453)

• Given the explicit form of Jn+ 1
2
(x) one can show that

jn(x) = xn

✓
� 1

x

d

dx

◆n✓ sinx

x

◆
(454)

nn(x) = �xn

✓
� 1

x

d

dx

◆n ⇣cosx
x

⌘
(455)

• In particular, it follows that

j0(x) =
sinx

x
, n0(x) = �cosx

x
(456)

See Figures 49 and 50 for plots of the first few spherical Bessel functions.
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Figure 49: First few spherical Bessel functions of the 1st kind.
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Figure 50: First few spherical Bessel functions of the 2nd kind.
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• Exercise: Prove the above expression for j0(x) directly from its definition in terms of the
ordinary Bessel function J 1

2
(x).

• Given the relationship between jn(x) and Jn+ 1
2
(x), one can show that the spherical Bessel

functions satisfy the di↵erential equation

j00n(x) +
2

x
j0n(x) +


1� n(n+ 1)

x2

�
jn(x) = 0 (457)

• Exercise: Prove this.

• Alternatively, one arrives at the same di↵erential equation by using separation of variables
in spherical polar coordinates to solve the Helmholtz equation:

r2�(r, ✓,�) + k2�(r, ✓,�) = 0 (458)

• The � equation is the standard harmonic oscillator equation with separation constant �m2;
the ✓ equation is the associated Legendre’s equation with separation constants l and m;
and the radial equation is

R00(r) +
2

r
R0(r) +


k2 � l(l + 1)

r2

�
R(r) = 0 (459)

• Making the change of variables x = kr with y(x)|x=kr = R(r), leads to

y00(x) +
2

x
y0(x) +


1� l(l + 1)

x2

�
y(x) = 0 (460)

which is the di↵erential equation (457) we found earlier with solution y(x) = jl(x).

4.10.3 Examples

• Example 1: Solve Laplace’s equation interior to a cylinder of radius a and height L, with
zero potential on the bottom and sides of the cylinder, and specified potential f(⇢,�) on
the top. (See Figure 51.)

• Answer:

Choose cylindrical polar coordinates so that the axis of the cylinder coincides with the ẑ

axis, and that the bottom and top of the cylinder have z = 0 and z = L respectively.

Note:

1) The fact the potential has a non-zero value on the top of the cylinder implies using a
positive separation constant +k2 for the z-equation.

2) The BC that the potential vanish at z = 0 implies that there are no cosh(kz) terms.

3) Single-valuedness of �(�) implies that ⌫ = m is an integrer.

4) Finiteness at the axis (⇢ = 0) implies that there are no Nm(x) terms in the general
solution to Bessel’s equation.

5) The BC that the potential vanish when ⇢ = a implies that k take on the discrete values
kmn = xmn/a, where xmn is the nth zero Jm(x).

Thus,

�(⇢,�, z) =
1X

m=0

1X

n=1

Jm(xmn⇢/a) sinh(xmnz/a) [Amn sin(m�) +Bmn cos(m�)] (461)
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Figure 51: Cylinder of radius a and height L, with zero potential on the bottom and sides, and
specified potential � = f(⇢,�) on the top.

Figure 52: Infinite 2-d plane (z = 0) with specified potential � = f(⇢,�) on the plane and � ! 0
as z ! 1.

where the BC that �(⇢,�, L) = f(⇢,�) implies

Amn =
2

⇡a2J2
m+1(xmn) sinh(xmnL/a)

Z 2⇡

0
d�

Z a

0
d⇢ ⇢f(⇢,�)Jm(xmn⇢/a) sin(m�) (462)

Bmn =
2

⇡a2J2
m+1(xmn) sinh(xmnL/a)

Z 2⇡

0
d�

Z a

0
d⇢ ⇢f(⇢,�)Jm(xmn⇢/a) cos(m�) (463)

Note that for m = 0, the term Bmn cos(m�) should be B0n/2 where B0n is calculated from
the above integral.

• Example 2: Solve Laplace’s equation above an infinite 2-d plane with specified potential
f(⇢,�) and vanishing potential infinitely far from the plane. (See Figure 52.)

• Answer:

Choose cylindrical polar coordinates so that the 2-d plane corresponds to z = 0.

Note:
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1) The fact the range of z extends to 1 implies using a positive separation constant +k2

for the z-equation.

2) The BC that the potential vanishes as z ! 1 implies that there are no e+kz terms.

3) Single-valuedness of �(�) implies that ⌫ = m is an integrer.

4) Finiteness at the axis (⇢ = 0) implies that there are no Nm(x) terms in the general
solution to Bessel’s equation.

Thus,

�(⇢,�, z) =
1X

m=0

Z 1

0
dk Jm(k⇢)e�kz [Am(k) sin(m�) +Bm(k) cos(m�)] (464)

where the BC that �(⇢,�, 0) = f(⇢,�) implies

Am(k) =
k

⇡

Z 2⇡

0
d�

Z 1

0
d⇢ ⇢f(⇢,�)Jm(k⇢) sin(m�) (465)

Bm(k) =
k

⇡

Z 2⇡

0
d�

Z 1

0
d⇢ ⇢f(⇢,�)Jm(k⇢) cos(m�) (466)

Note that for m = 0, the term Bm(k) cos(m�) should be B0(k)/2 where B0(k) is calculated
from the above integral.

• Such expansions are called Fourier-Bessel expansions.

4.11 Eigenfunction expansions of Green’s functions

• The general form of a homogeneous, linear, second-order ordinary di↵erential equation is

y00(x) + p(x) y0(x) + q(x) y(x) = 0 (467)

where p(x) and q(x) are arbitrary functions of x.

• The di↵erential equation is said to be in self-adjoint (or Hermitian) form if

d

dx


f(x)

dy

dx

�
+ g(x) y(x) = 0 (468)

• Exercise: Prove that any homogeneous, linear, second-order ordinary di↵erential equation
can be put into self-adjoint form by multiplying the equation (467) by exp[

R x
p(x0)dx0].

You should obtain equation (468) with

f(x) = exp

Z x

p(x0) dx0
�
, g(x) = exp

Z x

p(x0) dx0
�
q(x) (469)

• All of the equations that we are interested in (e.g., Legendre’s equation, Bessel’s equation,
the radial and angular parts of Laplace’s equation in spherical polar coordinates, etc.) are
already in self-adjoint form.

• Let y1(x) and y2(x) be two solutions of equation (467) or (468). Then y1(x) and y2(x) are
linearly independent if and only if the Wronskian

W (x) ⌘ y1(x)y
0
2(x)� y01(x)y2(x) (470)

is non-zero.
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• The Wronskian itself satisfies a di↵erential equation

W 0(x) = �p(x)W (x) (471)

which can be obtained by di↵erentiating the equation that defines W and then using
equation (467). to substitute for y001 and y002 .

• Exercise: Prove the above.

• From the above equation for W it follows that

W (x) = C exp


�
Z x

p(x0) dx0
�
=

C

f(x)
(472)

(Note: We will need to use this result later on when expanding Green’s functions in
cylindrical polar coordinates.)

• Consider the region x 2 [a, b] (where a, b could be infinite), and define an inner product

hy1|y2i ⌘
Z b

a
y⇤1(x)y2(x)w(x)dx (473)

Here ⇤ denotes complex conjugation and w(x) > 0 is a (real) weight function.

• For most cases w = 1, but for Legendre polynomials and Bessel functions, the weight
functions are w(✓) = sin ✓ and w(⇢) = ⇢, respectively.

• Orthogonality and normalization of functions is defined wrt the inner product.

• A linear operator L is said to be self-adjoint (or Hermitian) wrt the inner product if and
only if

hLy1|y2i = hy1|Ly2i (474)

or, equivalently,

Z b

a
[Ly1(x)]⇤ y2(x)w(x) dx =

Z b

a
y⇤1(x) [Ly2(x)]w(x) dx (475)

• Consider the linear di↵erential operator L defined by

Ly(x) ⌘ 1

w(x)

⇢
d

dx


f(x)

dy

dx

�
+ g(x) y(x)

�
(476)

which is proportional to the LHS of the self-adjoint form (468) of a homogeneous, linear,
second-order ordinary di↵erential equation.

• One can show that L is Hermitian wrt the above inner product i↵

[y⇤1fy
0
2 � y2fy

⇤
1
0]
��b
a
= 0 (477)

• Exercise: Prove the above result assuming f(x) and g(x) are real.

• In particular, L will be Hermitian if the functions y1(x) and y2(x) vanish on the boundary
x = a, b. Such solutions are said to satisfy homogeneous boundary conditions, and we
will assume such BCs when we calculate Dirichlet Green’s functions. (Other boundary
conditions are possible, but we will not consider them here.)

• A Sturm-Liouville equation has the form

d

dx


f(x)

dy

dx

�
+ g(x) y(x)� �w(x)y(x) = 0 (478)

where � is some fixed constant.

81



• In terms of the linear operator L, the Sturm-Liouville equation can be written as

Ly(x) = � y(x) (479)

which is an eigenvalue equation.

• In order that L be Hermitian, the homogeneous boundary conditions on the eigenfunctions
restrict the allowed values of �:

L n(x) = �n  n(x) (480)

• Recall that for a Hermitian operator:

1) the eigenvalues �n are real.

2) the eigenfunctions  n(x) and  n0(x) corresponding to distinct eigenvalues are orthogo-
nal.

3) the set of eigenfunctions { n(x)} span the space of square-integrable functions satisfying
the same BCs as the eigenfunctions.

• Several examples of di↵erential equations, their eigenfunctions, and eigenvalues are given
in the next subsection, Section 4.12.

• Suppose we want to solve the inhomogeneous equation

Ly(x) = F (x)

w(x)
(481)

where F (x) is some source term.

• By expanding y(x) in terms of the eigenfunctions

y(x) =
X

n

An  n(x) (482)

one can show that

y(x) =

Z b

a
dx0F (x0)

 
X

n

 ⇤
n(x

0) n(x)

Nn�n

!
(483)

where

Nn :=

Z b

a
| n(x)|2 w(x)dx (484)

is the normalization of the eigenfunction  n(x).

• Exercise: Prove the above.

• Recalling that a Dirichlet Green’s function satisfies

LGD(x, x0) = �(x� x0) () y(x) =

Z b

a
dx0 GD(x, x0)F (x0) (485)

we can conclude that

GD(x, x0) =
X

n

 ⇤
n(x

0) n(x)

Nn�n
(486)

• NOTES:

1) The summation
P

n should be replaced by an integration
R
dk if the eigenvalues are

labeled by a continuous index k.
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2) The above result extends to functions of many variables:

GD(r, r0) =
X

n

 ⇤
n(r

0) n(r)

Nn�n
(487)

3) It also extends to solutions of the more general di↵erential equation

Ly(x)� � y(x) =
F (x)

w(x)
(488)

were � is a constant, not equal to any of the eigenvalues �n. The expression for the Dirichlet
Green’s function for this case is

GD(x, x0) =
X

n

 ⇤
n(x

0) n(x)

Nn(�n � �)
(489)

• Exercise: Prove this last statement.

• Example 1: The Dirichlet Green’s function for Poisson’s equation in 1-dimension

d2

dx2
GD(x, x0) = �(x� x0) (490)

for the finite interval 0  x  a, can be expanded in terms of sinusoids

 n(x) =

r
2

a
sin
⇣n⇡x

a

⌘
(491)

with eigenvalues

�n = �
⇣n⇡

a

⌘2
(492)

Thus,

GD(x, x0) =
2

a

1X

n=1

sin
�
n⇡x
a

�
sin
⇣

n⇡x0

a

⌘

�
�
n⇡
a

�2 (493)

• Example 2: The infinite space Dirichlet Green’s function for Poisson’s equation

r2G(r, r0) = �4⇡�(r� r
0) (494)

can be expanded in terms of the complex exponentials

 k(r) =
1

(2⇡)3/2
eik·r (495)

where k is a vector in 3-dimensional space, and the normalization factor has been chosen
so that Nk = 1. These are eigenfunctions of the 3-d Laplacian operator L = r2 with
eigenvalues

�k = �k2 (496)

Thus,

GD(r, r0) =
1

|r� r0| =
4⇡

(2⇡)3

Z

all space
dVk

eik·(r�r0)

k2
(497)

Note that the extra factor of 4⇡ and the absence of the minus sign in the denominator
come from the definition (494) of the Green’s function in 3-dimensions.
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• Example 3: The Dirichlet Green’s for Poisson’s equation inside a rectangular box (0  x 
a, 0  y  b, 0  z  c) can be expanded in terms of a product of sinusoids:

 lmn(r) =

r
8

abc
sin

✓
l⇡x

a

◆
sin
⇣m⇡y

b

⌘
sin
⇣n⇡z

c

⌘
(498)

These are eigenfunctions of the Laplacian with eigenvalues

�lmn = �
"✓

l⇡

a

◆2

+
⇣m⇡

b

⌘2
+
⇣n⇡

c

⌘2
#

(499)

Thus,

GD(r, r0) =
32⇡

abc

1X

l,m,n=1

sin
�
l⇡x
a

�
sin
⇣

l⇡x0

a

⌘
sin
�m⇡y

b

�
sin
⇣

m⇡y0

b

⌘
sin
�
n⇡z
c

�
sin
⇣

n⇡z0

c

⌘

�
l⇡
a

�2
+
�
m⇡
b

�2
+
�
n⇡
c

�2

(500)

4.12 Summary of key eigenfunction formulas

• Cartesian coordinate:
�1 < x < 1 (similar for y, z) (501)

Di↵erential equation:
d2 

dx2
= � (x) (502)

Weight function:
w(x) = 1 (503)

Eigenfunctions:
 k(x) = eikx , �1 < k < 1 (504)

Eigenvalues:
�k = �k2 (505)

Orthonormality: Z 1

�1
dx ei(k�k0)x = 2⇡ �(k � k0) (506)

Completeness:

�(x� x0) =
1

2⇡

Z 1

�1
dk eik(x�x0) =

1

⇡

Z 1

0
dk cos[k(x� x0)] (507)

• Cartesian coordinate:
0  x  a (similar for y, z) (508)

Di↵erential equation:
d2 

dx2
= � (x) (509)

Weight function:
w(x) = 1 (510)

Eigenfunctions:

 n(x) = sin
⇣n⇡x

a

⌘
, n = 1, 2, · · · (511)

Eigenvalues:

�n = �
⇣n⇡

a

⌘2
(512)
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Orthonormality: Z a

0
dx sin

⇣n⇡x
a

⌘
sin

✓
n0⇡x

a

◆
=

a

2
�nn0 (513)

Completeness:

�(x� x0) =
2

a

1X

n=1

sin
⇣n⇡x

a

⌘
sin

✓
n⇡x0

a

◆
(514)

• Azimuthal angle:
0  �  2⇡ (515)

Di↵erential equation:
d2 

d�2
= � (�) (516)

Weight function:
w(�) = 1 (517)

Eigenfunctions:
 m(�) = eim� , m = 0,±1,±2, · · · (518)

Eigenvalues:
�m = �m2 (519)

Orthonormality: Z 2⇡

0
d� ei(m�m0)� = 2⇡ �mm0 (520)

Completeness:

�(�� �0) =
1

2⇡

1X

m=�1
eim(���0) =

1

2⇡
+

1

⇡

1X

m=1

cos[m(�� �0)] (521)

• Polar angle:
0  ✓  ⇡ (or � 1  x  1 , where x = cos ✓) (522)

Di↵erential equation:
1

sin ✓

d

d✓

✓
sin ✓

dP

d✓

◆
= �P (✓) (523)

Weight function:
w(✓) = sin ✓ (524)

Eigenfunctions:
Pl(cos ✓) , l = 0, 1, 2, · · · (525)

Eigenvalues:
�l = �l(l + 1) (526)

Orthonormality: Z ⇡

0
d✓ sin ✓Pl(cos ✓)Pl0(cos ✓) =

2

2l + 1
�ll0 (527)

Completeness:

1

sin ✓
�(✓ � ✓0) =

2l + 1

2

1X

l=0

Pl(cos ✓)Pl(cos ✓
0) (528)
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• 2-sphere coordinates:
0  ✓  ⇡ , 0  �  2⇡ (529)

Di↵erential equation:

1

sin ✓

@

@✓

✓
sin ✓

@Y

@✓

◆
+

1

sin2 ✓

@2Y

@�2
= �Y (✓,�) (530)

Weight function:
w(✓,�) = sin ✓ (531)

Eigenfunctions:

Ylm(✓,�) , l = 0, 1, 2, · · · , m = �l,�l + 1, · · · , l (532)

Eigenvalues:
�lm = �l(l + 1) (533)

Orthonormality:

Z 2⇡

0
d�

Z ⇡

0
d✓ sin ✓ Ylm(✓,�)Y ⇤

l0m0(✓,�) = �ll0�mm0 (534)

Completeness:

1

sin ✓
�(✓ � ✓0)�(�� �0) =

1X

l=0

lX

m=�l

Y ⇤
lm(✓0,�0)Ylm(✓,�) (535)

• Cylindrical radius:
0  ⇢  a (536)

Di↵erential equation:

1

⇢

d

d⇢

✓
⇢
dR

d⇢

◆
� ⌫2

⇢2
R(⇢) = �R(⇢) , ⌫ real (fixed) (537)

Weight function:
w(⇢) = ⇢ (538)

Eigenfunctions:
Rn(⇢) = J⌫(x⌫n⇢/a) , n = 1, 2, · · · (539)

Eigenvalues:

�n = �x2
⌫n

a2
(540)

Orthonormality:
Z a

0
d⇢ ⇢J⌫(x⌫n⇢/a)J⌫(x⌫n0⇢/a) =

1

2
a2J2

⌫+1(x⌫n) �nn0 (541)

Completeness:
1

⇢
�(⇢� ⇢0) =

2

a2

1X

n=1

J⌫(x⌫n⇢/a)J⌫(x⌫n⇢0/a)

J2
⌫+1(x⌫n)

(542)

• Cylindrical radius:
0  ⇢ < 1 (543)

Di↵erential equation:

1

⇢

d

d⇢

✓
⇢
dR

d⇢

◆
� ⌫2

⇢2
R(⇢) = �R(⇢) , ⌫ real (fixed) (544)
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Weight function:
w(⇢) = ⇢ (545)

Eigenfunctions:
Rk(⇢) = J⌫(k⇢) , k � 0 (546)

Eigenvalues:
�k = �k2 (547)

Orthonormality: Z 1

0
d⇢ ⇢J⌫(k⇢)J⌫(k

0⇢) =
1

k
�(k � k0) (548)

Completeness:
1

⇢
�(⇢� ⇢0) =

Z 1

0
dk kJ⌫(k⇢)J⌫(k⇢

0) (549)

4.13 Expanding Green’s functions by solving 1-d �-function equations

• An alternative method of calculating a Green’s function is to expand the equation

r2GD(r, r0) = �4⇡�(r� r
0) (550)

with respect to two of the three coordinates (e.g., x, y, or ✓, �, etc.) and solve the resulting
ODE with a Dirac delta function source in just the remaining coordinate (e.g., z or r, etc.).

• This method is best illustrated by two examples:

• Example 1: Find an expression for the Dirichlet Green’s function for Poisson’s equation
in 1-dimension for 0  x  a. (Note: For �1 < x < 1, the Dirichlet Green’s function is
identically zero, as the only solution to d2GD/dx2 = �(x� x0) which vanishes as |x| ! 1
is GD(x, x0) = 0.)

• Solution:

1) The solution to
d2

dx2
GD(x, x0) = �(x� x0) (551)

for x < x0 and x > x0 where the RHS is zero is:

GD(x, x0) =

⇢
A(x0) +B(x0)x for x < x0

C(x0) +D(x0)x for x > x0 (552)

2) Applying the homogeneous BCs at x = 0 and x = a leads to

A(x0) = 0 , C(x0) = �D(x0) a (553)

so that

GD(x, x0) =

⇢
B(x0)x for x < x0

D(x0) (x� a) for x > x0 (554)

3) Applying the symmetry of GD(x, x0) further reduces the freedom of the integration
constants to an overall multiplicative constant:

B(x0) = E (x0 � a) , D(x0) = E x0 (555)

so that
GD(x, x0) = E x<(x> � a) (556)
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Figure 53: Dirichlet Green’s function for the 1-dimensional Poisson’s equation for the finite
interval 0  x  a. The exact solution and Fourier series expansions containing one, two, and
three terms are plotted, for the case a = 1, x0 = 0.75a.

4) The constant E can be determined by integrating the di↵erential equation for GD(x, x0)
across the delta function singularity from x = x0 � ✏ to x = x0 + ✏, then taking the limit
✏! 0:

lim
✏!0

(
d

dx
GD(x, x0)

����
x0+✏

x=x0�✏

)
= 1 , E =

1

a
(557)

5) Thus,

GD(x, x0) = �1

a
x<(a� x>) (558)

Note: When we used the eigenfunction method to determine the Green’s function, we
found (493):

GD(x, x0) =
2

a

1X

n=1

sin
�
n⇡x
a

�
sin
⇣

n⇡x0

a

⌘

�
�
n⇡
a

�2 (559)

Thus,

�1

a
x<(a� x>) =

2

a

1X

n=1

sin
�
n⇡x
a

�
sin
⇣

n⇡x0

a

⌘

�
�
n⇡
a

�2 (560)

is the Fourier series expansion of the 1-dimensional Dirichlet Green’s function. (See Fig-
ure 53.)

• Exercise: Extend the above analysis to determine the Dirichlet Green’s function for the
1-dimensional simple harmonic oscillator equation

d2

dx2
GD(x, x0) + k2 GD(x, x0) = �(x� x0) (561)
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Figure 54: Dirichlet Green’s function for the 1-dimensional simple harmonic oscillator equation
for the finite interval 0  x  a. The exact solution and Fourier series expansions containing
one, two, and three terms are plotted, for the case a = 1, x0 = 0.75a, and k = (4/5)⇥ 2⇡/a.

for the finite interval 0  x  a. Assume that k2 6= (n⇡/a)2 for any positive integer n. By
solving the 1-d delta function equation, you should find

GD(x, x0) = � sin(kx<) sin (k(a� x>))

k sin(ka)
(562)

Alternatively, in terms of an eigenfunction expansion

GD(x, x0) =
2

a

1X

n=1

sin
�
n⇡x
a

�
sin
⇣

n⇡x0

a

⌘

k2 �
�
n⇡
a

�2 (563)

This last expression can be thought of as a Fourier series representation of the RHS of
(562). (See Figure 54.) Note also that in the limit k ! 0, we recover the results (558) and
(559) for the 1-d Poisson’s equation, as we should.

• Example 2: Find an expression for the Dirichlet Green’s function for a rectangular box
(0  x  a, 0  y  b, 0  z  c), singling out the z-coordinate for special treatment.

• Solution:

1) Begin by expanding the Dirac delta function �(r � r
0) in terms of the appropriate

eigenfunctions for the rectangular box, leaving the �(z � z0) factor as is:

�(r� r
0) = �(x� x0)�(y � y0)�(z � z0) (564)

= �(z � z0)
4

ab

1X

l,m=1

sin

✓
l⇡x

a

◆
sin

✓
l⇡x0

a

◆
sin
⇣m⇡y

b

⌘
sin

✓
m⇡y0

b

◆
(565)

2) Do the same for the Green’s function, leaving the z, z0 dependence to be determined:

GD(r, r0) =
4

ab

1X

l,m=1

glm(z, z0) sin

✓
l⇡x

a

◆
sin

✓
l⇡x0

a

◆
sin
⇣m⇡y

b

⌘
sin

✓
m⇡y0

b

◆
(566)
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3) Substitute the above expressions into r2GD(r, r0) = �4⇡�(r� r
0), obtaining

d2

dz2
glm(z, z0)� k2lmglm(z, z0) = �4⇡ �(z � z0) (567)

where

k2lm :=

✓
l⇡

a

◆2

+
⇣m⇡

b

⌘2
(568)

4) Solve this equation for z < z0 and z > z0 where the RHS is zero:

glm(z, z0) =

⇢
A(z0) sinh(klmz) +B(z0) cosh(klmz) for z < z0

C(z0) sinh(klmz) +D(z0) cosh(klmz) for z > z0
(569)

5) Apply the homogeneous BCs at z = 0 and z = c, yielding

B(z0) = 0 , C(z0) = �D(z0)
cosh(klmc)

sinh(klmc)
(570)

so that

glm(z, z0) =

⇢
A(z0) sinh(klmz) for z < z0

D(z0) sinh[klm(c�z)]
sinh(klmc) for z > z0

(571)

6) Apply the symmetry of GD(r, r0) to further reduce the freedom of the integration con-
stants to an overall multiplicative constant:

A(z0) = E
sinh [klm(c� z0)]

sinh(klmc)
, D(z0) = E sinh(klmz0) (572)

so that

glm(z, z0) = E
sinh(klmz<) sinh [klm(c� z>)]

sinh(klmc)
(573)

7) Determine the constant E by integrating the di↵erential equation for glm(z, z0) across
the delta function singularity from z = z0 � ✏ to z = z0 + ✏, taking the limit ✏! 0:

lim
✏!0

(
d

dz
glm(z, z0)

����
z0+✏

z=z0�✏

)
= �4⇡ (574)

which leads to

E =
4⇡

klm
(575)

8) Substitute this constant back into the formulas to obtain the solutions

glm(z, z0) = 4⇡
sinh(klmz<) sinh [klm(c� z>)]

klm sinh(klmc)
(576)

and

GD(r, r0) =
16⇡

ab

1X

l,m=1

sin

✓
l⇡x

a

◆
sin

✓
l⇡x0

a

◆
sin
⇣m⇡y

b

⌘
sin

✓
m⇡y0

b

◆

⇥ sinh(klmz<) sinh [klm(c� z>)]

klm sinh(klmc)
(577)

Note: If we compare this expression for GD(r, r0) with what we obtained earlier using the
eigenfunction method:

GD(r, r0) =
32⇡

abc

1X

l,m,n=1

sin
�
l⇡x
a

�
sin
⇣

l⇡x0

a

⌘
sin
�m⇡y

b

�
sin
⇣

m⇡y0

b

⌘
sin
�
n⇡z
c

�
sin
⇣

n⇡z0

c

⌘

�
l⇡
a

�2
+
�
m⇡
b

�2
+
�
n⇡
c

�2

(578)
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we can conclude that

sinh(klmz<) sinh [klm(c� z>)]

klm sinh(klmc)
=

2

c

1X

n=1

sin
⇣

n⇡z0

c

⌘

k2lm +
�
n⇡
c

�2 sin
⇣n⇡z

c

⌘
(579)

Thus, the RHS is the Fourier series representation of the 1-dimensional Dirichlet Green’s
function satisfying

d2

dz2
GD(z, z0)� k2lm GD(z, z0) = ��(z � z0) (580)

for 0  z  c. If we take the limit klm ! 0 of these last two equations, we recover the
Fourier series expansion of the previous example with z and c replacing x and a. (One
needs to apply L’Höpital’s rule twice to take the limit klm ! 0 of the LHS of (579).)

4.14 Green’s functions: More examples

• Example 1: Expand the infinite space Dirichlet Green’s function GD(r, r0) = 1/|r � r
0|

in spherical polar coordinates, using the method of the previous section, singling out the
r-coordinate for special treatment.

• Answer:

GD(r, r0) =
1

|r� r0| =
1X

l=0

lX

m=�l

4⇡

2l + 1

rl<
rl+1
>

Y ⇤
lm(✓0,�0)Ylm(✓,�) (581)

Note: Since
1

|r� r0| =
1X

l=0

rl<
rl+1
>

Pl(cos �) (582)

from the generating function for the Legendre polynomials, the above result may be thought
of as an alternative derivation of the addition theorem for spherical harmonics:

Pl(cos �) =
4⇡

2l + 1

lX

m=�l

Y ⇤
lm(✓0,�0)Ylm(✓,�) (583)

• Example 2: Proceeding as above, derive the Dirichlet Greens’s function between two con-
centric spheres of radii a and b (with a < b).

• Answer:

GD(r, r0) = 4⇡
1X

l=0

lX

m=�l

1

2l + 1

Y ⇤
lm(✓0,�0)Ylm(✓,�)h

1�
�
a
b

�2l+1
i

✓
rl< � a2l+1

rl+1
<

◆✓
1

rl+1
>

�
rl>

b2l+1

◆
(584)

Note: From the above result we can obtain expressions for the Dirichlet Green’s functions
corresponding to the following special cases:

i) Infinite space Dirichlet Green’s function in spherical polar coords (set a ! 0, b ! 1):

1

|r� r0| =
1X

l�0

lX

m=�l

4⇡

2l + 1

rl<
rl+1
>

Y ⇤
lm(✓0,�0)Ylm(✓,�) (585)

ii) Dirichlet Green’s function exterior to a sphere of radius a (set b ! 1):

1

|r� r0| �
a

r0|r� a2

r02 r
0|
=

1X

l=0

lX

m=�l

4⇡

2l + 1

✓
rl<
rl+1
>

� a2l+1

(rr0)l+1

◆
Y ⇤
lm(✓0,�0)Ylm(✓,�) (586)
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iii) Dirichlet Green’s function interior to a sphere of radius a (set a ! 0, then rename
b = a):

1

|r� r0| �
a

r0|r� a2

r02 r
0|
=

1X

l=0

lX

m=�l

4⇡

2l + 1

✓
rl<
rl+1
>

� (rr0)l

a2l+1

◆
Y ⇤
lm(✓0,�0)Ylm(✓,�) (587)

• Example 3: Expand the infinite space Dirichlet Green’s function GD(r, r0) = 1/|r� r
0| in

cylindrical polar coordinates, using the method of the previous section, singling out the
⇢-coordinate for special treatment.

• Answer:

GD(r, r0) =
1

|r� r0| =
2

⇡

1X

m=�1

Z 1

0
dk cos [k(z � z0)] eim(���0)Im(k⇢<)Km(k⇢>) (588)

To prove the above result we note the following:

1) We have the expansions

�(r� r
0) =

�(⇢� ⇢0)

⇢

1

2⇡2

1X

m=�1

Z 1

0
dk cos [k(z � z0)] eim(���0) (589)

and

GD(r, r0) =
1

2⇡2

1X

m=�1

Z 1

0
dk gm(k, ⇢, ⇢0) cos [k(z � z0)] eim(���0) (590)

2) The di↵erential equation satisfied by gm(k, ⇢, ⇢0) is

1

⇢

d

d⇢

✓
⇢
dgm
d⇢

◆
�
✓
k2 +

m2

⇢2

◆
= �4⇡

�(⇢� ⇢0)

⇢
(591)

For ⇢ < ⇢0 and ⇢ > ⇢0 this is the modified Bessel’s equation.

3) BCs at ⇢! 0, ⇢! 1, and symmetry of the solution imply

gm(k, ⇢, ⇢0) = E Im(k⇢<)Km(k⇢>) (592)

4) Integrating the di↵erential equation across the delta function singularity from ⇢ = ⇢0� ✏
to ⇢ = ⇢0 + ✏ yields

�4⇡ = E k⇢0 [Im(k⇢0)K 0
m(k⇢0)� I 0m(k⇢0)Km(k⇢0)] = E k⇢0W (k⇢0) (593)

where W (x) is the Wronskian of Im(x) and Km(x), with x = k⇢0.

5) Since the modified Bessel’s equation is in Sturm-Liouville form, we know that

W (x) =
C

x
, with C = �1 (594)

where C was evaluated using the asymptotic form of Im(x) and Km(x), as x ! 1.

6) Thus, E = 4⇡ implying

gm(k, ⇢, ⇢0) = 4⇡ Im(k⇢<)Km(k⇢>) (595)

leading to the final expression for GD(r, r0).

• Example 4: Determine the Dirichlet Green’s function between two infinite planes at z = 0
and z = L. (Jackson, Prob 3.17)
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• Answers:

Eigenfunction method:

GD(r, r0) =
4

L

1X

m=�1

1X

n=1

Z 1

0
dk k

eim(���0) sin
�
n⇡z
L

�
sin
⇣

n⇡z0

L

⌘
Jm(k⇢)Jm(k⇢0)

�
n⇡
L

�2
+ k2

(596)

Singling out the z-coordinate for special treatment:

GD(r, r0) = 2
1X

m=�1

Z 1

0
dk eim(���0)Jm(k⇢)Jm(k⇢0)

sinh(kz<) sinh [k(L� z>)]

sinh(kL)
(597)

Singling out the ⇢-coordinate for special treatment:

GD(r, r0) =
4

L

1X

m=�1

1X

n=1

eim(���0) sin
⇣n⇡z

L

⌘
sin

✓
n⇡z0

L

◆
Im
⇣n⇡⇢<

L

⌘
Km

⇣n⇡⇢>
L

⌘

(598)

• Example 5: Determine the Dirichlet Green’s function inside a cylindrical can of height
L and radius a. (Choose cylindrical polar coordinates so that the axis of the cylinder
corresponds to ⇢ = 0, and the bottom and top of the can to z = 0 and z = L, respectively.)
(Jackson, Prob 3.23)

• Answers:

Eigenfunction method:

GD(r, r0) =
8

La2

1X

m=�1

1X

l=1

1X

n=1

eim(���0) sin
�
l⇡z
a

�
sin
⇣

l⇡z0

a

⌘
Jm
�xmn⇢

a

�
Jm
⇣

xmn⇢
0

a

⌘

h�
xmn
a

�2
+
�
l⇡
L

�2i
J2
m+1(xmn)

(599)

Singling out the z-coordinate for special treatment:

GD(r, r0) =
4

a

1X

m=�1

1X

n=1

eim(���0)Jm
�xmn⇢

a

�
Jm
⇣

xmn⇢
0

a

⌘

xmnJ2
m+1(xmn)

sinh
�xmnz<

a

�
sinh

⇥
xmn
a (L� z>)

⇤

sinh
�
xmnL

a

�

(600)

Singling out the ⇢-coordinate for special treatment:

GD(r, r0) =
4

L

1X

m=�1

1X

n=1

eim(���0) sin
⇣n⇡z

a

⌘
sin

✓
n⇡z0

a

◆
Im
�n⇡⇢<

L

�

Im
�
n⇡a
L

�

⇥
h
Im
⇣n⇡a

L

⌘
Km

⇣n⇡⇢>
L

⌘
�Km

⇣n⇡a
L

⌘
Im
⇣n⇡⇢>

L

⌘i
(601)

• Example 6: Determine a closed form expression for the infinite space Dirichlet Green’s
function in 2-dimensions, and an expansion for it in terms of the eigenfunctions of the
azimuthal coordinate �. (Jackson, Prob 2.17)

• Answers:

Closed form expression:

GD(r, r0) = � ln
�
|r� r

0|2
�
= � ln

�
⇢2 + ⇢02 � 2⇢⇢0 cos(�� �0)

�
(602)

Expansion:

GD(r, r0) = � ln
�
⇢2>
�
+ 2

1X

m=1

1

m

✓
⇢<
⇢>

◆m

cos [m(�� �0)] (603)
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Note:

1) The closed form expression can be verified by showing that

r2 ln ⇢ = 0 for ⇢ 6= 0 (604)

and Z

D
r2(ln ⇢) da =

I

C
(r ln ⇢) · n̂ dl = 2⇡ (605)

where D is any 2-d disk containing the origin with boundary circle C.

2) The second expression can be verified by expanding

�(r� r
0) =

�(⇢� ⇢0)

⇢

(
1

2⇡
+

1

⇡

1X

m=1

cos [m(�� �0)]

)
(606)

and

GD(r, r0) =
1

2⇡
g0(⇢, ⇢

0) +
1

⇡

1X

m=1

gm(⇢, ⇢0) cos [m(�� �0)] (607)

then substituting into r2GD(r, r0) = �4⇡ �(r� r
0) to obtain

1

⇢

d

d⇢

✓
⇢
dg0
d⇢

◆
= �4⇡

�(⇢� ⇢0)

⇢
(608)

and
1

⇢

d

d⇢

✓
⇢
dgm
d⇢

◆
� m2

⇢2
gm = �4⇡

�(⇢� ⇢0)

⇢
(609)

Solving these equations as we did for previous examples (with the BCs being finite at ⇢ = 0
and only logarithmic divergence as ⇢! 1) leads to

g0(⇢, ⇢
0) = �4⇡ ln ⇢> , gm(⇢, ⇢0) =

2⇡

m

✓
⇢<
⇢>

◆m

(610)

which yields the final result.

4.15 Using Green’s functions to solve boundary value problems

• Given the Dirichlet Green’s function for a particular geometry, the potential �(r) is given
by

�(r) =
1

4⇡✏0

Z

V
GD(r, r0)⇢(r0) dV 0 � 1

4⇡

I

S
�(r0)

@GD(r, r0)

@n0 da0 (611)

• Note that

GD(r, r0)
���
S
= 0 ,

@GD(r, r0)

@n

����
S

⌘ n̂
0 ·r0GD(r, r0)

����
S

(612)

where n̂
0 is the normal to the boundary S pointing outward from the volume V .

• In general, both integrals are needed to determine �(r). However, if ⇢(r) = 0 inside V ,
then only the surface integral is needed (i.e., solution to Laplace’s equation). Also, if �(r)
vanishes on the boundary (i.e., if the boundary surfaces are grounded conductors), then
only the volume integral is needed.

• Example 1: Show that the following methods of solving Laplace’s equation in the interior
of a sphere of radius a with specified potential on the boundary (�(r = a) ⌘ f(✓,�)) are
equivalent: (Jackson, Prob 3.5)
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i) Dirichlet Green’s function method:

�(r) = � 1

4⇡

I

S
�(r0)

@GD(r, r0)

@n0 da0 (613)

where

GD(r, r0) = 4⇡
1X

l�0

lX

m=�l

1

2l + 1

✓
rl<
rl+1
>

� (rr0)l

a2l+1

◆
Y ⇤
lm(✓0,�0)Ylm(✓,�) (614)

ii) Separation of variables method:

�(r) =
1X

l=0

lX

m=�l

Almrl Ylm(✓,�) (615)

where

Alm =
1

al

Z

S2

d⌦ f(✓,�)Y ⇤
lm(✓,�) (616)

iii) Method of images:

�(r) =
1

4⇡

Z

S2

d⌦0 f(✓0,�0)
a(a2 � r2)

(r2 + a2 � 2ar cos �)3/2
(617)

• Notes:

For (i), you should find

@GD(r, r0)

@n0

����
S

=
@GD(r, r0)

@r0

����
r0=a

= �4⇡

a2

1X

l=0

lX

m=�l

Y ⇤
lm(✓0,�0)Ylm(✓,�)

⇣ r
a

⌘l
(618)

For (iii), note that

1

|r� a
r0 r

0| =
1p

r2 + a2 � 2ar cos �
=

1

a

1X

l=o

⇣ r
a

⌘l
Pl(cos �) (619)

Then take the derivative of both sides wrt r to pull down a factor of l.

• Example 2: Use Dirichlet Green’s function for the interior of a sphere to calculate the
potential inside a grounded conducting sphere of radius b due to a ring of charge (radius
a < b, total charge Q) in the xy-plane.

• Answer:

�(r) =
Q

4⇡✏0

1X

n=0

(�1)n(2n� 1)!!

2nn!
P2n(cos ✓)

✓
r2n<

r2n+1
>

� (ra)2n

b4n+1

◆
(620)

where r< (r>) is the smaller (larger) of r and a.

• Hints:

⇢(r0) =
Q�(r0 � a)�(cos ✓0)

2⇡a2
(621)

and

P2n+1(0) = 0 , P2n(0) =
(�1)n(2n� 1)!!

2nn!
(622)
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