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1 Fourier series and Fourier transforms

1.1 Fourier series

• The Fourier series representation of a function f(x) defined for x ∈ [−L,L] is:

f(x) =
a0

2
+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
(1.1)

where

a0 =
1

L

∫ L

−L
dx f(x) (1.2)

an =
1

L

∫ L

−L
dx f(x) cos

(nπx
L

)
where n = 1, 2, . . . (1.3)

bn =
1

L

∫ L

−L
dx f(x) sin

(nπx
L

)
where n = 1, 2, . . . (1.4)

• Exercise: Verify the above equations for the expansion coefficients by showing that

1

L

∫ L

−L
dx sin

(nπx
L

)
sin
(mπx

L

)
= δnm (1.5)

1

L

∫ L

−L
dx cos

(nπx
L

)
cos
(mπx

L

)
= δnm (1.6)

1

L

∫ L

−L
dx sin

(nπx
L

)
cos
(mπx

L

)
= 0 (1.7)

where n and m are positive integers 1, 2, · · · . Hint: Use the trigonometric identities

sinA sinB =
1

2
[cos(A−B)− cos(A+B)] (1.8)

cosA cosB =
1

2
[cos(A−B) + cos(A+B)] (1.9)

sinA cosB =
1

2
[sin(A−B) + sin(A+B)] (1.10)

• The RHS of the Fourier expansion (1.1) is defined for −∞ < x < ∞ and is periodic with period 2L.
Thus, Fourier series can also be defined for periodic functions defined for all x.

• f(x) is an even function iff f(−x) = f(x).

• f(x) is an odd function iff f(−x) = −f(x).

• An even function f(x) can be written as a sum containing only cosines—i.e., bn = 0.

• An odd function f(x) can be written as a sum containing only sines—i.e., an = 0.

• Exercise: Show that the Fourier expansion of the step function:

f(x) =

{
−1 −L ≤ x < 0
1 0 ≤ x ≤ L (1.11)

is given by

f(x) =
4

π

[
sin
(πx
L

)
+

1

3
sin

(
3πx

L

)
+

1

5
sin

(
5πx

L

)
+ · · ·

]
(1.12)
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• Exercise: Show that the Fourier expansion of the top-hat function:

f(x) =

{
1 −L/2 ≤ x ≤ L/2
0 otherwise

(1.13)

for x ∈ [−L,L] is given by

f(x) =
1

2
+

2

π

[
cos
(πx
L

)
− 1

3
cos

(
3πx

L

)
+

1

5
cos

(
5πx

L

)
− · · ·

]
(1.14)

• If one is given a function f(x) defined for x ∈ [0, L], one can sometimes extend it to x ∈ [−L,L] as
either an odd or even function. (The extension must be continuous at 0 and L for the Fourier series to
converge to the values of f(x) at these points.) If possible, this simplifies the subsequent calculation
of the expansion coefficients, eliminating either the an or bn coefficients, respectively.

• Exercise: Suppose that

f(x) =

{
x 0 ≤ x ≤ L/2

L− x L/2 ≤ x ≤ L (1.15)

This corresponds to a guitar string plucked in the middle. By extending f(x) to x ∈ [−L,L] as an odd
function, show that

f(x) =
4L

π2

[
sin
(πx
L

)
− 1

9
sin

(
3πx

L

)
+

1

25
sin

(
5πx

L

)
− · · ·

]
(1.16)

1.2 Fourier series in terms of complex exponentials

• The Fourier series expansion (1.1) can also be written as

f(x) =

∞∑
n=−∞

cn e
inπx/L (1.17)

where

cn =
1

2L

∫ L

−L
dx f(x) e−inπx/L (1.18)

• Exercise: Verify the above equations starting from the original Fourier expansion (1.1), substituting
for the sines and cosines using

cos θ =
1

2
(eiθ + e−iθ) (1.19)

sin θ =
1

2i
(eiθ − e−iθ) (1.20)

In the process show that

c0 =
a0

2
(1.21)

cn =
1

2
(an − ibn) for n = 1, 2, · · · (1.22)

cn =
1

2
(a−n + ib−n) for n = −1,−2, · · · (1.23)

Thus, the expansion coefficients cn are in general complex, with c−n = c∗n for a real function f(x).

• Exercise: Verify Eq. (1.18) directly by showing that

1

2L

∫ L

−L
dx einπx/Le−imπx/L = δnm (1.24)

where n and m are any integers 0,±1,±2, · · · .
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• It is usually easier to work with the Fourier expansion in terms of complex exponentials (1.17), since
exponential functions are typically easier to integrate.

• Parseval’s Theorem:
1

2L

∫ L

−L
dx |f(x)|2 =

∞∑
n=−∞

|cn|2 (1.25)

relates the the average value of the modulus-squared of f(x) to the sum of the modulus-squared of the
expansion coefficients cn.

• Exercise: Prove Parseval’s theorem.

1.3 Fourier series for different intervals

• Suppose the interval [−L,L] is changed to [−π, π] for example. Then one can show that

f(x) =
a0

2
+

∞∑
n=1

[an cos (nx) + bn sin (nx)] (1.26)

where

a0 =
1

π

∫ π

−π
dx f(x) (1.27)

an =
1

π

∫ π

−π
dx f(x) cos (nx) where n = 1, 2, . . . (1.28)

bn =
1

π

∫ π

−π
dx f(x) sin (nx) where n = 1, 2, . . . (1.29)

• In terms of complex exponentials

f(x) =

∞∑
n=−∞

cn e
inx (1.30)

where

cn =
1

2π

∫ π

−π
dx f(x) e−inx (1.31)

• Exercise: Prove the above by making a change of variables from x to y ≡ πx/L.

1.4 Fourier transforms

• For a non-periodic function f(x) defined for −∞ < x <∞, one can extend the Fourier series expansion
to the following Fourier transform pair:

f(x) =

∫ ∞
−∞

dk f̃(k)eikx (1.32)

where

F [f ] ≡ f̃(k) ≡ 1

2π

∫ ∞
−∞

dx f(x)e−ikx (1.33)

• Compared to

f(x) =

∞∑
n=−∞

cn e
inπx/L (1.34)

where

cn =
1

2L

∫ L

−L
dx f(x) e−inπx/L (1.35)
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we see that the discrete index n has been replaced by a continuous (real) variable k, the summation∑∞
n=−∞ has been replaced by an integral

∫∞
−∞ dk, and the discrete set of expansion coefficients cn have

been replaced by the function f̃(k).

• f̃(k) ≡ F [f ] is called the Fourier transform of f(x).

• f̃(k) is in general a complex function of k. If f(x) is real, f̃(−k) = f̃(k)∗.

• f(x) ≡ F−1[f̃ ] is called the inverse Fourier transform of f̃(k).

• In different contexts (e.g., signal processing, quantum mechanics, . . .) and in different textbooks, the
definition of the Fourier transform and its inverse may have different powers of 2π in front of the
integrals and different sign conventions and factors of 2π in the complex exponentials.

• One can give a heuristic “proof” of Eqs. (1.32) and (1.33) starting from Eqs. (1.34) and (1.35), and
taking the limit as L→∞:

(i) Substituting Eq. (1.35) for cn back into Eq. (1.34) and defining kn ≡ n∆k ≡ nπ/L, one obtains

f(x) =

∞∑
n=−∞

∆k g(kn, x) (1.36)

where

g(kn, x) ≡

(
1

2π

∫ L

−L
dy f(y)e−ikny

)
eiknx (1.37)

(ii) Taking the limit L→∞, we have

∆k → dk (1.38)
∞∑

n=−∞
∆k →

∫ ∞
−∞

dk (1.39)

g(kn, x) → g(k, x) (1.40)

where

g(k, x) =

(
1

2π

∫ ∞
−∞

dy f(y)e−iky
)
eikx ≡ f̃(k)eikx (1.41)

(iii) Thus,

f(x)→
∫ ∞
−∞

dk g(k, x) =

∫ ∞
−∞

dk f̃(k)eikx (1.42)

which is Eq. (1.32).

• Example: Let

f(x) =
1√

2πσx
exp

[
− x2

2σ2
x

]
(1.43)

be a (normalised) Gaussian with zero mean and variance σ2
x. Then its Fourier transform is also a

Gaussian:

f̃(k) =
1

2π
exp

[
− k2

2σ2
k

]
(1.44)

with σ2
k = 1/σ2

x.

• Exercise: Prove the above expression for f̃(k). Hint: Complete the square in the exponential

− 1

2σ2
x

(x2 + 2ikσ2
x x) = − 1

2σ2
x

(x+ ikσ2
x)2 − 1

2
k2σ2

x (1.45)
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and use the fact that ∫ ∞
−∞

dx
1√

2πσx
exp

[
− (x− µ)2

2σ2
x

]
= 1 (1.46)

for any µ (even complex).

• Note that the Gaussians f(x) and f̃(k) obey an uncertainty relation:

σxσk = 1 (1.47)

Thus, the more concentrated f(x) is (i.e., the smaller σx) the more dispersed f̃(k) is (i.e., the larger
σy).

• Example: Let

f(x) =

{
1 −L ≤ x ≤ L
0 otherwise

(1.48)

be a (non-periodic) top-hat function, which is non-zero between −L and L. Then its Fourier transform
is

f̃(k) =
L

π
sinc(kL) (1.49)

where sinc(x) ≡ sin(x)/x.

• Exercise: Prove the above expression for f̃(k).

• Note that as L → ∞ (i.e., as the top-hat function f(x) becomes wider), the width of the main peak

of f̃(k) goes to zero (2π/L → 0), while the height of the peak goes to infinity (L/π → ∞). This is

another illustration of the uncertainty principle obeyed by f(x) and f̃(k).

• Exercise: Prove the above statements.

1.5 Some properties of Fourier transform pairs

• Parseval’s theorem for Fourier transform pairs is:∫ ∞
−∞

dx |f(x)|2 = 2π

∫ ∞
−∞

dk |f̃(k)|2 (1.50)

Compare with Eq. (1.25) for Fourier series.

• Exercise: Prove Parseval’s theorem for Fourier transform pairs.

• The convolution theorem for Fourier transform pairs is:

F [f ∗ g] = 2πF [f ]F [g] (1.51)

where the convolution of two functions f(x) and g(x) is defined by

(f ∗ g)(x) ≡
∫ ∞
−∞

dy f(x− y)g(y) (1.52)

• Thus the operation of convolution in x-space is simply multiplication of Fourier transforms in k-space.

• Exercise: Prove that convolution is symmetric—i.e., that f ∗ g = g ∗ f .

• Convolutions play a key role in signal processing applications since a linear filter h(t) acting on an
input x(t) produces an output y(t) given by the convolution y = h ∗ x.

• Exercise: Prove the convolution theorem.
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1.6 Fourier transforms in different contexts

• For signal processing applications, one often works with function of time x(t) and their Fourier trans-
forms x̃(f) related by:

x(t) =

∫ ∞
−∞

df x̃(f)ei2πft (1.53)

where

x̃(f) =

∫ ∞
−∞

dxx(t)e−i2πft (1.54)

• x̃(f) is in general a complex function of frequency f . Its absolute square |x̃(f)|2 is a measure of the
energy content in the signal at frequency f .

• In quantum mechanics, one often works with wave functions, ψ(x) or ψ̃(p), defined in either position
or momentum space. The wave functions are related by:

ψ(x) =
1√
2π~

∫ ∞
−∞

dp ψ̃(p)eipx/~ (1.55)

where

ψ̃(p) =
1√
2π~

∫ ∞
−∞

dxψ(x)e−ipx/~ (1.56)

• The momentum p is related to the wavenumber k = 2π/λ via p = ~k, where ~ is Planck’s constant h
divided by 2π.
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2 Ordinary differential equations

2.1 General remarks

• Theorem: Any linear ordinary differential equation of order n has a solution containing n independent
arbitrary constants, from which all solutions can be obtained. This solution is called the general
solution of the linear differential equation.

• A particular solution satisfies the differential equation plus some other requirements–e.g., initial con-
ditions or boundary conditions.

• NOTE: The above theorem is not true, in general, for non-linear equations. There may exist singular
solutions, which are not obtainable from the general solution for any choice of integration constant.

• Example:

y′ =
√
y (2.1)

• Solution:

y =
1

4
(x+ C)2 , y = 0 (2.2)

• Example:

y′ =
√

1− y2 (2.3)

• Solution:

y = sin(x+ C) , y = ±1 (2.4)

• Some useful integrals: ∫
dx√
a2 − x2

= sin−1(x/a) + C (2.5)

∫
dx

x2 + a2
=

1

a
tan−1 x+ C (2.6)

∫
dx√
x2 − a2

= cosh−1(x/a) + C = ln(x+
√
x2 − a2) + C (2.7)

∫
dx√
x2 + a2

= sinh−1(x/a) + C = ln(x+
√
x2 + a2) + C (2.8)

2.2 First-order ordinary differential equations

• The most general first-order ODE for y = y(x) can be written as

y′ ≡ dy

dx
= F (x, y) or A(x, y)dx+B(x, y)dy = 0 (2.9)

• When the function F (x, y), or A(x, y) and B(x, y), satisfy certain properties, the differential equation
simplifies and we can use one of the following methods to solve it.
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2.2.1 Separable

• ODE:

y′ = F (x, y) = f(x)g(y) (2.10)

• Method: Rewrite the equation so that the LHS is a function of y and the RHS is a function of x, and
then integrate both sides: ∫

dy

g(y)
=

∫
f(x)dx+ C (2.11)

• Example:

y′ = x+ xy (2.12)

• Solution:

ln(1 + y) =
1

2
x2 + C (2.13)

2.2.2 Exact

• ODE:

A(x, y)dx+B(x, y)dy = 0 , with
∂A

∂y
=
∂B

∂x
(2.14)

• Method: There exists a function U(x, y) such that

dU = A(x, y)dx+B(x, y)dy = 0 , with A =
∂U

∂x
, B =

∂U

∂y
(2.15)

The solution is U(x, y) = C. One method of finding U(x, y) is to first integrate in the x-direction

U(x, y) =

∫
A(x, y)dx+ g(y) (2.16)

and then use ∂U/∂y = B to determine the function g(y).

• Example:

(3x+ y) dx+ x dy = 0 (2.17)

• Solution:

U(x, y) =
3

2
x2 + yx = C (2.18)

2.2.3 Inexact

• If the differential Adx+Bdy is not exact to begin with, it is always possible to find a function µ(x, y),
called an intergrating factor, for which

µ(x, y) [A(x, y)dx+B(x, y)dy] is exact (2.19)

Unfortunately, for general A and B, there is no general method for finding µ(x, y).

• We will give an explicit construction of µ for the case of linear first-order ODEs below.

12



2.2.4 Linear

• ODE:
y′ + P (x) y = Q(x) (2.20)

• Method: Multiply by the integrating factor

µ(x) = eI(x) , I(x) =

∫ x

P (x′)dx′ (2.21)

obtaining the solution

eI(x)y(x) =

∫ x

eI(x
′)Q(x′)dx′ + C (2.22)

The first term on the RHS corresponds to a particular solution of the equation, and the second term to
the complementary function, which is the general solution of the differential equation with Q(x) = 0.

• Example:

(1 + x2)y′ + 6xy = 2x (2.23)

• Solution:

y =
C

(1 + x2)3
+

1

3
(2.24)

2.2.5 Bernoulli equation

• ODE:
y′ + P (x) y = Q(x) yn (2.25)

• Method: Divide the whole equation by yn and make a change of variables v = y1−n, which yields

v′ + (1− n)P (x) v = (1− n)Q(x) (2.26)

The ODE for v(x) is linear, which can be solved using the previous method.

• Example:

y′ + y = xy2/3 (2.27)

• Solution:
y1/3 = x− 3 + Ce−x/3 (2.28)

2.2.6 Homogeneous

• ODE:
y′ = F (x, y) = F (y/x) (2.29)

• Method: Make a change of variables v = y/x, which yields

v′ x+ v = F (v) (2.30)

The ODE for v(x) is separable and has solution∫
dv

F (v)− v
=

∫
dx

x
+ C (2.31)

• Example:

y′ =
y

x
+ tan

(y
x

)
(2.32)

• Solution:
y = x sin−1(Cx) (2.33)
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2.3 Second-order ordinary differential equations

2.3.1 Constant coefficients, zero RHS

• ODE:
ay′′ + by′ + cy = 0 (2.34)

where a, b, c are constants.

• Method: Solve the auxiliary equation

aD2 + bD + c = 0 (2.35)

for the differential operator D ≡ d
dx . The solution is

(D − λ1)(D − λ2) = 0 , λ1,2 =
−b±

√
b2 − 4ac

2a
(2.36)

If λ1 6= λ2, then the solution to the differential equation is

y = C1e
λ1x + C2e

λ2x (2.37)

where C1 and C2 are constants.

If λ1 = λ2 ≡ λ, then the solution is
y = C1e

λx + C2xe
λx (2.38)

• Example:
y′′ − 6y′ + 9y = 0 (2.39)

• Solution:
y = C1e

3x + C2xe
3x (2.40)

2.3.2 Constant coefficients, non-zero RHS

• ODE:
ay′′ + by′ + cy = F (x) (2.41)

where a, b, c are constants. F (x) is called the source term or forcing function.

• Method: The general solution to the above differential equation is

y = yp + yc (2.42)

where yp is a particular solution of the differential equation and yc (the complementary function) is
the general solution of the differential equation with the RHS set equal to zero.

Since yc can be found using the previous method, we concentrate here only on methods for finding yp.

• Exponential RHS:
F (x) = keαx (2.43)

• Solution:

yp(x) =

{
Ceαx α 6= λ1 and α 6= λ2

Cxeαx α = λ1 or λ2 and λ1 6= λ2

Cx2eαx α = λ1 = λ2

(2.44)

where the constant C is determined by substituting yp into the differential equation.

• Sine or cosine RHS:
F (x) = k sin(αx) or k cos(αx) (2.45)
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• Solution: First solve the differential equation for the complex exponential F (x) = keiαx, and then take
the imaginary (for sine) or real part (for cosine) of the solution.

• Method of undetermined coefficients:
F (x) = eαxPn(x) (2.46)

where Pn(x) is a polynomial of degree n.

• Solution:

yp(x) =

{
eαxQn(x) α 6= λ1 and α 6= λ2

xeαxQn(x) α = λ1 or λ2 and λ1 6= λ2

x2eαxQn(x) α = λ1 = λ2

(2.47)

where Qn(x) is a polynomial of the same degree as Pn(x), whose coefficients are determined by sub-
stituting yp into the differential equation.

• Several terms on the RHS:
F (x) = ex + 4 sin(2x) + (x2 − x) (2.48)

• Solution: Solve for yp for each source term separately, then add the solutions together. This works
because the differential equation is linear.

NOTE: For an arbitrary periodic forcing function of period 2L, we can expand

F (x) =

∞∑
n=−∞

cne
inπx/L (2.49)

and then solve for yp for each complex exponential term in the expansion.

• When we don’t know what to guess:

• Solution: First solve the auxiliary equation for D so that the differential equation becomes

(D − λ1)(D − λ2)y = F (x) (2.50)

Then define
u = (D − λ2)y (2.51)

and solve the resulting first-order equation

(D − λ1)u = F (x) (2.52)

for u(x). Finally, knowing u(x), solve Eq. (2.51) for y(x).

NOTE: We are basically solving the second-order ODE as two first-order ODEs.

• Example: Forced vibrations and resonance:

ÿ + 2bẏ + ω2y = F sin(ω′t) (2.53)

where F is a constant.

• Solution: Use the method of complex exponentials to find the particular solution yp(t) = Im(Ceiω
′t),

where

C =
F√

(ω2 − ω′2)2 + 4b2ω′2
eiφ , tanφ = − 2bω′

ω2 − ω′2
(2.54)

• NOTE: There are two definitions of resonance, depending on which frequency is held fixed and which
is varied.

(i) For fixed forcing frequency ω′, the amplitude is maximum when the natural frequency ω equals ω′.

(ii) For fixed natural frequency ω, the amplitude is maximum when the forcing frequency ω′ is given
by ω′ =

√
ω2 − 2b2 (assuming small damping, b� ω).
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2.3.3 Dependent variable y is absent

• Method: Make the substitutions

y′ = p , y′′ = p′ (2.55)

obtaining a first-order equation for p(x) which might be solvable. Then integrate y′ = p(x) to find
y(x).

• Example:

y′′ + 2y′ = 4x (2.56)

• Solution:

y = x2 − x− 1

2
C1e

−2x + C2 (2.57)

2.3.4 Independent variable x is absent

• Method: Make the substitutions

y′ = p , y′′ = p′ =
dp

dy

dy

dx
= p

dp

dy
(2.58)

obtaining a first-order equation for p(y) which might be solvable. Then integrate y′ = p(y) to find
y(x).

• Example:

1 + y
d2y

dx2
+

(
dy

dx

)2

= 0 (2.59)

• Solution:

(x− C2)2 + y2 = C2
1 (2.60)

2.3.5 First derivative y′ and independent variable x are absent

• ODE:

y′′ + f(y) = 0 (2.61)

• Method: Solve as for the previous case, obtaining a separable equation for p(y) which can be integrated:

1

2
p2 +

∫
f(y) dy = C1 (2.62)

Then rewrite in terms of dy/dx = p(y), obtaining a separable equation for y(x) which can be integrated:∫
dy√

2
(
C1 −

∫
f(y) dy

) = x+ C2 (2.63)

• Example:

mẍ = −kx (2.64)

• Solution:

x =

√
2E

k
sin(ωt+ φ0) , ω ≡

√
k

m
(2.65)
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2.3.6 Euler (or Cauchy) equation

• ODE:

ax2 d
2y

dx2
+ bx

dy

dx
+ cy = f(x) (2.66)

• Method: Make the change of variables

x = et ⇒ x
dy

dx
=
dy

dt
, x2 d

2y

dx2
=
d2y

dt2
− dy

dt
(2.67)

obtaining a second-order linear equation with constant coefficients, which can be solved using previous
methods.

• Example:

x2 d
2y

dx2
+ x

dy

dx
− 4y = 0 (2.68)

• Solution:

y = C1x
2 + C2

1

x2
(2.69)

2.3.7 Reduction of order

• ODE:

y′′ + f(x)y′ + g(x)y = 0 , where u(x) is a solution (2.70)

• Method: Make the substitution

y(x) = u(x)v(x) (2.71)

obtaining the differential equation

v′′ +

(
2
u′

u
+ f(x)

)
v′ = 0 (2.72)

which is a second-order ODE for v(x) that has v absent. Make another substitution p = v′, p′ = v′′,
obtaining a first-order, separable ODE for p(x). Finally, integrate p = v′ to find v(x), and then multiply
by u(x) to find y(x) = u(x)v(x).

NOTE: If one sets the integration constants to zero, one obtains the second independent solution.
Keeping the integration constants gives the general solution.

• Example:

x2(2− x)y′′ + 2xy′ − 2y = 0 , u = x is a solution (2.73)

• Solution:

y = 1− 1

x
(2.74)

2.4 Laplace transforms

• The Laplace transform of a function f(t) is defined by

L[f ] ≡ F (p) ≡
∫ ∞

0

dt f(t)e−pt (2.75)

(Note the limits on the integral. This implies that F (p) does not depend on the values of f(t) for
t < 0.)
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• The Laplace transform is a linear transform, since it satisfies

L[af ] = aL[f ] , L[f1 + f2] = L[f1] + L[f2] (2.76)

where a is a constant.

• Examples of Laplace transform pairs:

f(t) = 1 , F (p) =
1

p
, with Re(p) > 0 (2.77)

f(t) = e−at , F (p) =
1

a+ p
, with Re(a+ p) > 0 (2.78)

f(t) = eiat , F (p) =
p+ ia

p2 + a2
, with Re(p− ia) > 0 (2.79)

f(t) = e−iat , F (p) =
p− ia
p2 + a2

, with Re(p+ ia) > 0 (2.80)

f(t) = cos at , F (p) =
p

p2 + a2
, with Re(p± ia) > 0 (2.81)

f(t) = sin at , F (p) =
a

p2 + a2
, with Re(p± ia) > 0 (2.82)

f(t) =
e−at − e−bt

b− a
, F (p) =

1

(p+ a)(p+ b)
, with Re(p+ a), Re(p+ b) > 0 (2.83)

• The Laplace transform is another method for solving second-order linear ODEs with constant coeffi-
cients and specified boundary (or initial) conditions y0, y′0. The Laplace transform converts such an
ODE into an algebraic equation that can be solved for Y (p). The solution y(t) is obtained by finding
the inverse Laplace transform of Y (p), using (for now) a table of Laplace transform pairs.

• Note that

L[y′] = pY (p)− y0 (2.84)

L[y′′] = p2Y (p)− py0 − y′0 (2.85)

• Example:
y′′ + y = sin t , y0 = 1 , y′0 = 0 (2.86)

• Solution:

y(t) = cos t+
1

2
(sin t− t cos t) (2.87)

2.4.1 Convolution

• The Laplace transform of the differential equation

Ay′′ +By′ + Cy = f(t) , y0 = 0 , y′0 = 0 (2.88)

has solution

Y (p) = H(p)F (p) , H(p) =
1

Ap2 +Bp+ C
=

1

A(p+ a)(p+ b)
(2.89)

• H(p) is called the transfer function; it relates the ‘output’ Y (p) to the ‘input’ F (p), which is the Laplace
transform of the forcing function.

• Thus, to find y(t), one needs to take the inverse Laplace transform of the product, H(p)F (p), of two
Laplace transforms. This turns out to equal the convolution of the functions h(t) and f(t) defined by

(h ∗ f)(t) ≡
∫ t

0

dτ h(t− τ)f(τ) (2.90)

NOTE: If h(t) = 0 and f(t) = 0 for t < 0, then the limits on the convolution integral can be replaced
by −∞ and ∞.
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• The convolution theorem is:
L[h ∗ f ] = H(p)F (p) = L[h]L[f ] (2.91)

• Exercise: Prove this. (Hint: You will need to change the order of integration when taking the Laplace
transform of h ∗ f .)

• Convolution is commutative: (h ∗ f)(t) = (f ∗ h)(t).

• It is sometimes simpler to use convolution to solve an ODE.

• Example:

y′′ + 5y′ + 6y = e−2t , y0 = 0 , y′0 = 0 (2.92)

• Solution:
y(t) = (t− 1)e−2t + e−3t (2.93)

2.5 Dirac delta function

• The Dirac delta function is a mathematical quantity that can be used to represent the charge density
ρ(r) of a point charge q located at r0:

ρ(r) = q δ(r− r0) (2.94)

• The charge density is zero at all points away from the charge, and is infinite at the location of the
charge in such a way that its integral over any volume V containing the charge is q:∫

V

dV ρ(r) = q (2.95)

• NOTE: Similar statements can be made for the mass density µ(r) of a point charge m.

• The Dirac delta function is not an ordinary mathematical function. Mathematicians call a Dirac delta
function a generalized function or a distribution.

• In 1-dimension, the Dirac delta function δ(x − x0) can be thought of as the limit of a sequence of
functions fn(x) all of which have unit area, but which get narrower and higher as n → ∞. Some
examples:

i) A sequence of top-hat functions centered at x0 with width 2/n:

fn(x) =

{
n/2 , x0 − 1/n < x < x0 + 1/n

0 otherwise
(2.96)

ii) A set of Gaussian probability distributions with mean µ = x0 and width σ = 1/n:

fn(x) =
n√
2π
e−n

2(x−x0)2/2 (2.97)

iii) A set of sinc functions centered at x0 of the form:

fn(x) =
n

π
sinc (n(x− x0)) (2.98)

• Alternatively, a Dirac delta function can be defined in terms of its action on a set of test functions
f(x), which are infinitely differentiable and which vanish as x→ ±∞.

• The defining property of a 1-dimensional Dirac delta function is then∫ b

a

dx f(x)δ(x− x′) =

{
f(x′) a < x′ < b

0 otherwise
(2.99)

for any test function f(x).
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• Properties (which follow from the above definition):

(a) δ(x− a) =
d

dx
(u(x− a)) (2.100)

(b) δ′(−x) = −δ′(x) (2.101)

(c) δ(−x) = δ(x) (2.102)

(d) δ(ax) =
1

|a|
δ(x) (2.103)

(e) δ [f(x)] =
∑
i

δ(x− xi)
|f ′(xi)|

(2.104)

where u(x) is the unit step function and f(x) is such that f(xi) = 0 and f ′(xi) 6= 0.

• In 3-dimensions, the defining property of the Dirac delta function is∫
V

dV f(r)δ(r− r0) =

{
f(r0) if r0 ∈ V

0 otherwise
(2.105)

for any test function f(r).

• This implies

δ(r− r0) =

{
δ(x− x0)δ(y − y0)δ(z − z0) in Cartesian coordinates
1

r2 sin θ δ(r − r0)δ(θ − θ0)δ(φ− φ0) in spherical polar coordinates
(2.106)

Note that we need to include the factor of 1/r2 sin θ for spherical polar coordinates since dV =
r2 sin θ dr dθ dφ.

• One can show that

∇ ·
(

r̂

r2

)
= 4πδ(r) , ∇2

(
1

r

)
= −4πδ(r) (2.107)

which is familiar from electrostatics for the electric field and electric potential for a point charge.

• Fourier transform:

F [δ(x− a)] =
1

2π
e−ika , δ(x− a) =

1

2π

∫ ∞
−∞

dk eik(x−a) (2.108)

NOTE: The last expression is only a formal expression for the Dirac delta function, since eik(x−a) is
not square integrable and hence does not have a Fourier transform.

• More rigorously

δ(x) =
1

2π

∫ ∞
−∞

dk eikx ≡ lim
L→∞

1

2π

∫ L

−L
dk eikx = lim

L→∞

L

π
sinc(Lx) (2.109)

• Laplace transform:

L[δ(t− a)] =

{
e−at a > 0

0 a < 0
(2.110)

• One can use the method of Laplace transforms to solve second-order ODEs with constant coefficients
and RHS equal to a Dirac delta function.

• Example:

y′′ + ω2y = δ(t− t0) , y0 = 0 , y′0 = 0 (2.111)

• Solution:

y(t) =

{
1
ω sin(ω(t− t0)) 0 < t0 < t

0 0 < t < t0
(2.112)
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2.6 Green’s functions

• Suppose one wants to solve a linear ODE for y(t) with RHS equal to f(t) and specified boundary
conditions.

• Then since

f(t) =

∫ ∞
−∞

dt′ δ(t− t′)f(t′) (2.113)

it follows by linearity that

y(t) =

∫ ∞
−∞

dt′ G(t, t′)f(t′) (2.114)

where G(t, t′) is the solution of the ODE with RHS equal to δ(t−t′) and the same boundary conditions.

• Exercise: Prove this last statement.

• The solution G(t, t′) of the ODE with RHS equal to δ(t−t′) and specified boundary conditions is called
the Green’s function for the differential equation.

• Example: Find the Green’s function for

y′′ + ω2y = f(t) , y0 = 0 , y′0 = 0 (2.115)

• Solution: This was done in the preceding section using the method of Laplace transforms:

G(t, t′) =

{
1
ω sin(ω(t− t′)) 0 < t′ < t

0 0 < t < t′
(2.116)

• Alternatively, one can solve for the Green’s function by solving the differential equation directly. The
method is as follows:

(i) Solve the equation in the regions 0 < t < t′ and 0 < t′ < t, where the RHS is zero:

G(t, t′) =

{
A(t′) sinωt+B(t′) cosωt 0 < t < t′

C(t′) sinωt+D(t′) cosωt 0 < t′ < t
(2.117)

(ii) Apply the two boundary conditions:

G(t, t′) =

{
0 0 < t < t′

C(t′) sinωt+D(t′) cosωt 0 < t′ < t
(2.118)

(iii) Apply the condition that the function is continuous at t = t′:

0 = C(t′) sinωt′ +D(t′) cosωt′ (2.119)

(iv) Apply the condition that the function has a discontinuous first derivative at t = t′:

1 = lim
ε→0

[
d

dt
G(t′ + ε, t′)− d

dt
G(t′ − ε, t′)

]
(2.120)

= ωC(t′) cosωt′ − ωD(t′) sinωt′ (2.121)

(iv) Solve (iii) and (iv) for the remaining coefficients:

C(t′) =
1

ω
cosωt′ , D(t′) = − 1

ω
sinωt′ (2.122)

(v) Substitute back into the expression for G(t, t′):

G(t, t′) =

{
0 0 < t < t′

1
ω sin(ω(t− t′)) 0 < t′ < t

(2.123)

This agrees (as it should) with what we found before.
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• Example: Find the Green’s function for

y′′ + y = f(x) , y(0) = 0 , y(π/2) = 0 (2.124)

where x ∈ [0, π/2].

• Solution:

G(x, x′) =

{
− cosx′ sinx 0 < x < x′ < π/2
− sinx′ cosx 0 < x′ < x < π/2

(2.125)

NOTE: The Laplace transform method is not valid here since the boundary conditions are not of the
form where y(0) and y′(0) are specified.

• Example: Solve

y′′ + 3y′ − 4y = e−5t , y0 = 0 , y′0 = 0 (2.126)

using four different methods:

(i) the straight-forward method for linear second-order ODEs with constant coefficients and non-zero
RHS;

(ii) the method of Laplace transforms;

(iii) the method of Green’s functions, but using Laplace transforms to find G(t, t′);

(iv) the method of Green’s functions using direct integration to find G(t, t′).

• Solution:

y(t) = −1

5
e−4t +

1

30
et +

1

6
e−5t (2.127)

2.7 Useful Kronecker delta and Dirac delta formulae

• The Dirac delta function δ(x − y) is a generalization of the Kronecker delta δij (defined for discrete
indices i and j) to continuous variables x and y.

• Fourier representation of Dirac delta function:

1

2π

∫ ∞
−∞

dk e±ik(x−x′) = δ(x− x′) (2.128)

1

2π

∫ ∞
−∞

dx e±i(k−k
′)x = δ(k − k′) (2.129)

• Orthogonality:
1

2L

∫ L

−L
dx ei(n−m)πx/L = δnm (2.130)

1

N

N−1∑
l=0

e−i2π(j−k)l/N = δjk (2.131)

• Dirac comb:
1

T

∞∑
n=−∞

ei2πnt/T =

∞∑
n=−∞

δ(t− nT ) (2.132)

• Completeness (for φ, φ′ ∈ [0, 2π]):

1

2π

∞∑
m=−∞

eim(φ−φ′) = δ(φ− φ′) (2.133)

22



3 Calculus of variations

• The calculus of variations is an extension of the standard procedure for finding the maximum or
minimum of a function f(x)—i.e., that value of x for which f ′(x) = 0.

• Instead of f(x), which is a function of a single real variable x, we consider a functional I[y], which is
a function of a function y(x). The goal is to find that function y(x) for which δI[y] = 0.

• δI[y] denotes the variation of the functional I[y] with respect to y(x). It is a generalization of the total
differential df of an ordinary function f(x) with respect to x.

3.1 Euler-Lagrange equations

• Given the functional

I[y] =

∫ x2

x1

F (x, y, y′) dx (3.1)

we want to find that function y(x) for which δI[y] = 0.

• The variation of I[y] with respect to y is

δI[y] =

∫ x2

x1

δF (x, y, y′) dx =

∫ x2

x1

{(
∂F

∂y

)
δy +

(
∂F

∂y′

)
δy′
}
dx (3.2)

where

δy′ = δ

(
dy

dx

)
=

d

dx
δy (3.3)

• Integrating the second term by parts yields

δI[y] =

(
∂F

∂y′

)
δy

∣∣∣∣x2

x1

+

∫ x2

x1

{(
∂F

∂y

)
− d

dx

(
∂F

∂y′

)}
δy dx (3.4)

• Thus, for arbitrary variations with fixed endpoints,

δI[y] = 0 ⇔ d

dx

(
∂F

∂y′

)
− ∂F

∂y
= 0 (3.5)

These are the Euler-Lagrange equations.

3.2 Some simplifications

• If F (x, y, y′) is independent of y, then ∂F/∂y = 0 and the Euler-Lagrange equation can be integrated
to yield

∂F

∂y′
= const (3.6)

• If F (x, y, y′) is independent of x, then one can make a change of independent variables from x to y
such that x = x(y), with

y′ = 1/x′ , dx = x′ dy (3.7)

for which

I[y] =

∫ x2

x1

F (x, y, y′) dx =

∫ y2

y1

F (y, 1/x′)x′ dy ≡
∫ y2

y1

G(y, x′) dy ≡ Ī[x] (3.8)

The Euler-Lagrange equation for Ī[x] is then

∂G

∂x′
= const (3.9)
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• In addition, if F (x, y, y′) is independent of x, then one can show that

h ≡ y′ ∂F
∂y′
− F (3.10)

satisfies dh/dx = 0 (i.e., h is constant), as a consequence of the Euler-Lagrange equations.

Exercise: Prove this.

Example: The Lagrangian

L ≡ T − V =
1

2
mẋ2 − V (x) (3.11)

is independent of t. It follows that

h ≡ ẋ∂L
∂ẋ
− L = ẋmẋ−

(
1

2
mẋ2 − V (x)

)
=

1

2
mẋ2 + V (x) (3.12)

is the total mechanical energy of the system, E = T + V .

3.3 Extremization problems subject to constraints

• Suppose we want to extremize some functional

I[y] =

∫ x2

x1

F (x, y, y′) dx (3.13)

subject to a constraint

J [y] =

∫ x2

x1

G(x, y, y′) dx = const (3.14)

• Then one should extremize the functional

Ī[y, λ] ≡ I[y] + λJ [y] =

∫ x2

x1

(F (x, y, y′) + λG(x, y, y′)) dx (3.15)

with respect to variations in both y and λ, the Lagrange multiplier.

• This follows from the Lagrange multiplier method, which is a way of allowing unconstrained variations
of y(x).

3.4 Examples

• Geodesics: Given two fixed points, find the path that minimizes the distance between them. Examples
of geodesics are straight lines for flat space, great circles for the surface of a sphere, etc.

For a flat plane

I[y] =

∫ B

A

ds =

∫ B

A

√
dx2 + dy2 =

∫ x2

x1

dx
√

1 + y′2 (3.16)

which leads to y′ = const, which is a straight line.

• Fermat’s principle of least time: In geometrical optics, light travels between two points in such a way
as to minimize the travel time between the two points. From Fermat’s principle, one can derive, e.g.,
Snell’s law of refraction

sin θ1

v1
=

sin θ2

v2
(3.17)

where v1, v2 are the speeds of light in the two different materials and θ1, θ2 are the angles that the
light rays make wrt the normal to the interface between the two materials.

NOTE: Ordinary calculus will work for this case. One extremizes

T (x) =

√
(x− x1)2 + y2

1

v1
+

√
(x2 − x)2 + y2

2

v2
(3.18)

which is time for light to travel between the two points in materials 1 and 2, respectively.
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• Hamilton’s principle: Of all possible paths which a system may follow in going from one configuration
at time t1 to another configuration at time t2, the path followed is the one that extremizes the action.
The action is the integral of the Lagrangian,

L(t, x, ẋ) = T − V =
1

2
mẋ2 − V (x) , (3.19)

which is the difference between the kinetic energy and potential energy of the system. The resulting
equations of motion are equivalent to Newton’s laws for a conservative force:

mẍ = −∂V
∂x

(3.20)

• Soap film: Find the shape of a soap film suspended between two circular loops of wire, ignoring the
effects of gravity. The shape minimizes the surface area of revolution

I[y] =

∫ B

A

2πy ds = 2π

∫ y2

y1

dy y
√

1 + x′2 (3.21)

It has the mathematical form of a catenary, y ∼ coshx.

• Brachistochrone: Find the shape of a wire joining two points such that a bead will slide along the wire
under the influence of gravity (without friction) in the shortest amount of time. One extremizes

I[y] =

∫ B

A

ds

v
=

∫ y2

y1

dy

√
1 + x′2√

2gy
(3.22)

where we used conservation of energy

1

2
mv2 −mgy = 0 ⇒ v =

√
2gy (3.23)

for the bead released from rest at A (assuming y = 0, increasing downward).

The resulting shape is a cycloid:

x =
1

C
(θ − sin θ) , y =

1

C
(1− cos θ) (3.24)

• Hanging cable: Find the shape of a hanging cable. This shape minimizes the gravitational potential
energy of the cable

I[y] =

∫ B

A

dmgy =

∫ B

A

µds gy = µg

∫ y2

y1

dy y
√

1 + x′2 (3.25)

where µ is the mass per unit length of the cable (assumed constant), subject to the constraint that the
cable has a fixed length `:

J [y] =

∫ B

A

ds =

∫ y2

y1

dy
√

1 + x′2 = ` (3.26)

The solution has the mathematical form of a catenary, y ∼ coshx.
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4 Series solutions of differential equations

• The general form of a homogeneous, linear, second-order ordinary differential equation is

y′′(x) + p(x) y′(x) + q(x) y(x) = 0 (4.1)

where p(x) and q(x) are arbitrary functions of x.

• We are interested in power series solutions of the form

y(x) =

∞∑
n=0

anx
n or y(x) = xσ

∞∑
n=0

anx
n (4.2)

for some value of σ.

• We need to consider the more general power series expansion, called the method of Frobenius, if x = 0
is a regular singular point of the differential equation—i.e., if p(x) or q(x) is singular (i.e., infinite) at
x = 0, but xp(x) and x2q(x) are finite at x = 0. If x = 0 is a regular point of the differential equation,
then one can simply set σ = 0.

• The basic procedure is to differentiate the power series expansion for y(x) term by term, and then
substitutes the expansions into the differential equation for y(x). Since the resulting sum must vanish
for all values of x, the coefficients of xn must all equal zero, leading to a recurrence relation relating
an to any of the previous ar (r < n) and a quadratic equation for σ, called the indicial equation.

• Fuch’s theorem: The general solution of a differential equation with a regular singular point at x = 0
consists of of either: (i) a sum of two Frobenious series S1(x) and S2(x), or (ii) the sum of one
Frobenious series S1(x), and a second solution of the form S1(x) lnx+ S2(x), where S2(x) is another
Frobenius series. Case (ii) occurs only when the roots of the indicial equation for σ are equal or differ
by an integer.

4.1 Trigonometric functions

• The differential equation

y′′ + k2y = 0 (4.3)

admits a power series solution with

an+2 =
−k2

(n+ 1)(n+ 2)
an (4.4)

• Thus,

y(x) = a0

(
1− (kx)2

2!
+

(kx)4

4!
− · · ·

)
+
a1

k

(
kx− (kx)3

3!
+

(kx)5

5!
− · · ·

)
(4.5)

or, equivalently,

y(x) = a0 cos(kx) +
a1

k
sin(kx) (4.6)

• This solution can also be written as

y(x) = Aeikx +B e−ikx (4.7)

where

A =
1

2

(
a0 +

a1

ik

)
and B =

1

2

(
a0 −

a1

ik

)
(4.8)
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4.2 Hyperbolic functions

• The differential equation
y′′ − k2y = 0 (4.9)

admits a power series solution with

an+2 =
k2

(n+ 1)(n+ 2)
an (4.10)

• Thus,

y(x) = a0

(
1 +

(kx)2

2!
+

(kx)4

4!
+ · · ·

)
+
a1

k

(
kx+

(kx)3

3!
+

(kx)5

5!
+ · · ·

)
(4.11)

or, equivalently,

y(x) = a0 cosh(kx) +
a1

k
sinh(kx) (4.12)

• This solution can also be written as

y(x) = Aekx +B e−kx (4.13)

where

A =
1

2

(
a0 +

a1

k

)
and B =

1

2

(
a0 −

a1

k

)
(4.14)

4.3 Legendre polynomials

• Legendre’s equation for y(x) is

(1− x2) y′′ − 2x y′ + l(l + 1) y = 0 (4.15)

where l is a constant.

• Note that

p(x) = − 2x

1− x2
, q(x) =

l(l + 1)

1− x2
(4.16)

are finite at x = 0, so x = 0 is a regular point of the differential equation.

• This differential equation arises when one does separation of variables for Laplace’s equation in spherical
polar coordinates (here x = cos θ).

• One can show that y(x) admits a regular power series solution with recurrence relation

an+2 =
n(n+ 1)− l(l + 1)

(n+ 1)(n+ 2)
an (4.17)

• Since the recurrence relation relates an+2 to an, the two independent solutions to Legendre’s equation
are given by setting a0 = 1, a1 = 0 and a1 = 1, a0 = 0. These solutions will be even and odd functions
of x, respectively.

• By the ratio test, one can show that the power series solutions converge for |x| < 1.

• One can also show that the power series solutions diverge at x = ±1 (corresponding to the North and
South poles of the sphere) unless the series terminates after some finite value of n.

• Example: For l = 0, the power series solution proportional to a1 is

y(x) = a1

[
x+

1

3
x3 +

1

5
x5 + · · ·

]
(4.18)

which diverges at x = 1 as can be shown by the integral test.
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Figure 1: First few Legendre polynomials Pl(x) plotted as functions of x ∈ [−1, 1].

• From the recurrence relation, we see that if l is a non-negative integer, l = 0, 1, · · · , one of the power
series solutions terminates (the even solution if l is even, and the odd solution if l is odd). The other
solution can be set to zero (by hand) by setting a1 = 0 or a0 = 0.

• The finite solutions are polynomials of order l. When appropriately normalised, they are called Legendre
polynomials, denoted Pl(x).

• NOTE: If l is a negative integer, l = −1,−2, · · · , one also obtains a polynomial solution. But these
solutions are the same as those for l non-negative (e.g., l = −1 yields the same solution as l = 0, and
l = −2 yields the same solution as l = 1, etc.) so there is no loss of generality in restricting attention
to l = 0, 1, · · · .

• Legendre polynomials are normalized by the condition that Pl(1) = 1.

• Exercise: Show that the first four Legendre polynomials are given by

P0(x) = 1 (4.19)

P1(x) = x (4.20)

P2(x) =
1

2
(3x2 − 1) (4.21)

P3(x) =
1

2
(5x3 − 3x) (4.22)

See Figure 1 for a graph of these functions.

• Rodrigues’ formula:

Pl(x) =
1

2ll!

(
d

dx

)l
(x2 − 1)l (4.23)
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• Note that

Pl(−x) = (−1)lPl(x) (4.24)

• Orthonormality: ∫ 1

−1

dxPl(x)Pl′(x) =
2

2l + 1
δll′ (4.25)

Thus, Legendre polynomials form a set of orthogonal polynomials.

• Exercise: Prove the above. (Hint: The proof of orthogonality is simple if you integrate Legendre’s
equation times Pl′(x). The derivation of the normalization constant is harder, but can proved using
mathematical induction and Rodrigues’s formula for Pl(x).)

• Completeness: Any square-integrable function f(x) defined on the interval x ∈ [−1, 1] can be expanded
in terms of Legendre polynomials:

f(x) =

∞∑
l=0

Al Pl(x) (4.26)

where

Al =
2l + 1

2

∫ 1

−1

dx f(x)Pl(x) (4.27)

• Exercise: Show that the function

f(x) =

{
+1 for x > 0
−1 for x < 0

(4.28)

can be expanded as

f(x) =
3

2
P1(x)− 7

8
P3(x) +

11

16
P5(x) + · · · (4.29)

See Figure 2.

• Generating function:

1√
1− 2xt+ t2

=

∞∑
n=0

Pn(x) tn (4.30)

• Using the generating function, one can derive the following recurrence relations:

(n+ 1)Pn+1 = (2n+ 1)xPn − nPn−1 (4.31)

Pn = P ′n+1 − 2xP ′n + P ′n−1 (4.32)

nPn = xP ′n − P ′n−1 (4.33)

(n+ 1)Pn = P ′n+1 − xP ′n (4.34)

(2n+ 1)Pn = P ′n+1 − P ′n−1 (4.35)

(1− x2)P ′n = n(Pn−1 − xPn) (4.36)

• Note that Legendre’s equation

(1− x2)P ′′n − 2xP ′n + n(n+ 1)Pn = 0 (4.37)

can be obtained by differentiating (4.36) wrt x and then using (4.33). In addition, the normalization
Pn(1) = 1 also follows simply from the generating function.

• Exercise: Prove the above relations by differentiating the generating function wrt t and x separately,
and then combining the various expressions.
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Figure 2: Expansion of the function f(x) = ±1 for x ≷ 0, in terms Legendre polynomials. This plot shows
how the approximation to f(x) improves as more terms in the expansion are used.
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• Another important result that follows trivially from the generating function expression is an expansion
of the potential of a point charge in terms of Legendre polynomials:

1

|r− r′|
=

∞∑
l=0

rl<
rl+1
>

Pl(cos γ) (4.38)

where r< (r>) is the smaller (larger) of r and r′, and γ is the angle between r and r′:

r̂ · r̂′ ≡ cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′) (4.39)

4.4 Associated Legendre functions

• The associated Legendre equation is given by

(1− x2) y′′ − 2x y′ +

[
l(l + 1)− m2

(1− x2)

]
y = 0 (4.40)

It differs from the ordinary Legendre equation due to the extra term proportional to m2.

• It turns out that power series solutions of this differential equation also diverge at the poles (x = ±1)
unless l = 0, 1, · · · (as before) and m = −l,−l + 1, · · · , l.

• The finite solutions are called associated Legendre functions are are given by derivatives of the Legendre
polynomials:

Pml (x) = (−1)m(1− x2)m/2
dm

dxm
Pl(x) (4.41)

and

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pml (x) (4.42)

for m > 0. (For m = 0 we recover the ordinary Legendre polynomials, Pl(x) = P 0
l (x).)

• Exercise: Prove the above by direct substitution.

• NOTE: Boas does not include the factor of (−1)m.

• The associated Legendre functions are not polynomials in x on account of the square root factor
(1 − x2)m/2 for odd m. But since we are ultimately interested in the replacement x = cos θ, these
non-polynomial factors are just proportional to sinm θ. Thus, the associated Legendre functions can
be written as polynomials in cos θ if m is even, and polynomials in cos θ multiplied by sin θ if m is odd.

• Exercise: Show that the first few associated Legendre functions are given by:

l = 0:

P 0
0 (cos θ) = 1 (4.43)

l = 1:

P 0
1 (cos θ) = cos θ (4.44)

P 1
1 (cos θ) = − sin θ (4.45)

l = 2:

P 0
2 (cos θ) =

1

2

(
3 cos2 θ − 1

)
(4.46)

P 1
2 (cos θ) = −3 sin θ cos θ (4.47)

P 2
2 (cos θ) = 3(1− cos2 θ) (4.48)
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Figure 3: The magnitude |Pml (cos θ)| of the first few associated Legendre functions plotted as surfaces of
revolution. Note that the sign (i.e., ±) of the associated Legendre functions Pml (cos θ) is lost in this graphical
representation.

l = 3:

P 0
3 (cos θ) =

1

2

(
5 cos3 θ − 3 cos θ

)
(4.49)

P 1
3 (cos θ) = −3

2
sin θ

(
5 cos2 θ − 1

)
(4.50)

P 2
3 (cos θ) = 15

(
cos θ − cos3 θ

)
(4.51)

P 3
3 (cos θ) = −15 sin θ

(
1− cos2 θ

)
(4.52)

See Figure 3 for plots of the magnitude of the first few of these functions.

• Using Rodrigues’ formula, we can write down a formula valid for both positive and negative values of
m:

Pml (x) =
(−1)m

2ll!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)l (4.53)

• Orthonormality: For each m ∫ 1

−1

dxPml (x)Pml′ (x) =
2

2l + 1

(l +m)!

(l −m)!
δll′ (4.54)
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• Completeness: For each m, the associated Legendre functions form a complete set (in the index l) for
square-integrable functions on x ∈ [−1, 1]:

f(x) =

∞∑
l=0

Al P
m
l (x) (4.55)

where

Al =
2l + 1

2

(l −m)!

(l +m)!

∫ 1

−1

dx f(x)Pml (x) (4.56)

4.5 Bessel functions

• Separation of variables of Laplaces’s equation in cylindrical coordinates leads to either of the following
two differential equations for the radial function R(ρ):

R′′(ρ) +
1

ρ
R′(ρ) +

(
k2 − ν2

ρ2

)
R(ρ) = 0 (4.57)

and

R′′(ρ) +
1

ρ
R′(ρ)−

(
k2 +

ν2

ρ2

)
R(ρ) = 0 (4.58)

• These equations can be put into more standard form by making a change of variables

ρ→ x = kρ , y(x)

∣∣∣∣
x=kρ

≡ R(ρ) (4.59)

The two different equations corresponding to different choices of the sign for the constant ±k2 become:

y′′(x) +
1

x
y′(x) +

(
1− ν2

x2

)
y(x) = 0 (4.60)

and

y′′(x) +
1

x
y′(x)−

(
1 +

ν2

x2

)
y(x) = 0 (4.61)

• The first equation is called Bessel’s equation of order ν; the second is called the modified Bessel’s
equation of order ν.

• Note that if y(x) is a solution of Bessel’s equation, then ȳ(x) ≡ y(ix) is a solution of the modified
Bessel’s equation.

• Exercise: Prove the above.

• To solve Bessel’s equation, note that x = 0 is a regular singular point of the differential equation. (The
functions p(x) ≡ 1/x and q(x) ≡ (1− ν2/x2), which multiply y′(x) and y(x), respectively, are singular
at x = 0, but x p(x) and x2 q(x) are both finite at x = 0.)

• The method of Frobenius says that such a differential equation will admit a power series solution of
the form

y(x) = xσ
∞∑
n=0

anx
n (4.62)

• Substituting this expansion into Bessel’s equation and equating the coefficients multiplying like powers
of x leads to

a0(σ2 − ν2) = 0 (4.63)

a1(1 + 2σ + σ2 − ν2) = 0 (4.64)

an+2 = − an
(n+ 2 + σ)2 − ν2

(4.65)
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• The first of the above equations is called the indicial equation. For a0 6= 0 it has the solutions:

σ = ±ν (4.66)

• Substituting these solutions for σ into the second equation leads to

a1(1± 2ν) = 0 (4.67)

• For ν 6= ±1/2, this equation implies a1 = 0. But even for ν = ±1/2, we can set a1 = 0.

• Thus, a1 = 0 together with the recurrence relation implies an = 0 for all odd values of n.

• For the even expansion coefficients, we can rewrite the recurrence relation for σ = ν as

a2n = a0
(−1)nΓ(1 + ν)

22nn!Γ(n+ 1 + ν)
(4.68)

for n = 0, 1, 2, · · · , where the gamma function is defined by

Γ(z) =

∫ ∞
0

dxxz−1e−x (4.69)

for Re(z) > 0.

• The gamma function generalizes the factorial function to non-integer arguments in the sense that

Γ(n+ 1) = n! for n = 0, 1, · · · (4.70)

Γ(z + 1) = z Γ(z) for Re(z) > 0 (4.71)

• If the normalization constant a0 is chosen to be

a0 =
1

2νΓ(1 + ν)
(4.72)

then

a2n =
(−1)n

22n+νn!Γ(n+ 1 + ν)
(4.73)

• The power series solution is thus

Jν(x) =

∞∑
n=0

(−1)n

n!Γ(n+ 1 + ν)

(x
2

)2n+ν

(4.74)

Jν(x) is called Bessel’s function of the 1st kind.

• Asymptotic form:

x� 1 : Jν(x)→ 1

Γ(ν + 1)

(x
2

)ν
(4.75)

x� 1, ν : Jν(x)→
√

2

πx
cos
(
x− νπ

2
− π

4

)
(4.76)

• Thus, J0(0) = 1, Jν(0) = 0 for all ν 6= 0; while for large x, Jν(x) behaves like a damped sinusoid, and
has infinitely many zeros xνn:

Jν(xνn) = 0 , for n = 1, 2, · · · (4.77)

See Figure 4.
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Figure 4: First few Bessel functions of the 1st kind for integer ν.

• Exercise: Show that the zeros of Jν(x) are given by

xνn ' nπ +

(
ν − 1

2

)
π

2
(4.78)

• If ν is not an integer, then J−ν(x) is the second independent solution to Bessel’s equation.

• If ν = m is an integer, then one can show that J−m(x) is proportional to Jm(x):

J−m(x) = (−1)mJm(x) (4.79)

so J−m(x) is not an independent solution for this case.

• Exercise: Prove the above.

• A second solution, which is independent of Jν(x) for all ν (integer or not), is

Nν(x) :=
Jν(x) cos(νπ)− J−ν(x)

sin(νπ)
(4.80)

Nν(x) is called a Neumann function or Bessel’s function of the 2nd kind, and is sometimes denoted by
Yν(x).

• For ν = m an integer, one needs to use L’Hopital’s rule to show that the RHS of the expression defining
Nm(x) is well-defined.

• Asymptotic form:

x� 1 : Nν(x)→

{
2
π

[
ln
(
x
2

)
+ 0.5772 · · ·

]
, ν = 0

−Γ(ν)
π

(
2
x

)ν
, ν 6= 0

(4.81)

x� 1, ν : Nν(x)→
√

2

πx
sin
(
x− νπ

2
− π

4

)
(4.82)
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Figure 5: First few Bessel functions of the 2nd kind for integer ν.

• Note that for all ν, Nν(x)→ −∞ as x→ 0.

• As we saw for Jν(x), for large x, Nν(x) behaves like a damped sinusoid, 90◦ out of phase with Jν(x).
See Figure 5.

• Thus, the most general solution to the radial part of Laplace’s equation is

R(ρ) = AJν(kρ) +BNν(kρ) (4.83)

• Since Nν(x) blows up at x = 0, if ρ = 0 is in the region of interest, then all of the B coefficients must
vanish to yield a finite value of the solution to Laplace’s equation on the axis.

• Hankel functions (or Bessel functions of the 3rd kind) are defined by

H(1)
ν (x) := Jν(x) + iNν(x) (4.84)

H(2)
ν (x) := Jν(x)− iNν(x) (4.85)

• Recurrence relations:

d

dx
(xνJν(x)) = xνJν−1(x) (4.86)

d

dx

(
x−νJν(x)

)
= −x−νJν+1(x) (4.87)

J ′ν(x) = −ν
x
Jν(x) + Jν−1(x) (4.88)

J ′ν(x) =
ν

x
Jν(x)− Jν+1(x) (4.89)

2J ′ν(x) = Jν−1(x)− Jν+1(x) (4.90)

2ν

x
Jν(x) = Jν−1(x) + Jν+1(x) (4.91)
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• Exercise: Prove the above.

• Note that the recurrence relations also hold for Nν(x), H
(1)
ν (x), H

(2)
ν (x), since they are relatively simple

linear combinations of Jν(x) and J−ν(x).

• Orthogonality: ∫ b

a

dρ ρJν(kρ)Jν(k′ρ) = 0 for k 6= k′ (4.92)

where

ρ

[
Jν(kρ)

dJν
dρ

(k′ρ)− Jν(k′ρ)
dJν
dρ

(kρ)

] ∣∣∣∣b
ρ=a

= 0 (4.93)

• Exercise: Prove this. (Hint: Let f(ρ) = Jν(kρ), g(ρ) = Jν(k′ρ), write down Bessel’s equation for f and
g, multiply these equations by g and f , subtract, and then integrate.)

• An explicit example satifying the above boundary condition is to choose a = 0, rename b = a, and
then choose k and k′ so that Jν(ka) = 0 = Jν(k′a). For this case k and k′ take on discrete values

k ≡ kνn =
xνn
a

, k′ ≡ kνn′ =
xνn′

a
, n, n′ = 1, 2, · · · (4.94)

where xνn and xνn′ are the nth and n′th zeroes of Jν(x).

• Note that the orthogonality of Bessel functions is wrt to different arguments x = kρ and x′ = k′ρ of a
single function Jν(x), and not wrt different functions Jν(x) and Jν′(x) of the same argument x = kρ.
(This latter case held for the Legendre polynomials Pl(x) and Pl′(x).)

• The orthogonality of Bessel functions is similar to the orthogonality of the sine functions sin(nπx/L)
for different values of n.

• Normalization: ∫ b

a

dρ ρJν(kρ)Jν(kρ) =
1

2

[(
ρ2 − ν2

k2

)
J2
ν (kρ) + ρ2[J ′ν(kρ)]2

] ∣∣∣∣b
ρ=a

(4.95)

where J ′ν(kρ) denotes derivative wrt to its argument x = kρ.

• Exercise: Prove the normalization condition. (Note: This is a rather tricky proof, requiring some clever
integration by parts and the use of Bessel’s equation to substitute for x2Jν(x) in one of the integrals.)

• Again the RHS can be simplified for the case described above where we set a = 0, rename b = a, and
take k = xνn/a for some integer n. Then∫ a

0

dρ ρJν(xνnρ/a)Jν(xνnρ/a) =
1

2
a2[J ′ν(xνn)]2 =

1

2
a2J2

ν+1(xνn) (4.96)

where a recurrence relation was used to get the last equality.

• Exercise: Prove this.

• We can put the orthogonality and normalisation equations together as a single equation:∫ a

0

dρ ρJν(xνnρ/a)Jν(xνn′ρ/a) =
1

2
a2J2

ν+1(xνn) δnn′ (4.97)

where we have explicitly indicated the zeroes xνn and xνn′ of Jν(x).
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• If the interval [0, a] becomes infinite [0,∞), then the orthogonality and normalisation conditions actu-
ally become simpler ∫ ∞

0

dρ ρJν(kρ)Jν(k′ρ) =
1

k
δ(k − k′) (4.98)

where k now takes on a continuous range of values.

• This is similar to the transition from Fourier series (basis functions eiknx with kn = n2π/a) to Fourier
transforms (basis functions eikx with k a real variable):∫ a/2

−a/2
dx ei2π(n−n′)x/a = a δnn′ −→

∫ ∞
−∞

dx ei(k−k
′)x = 2π δ(k − k′) (4.99)

4.6 Modified Bessel functions

• As mentioned previously, the modified Bessel’s equation of order ν is given by:

y′′(x) +
1

x
y′(x)−

(
1 +

ν2

x2

)
y(x) = 0 (4.100)

It differs from the ordinary Bessel’s equation only in the sign of one of the terms multiplying y(x).

• Modified (or hyperbolic) Bessel functions are solutions to the above equation. They are defined by

Iν(x) := i−νJν(ix) (4.101)

Kν(x) :=
π

2
iν+1H(1)

ν (ix) (4.102)

Note the pure imaginary arguments on the RHS, consistent with our earlier statement that if y(x) is
a solution of Bessel’s equation then y(ix) is a solution of the modified Bessel’s equation.

• See Figures 6 and 7 for graphs of the first few modified Bessel functions of the first and second kind,
Iν(x) and Kν(x), for integer values of ν.

• Asymptotic form:

x� 1 : Iν(x)→ 1

Γ(ν + 1)

(x
2

)ν
(4.103)

Kν(x)→

{
−
[
ln
(
x
2

)
+ 0.5772 · · ·

]
, ν = 0

Γ(ν)
2

(
2
x

)ν
, ν 6= 0

(4.104)

x� 1, ν : Iν(x)→ 1√
2πx

ex
[
1 +O

(
1

x

)]
(4.105)

Kν(x)→
√

π

2x
e−x

[
1 +O

(
1

x

)]
(4.106)

• Thus, I0(0) = 1, Iν(0) = 0 for all ν 6= 0, while Kν(x)→∞ as x→ 0 for all ν.

• For large x, Iν(x)→∞ while Kν(x)→ 0 for all ν.

• Thus, the most general solution to the radial part of Laplace’s equation for the choice of negative
separation constant −k2 is

R(ρ) = AIν(kρ) +BKν(kρ) (4.107)

• Since Kν(x) blows up at x = 0, if ρ = 0 is in the region of interest, then all of the B coefficients must
vanish to yield a finite value of the solution to Laplace’s equation on the axis.

• Similarly, since Iν(x) blows up as x→∞, if the solution to Laplace’s equation is to vanish as ρ→∞,
then all of the A coefficients must vanish.
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Figure 6: First few modified Bessel functions of the 1st kind for integer ν.
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Figure 7: First few modified Bessel functions of the 2nd kind for integer ν.
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Figure 8: First few spherical Bessel functions of the 1st kind.

4.7 Spherical Bessel functions

• Spherical Bessel functions are defined by

jn(x) :=

√
π

2x
Jn+ 1

2
(x) (4.108)

nn(x) :=

√
π

2x
Nn+ 1

2
(x) (4.109)

where n = 0, 1, 2, · · · .

• One can also define

h(1)
n (x) := jn(x) + inn(x) (4.110)

h(2)
n (x) := jn(x)− inn(x) (4.111)

• Given the explicit form of Jn+ 1
2
(x) one can show that

jn(x) = xn
(
− 1

x

d

dx

)n(
sinx

x

)
(4.112)

nn(x) = −xn
(
− 1

x

d

dx

)n (cosx

x

)
(4.113)

• In particular, it follows that

j0(x) =
sinx

x
, n0(x) = −cosx

x
(4.114)

See Figures 8 and 9 for plots of the first few spherical Bessel functions.

• Exercise: Prove the above expression for j0(x) directly from its definition in terms of the ordinary
Bessel function J 1

2
(x).

41



0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

Spherical Bessel functions of the 2nd kind: n
n
(x)

 

 

n
0
(x)

n
1
(x)

n
2
(x)

n
3
(x)

Figure 9: First few spherical Bessel functions of the 2nd kind.

• Given the relationship between jn(x) and Jn+ 1
2
(x), one can show that the spherical Bessel functions

satisfy the differential equation

j′′n(x) +
2

x
j′n(x) +

[
1− n(n+ 1)

x2

]
jn(x) = 0 (4.115)

• Exercise: Prove this.

• Alternatively, one arrives at the same differential equation by using separation of variables in spherical
polar coordinates to solve the Helmholtz equation:

∇2Φ(r, θ, φ) + k2Φ(r, θ, φ) = 0 (4.116)

• The φ equation is the standard harmonic oscillator equation with separation constant −m2; the θ
equation is the associated Legendre’s equation with separation constants l and m; and the radial
equation is

R′′(r) +
2

r
R′(r) +

[
k2 − l(l + 1)

r2

]
R(r) = 0 (4.117)

• Making the change of variables x = kr with y(x)|x=kr = R(r), leads to

y′′(x) +
2

x
y′(x) +

[
1− l(l + 1)

x2

]
y(x) = 0 (4.118)

which is the differential equation (4.115) we found earlier with solution y(x) = jl(x).

4.8 Similarities between Bessel and trig / hyperbolic functions

• Trigonometric functions:

y′′(x) + k2y(x) = 0 ⇒ y(x) = A sin(kx) +B cos(kx) (4.119)
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• Hyperbolic functions:

y′′(x)− k2y(x) = 0 ⇒ y(x) = A sinh(kx) +B cosh(kx) (4.120)

• Bessel functions:

R′′(ρ) +
1

ρ
R′(ρ) +

(
k2 − ν2

ρ2

)
R(ρ) = 0 ⇒ R(ρ) = AJν(kρ) +BNν(kρ) (4.121)

• Modified Bessel functions:

R′′(ρ) +
1

ρ
R′(ρ)−

(
k2 +

ν2

ρ2

)
R(ρ) = 0 ⇒ R(ρ) = AIν(kρ) +BKν(kρ) (4.122)

• Hyperbolic functions are related to trig functions via:

sinh(kx) = −i sin(ikx) , cosh(kx) = cos(ikx) (4.123)

• Modified Bessel functions are related to Bessel functions via:

Iν(kρ) = i−νJν(ikρ) , Kν(kρ) =
π

2
iν+1H(1)

ν (ikρ) (4.124)

• Hankel functions:

H(1)
ν (kρ) = Jν(kρ) + iNν(kρ) (4.125)

H(2)
ν (kρ) = Jν(kρ)− iNν(kρ) (4.126)

are analogous to complex exponentials:

eikx = cos(kx) + i sin(kx) (4.127)

e−ikx = cos(kx)− i sin(kx) (4.128)

• At x = L, the trig function sin(kx) has zeroes at

kL = nπ ⇒ k =
nπ

L
, for n = 1, 2, 3, · · · (4.129)

• At ρ = a, the Bessel function Jν(kρ) has zeroes at

ka = xmn ⇒ k =
xνn
a

, for n = 1, 2, 3, · · · (4.130)

• Orthogonality of trig functions:∫ L

0

dx sin(nπx/L) sin(n′πx/L) =
L

2
δnn′ (4.131)

• Orthogonality of Bessel functions:∫ a

0

dρ ρJν(xνnρ/a)Jν(xνn′ρ/a) =
1

2
a2J2

ν+1(xνn) δnn′ (4.132)
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4.9 Hermite polynomials

• Differential equation:
y′′ − 2xy′ + 2my = 0 (4.133)

• Recurrence relation for power series solution:

an+2 =
2(n−m)

(n+ 1)(n+ 2)
an (4.134)

• Polynomial solutions for integer m.

For m even:

y(x) = a0

[
1 + (−2)

m

2!
x2 + (−2)2m(m− 2)

4!
x4 + · · ·+ (−2)m/2

m(m− 2) · · · 2
m!

xm
]

(4.135)

For m odd:

y(x) = a1

[
x+ (−2)

(m− 1)

3!
x3 + (−2)2 (m− 1)(m− 3)

5!
x5 + · · · (4.136)

+ (−2)(m−1)/2 (m− 1)(m− 3) · · · 2
m!

xm
]

(4.137)

• First few Hermite polynomials normalized so that am = 2m:

H0(x) = 1 , H1(x) = 2x , H2(x) = 4x2 − 2 , · · · (4.138)

• Rodrigues formula for Hermite polynomials:

Hm(x) = (−1)mex
2 dm

dxm
e−x

2

(4.139)

• Orthogonality: ∫ ∞
−∞

dx e−x
2

Hm(x)Hn(x) =
√
π2mm! δmn (4.140)

• Generating function:

e2xt−t2 =

∞∑
n=0

Hn(x)
tn

n!
(4.141)

• Recurrence relations:

H ′n(x) = 2nHn−1(x) (4.142)

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (4.143)

4.10 Hermite functions

• Hermite functions are obtained from Hermite polynomials via:

yn(x) = (−1)ne−x
2/2Hn(x) (4.144)

• They satisfy the differential equation:

y′′n − x2yn = −(2n+ 1)yn (4.145)

which is an eigenvalue equation with discrete eigenvalues λn = −(2n+ 1), where n is an integer.
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• One can also show that
yn+1 = (D − x)yn , yn−1 = (D + x)yn (4.146)

where D = d/dx is derivative with respect to x.

• Exercise: Prove the above.

• The operators (D∓x) are called raising and lowering operators, since they take one Hermite function to
another by simply increasing or decreasing the value of the index n. These operators are also sometimes
called ladder operators.

• In quantum mechanics, they are called creation and annihilation operators for particle states.

• The so-called ground state is the Hermite function having n = 0:

y0(x) = e−x
2/2 (4.147)

• It satisfies
(D + x)y0 = 0 ⇒ y′′0 − x2y0 = −y0 (4.148)

which means that you can’t get to a lower state by having the lowering operator act on the ground
state.

4.11 Laguerre polynomials

• Differential equation:
xy′′ + (1− x)y′ +my = 0 (4.149)

• Polynomial solution for integer m:

Lm(x) =

m∑
n=0

(−1)n
(
m

n

)
xn

n!
, where

(
m

n

)
=

m!

(m− n)!n!
(4.150)

• First few Laguerre polynomials:

L0(x) = 1 , L1(x) = 1− x , L2(x) = 1− 2x+
1

2
x2 , · · · (4.151)

• Rodrigues formula for Hermite polynomials:

Lm(x) =
1

m!
ex

dm

dxm
(
xme−x

)
(4.152)

• Orthogonality: ∫ ∞
0

dx e−xLm(x)Ln(x) = δmn (4.153)

• Generating function:

ext/(1−t)

1− t
=

∞∑
n=0

Ln(x)tn (4.154)

• Recurrence relations:

L′n+1(x)− L′n(x) + Ln(x) = 0 (4.155)

(n+ 1)Ln+1(x)− (2n+ 1− x)Ln(x) + nLn−1(x) = 0 (4.156)

xL′n(x)− nLn(x) + nLn−1(x) = 0 (4.157)
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4.12 Associated Laguerre polynomials

• Differential equation:
xy′′ + (k + 1− x)y′ +my = 0 (4.158)

• Polynomial solution for integer m and k:

Lkm(x) = (−1)k
dk

dxk
Lm+k(x) (4.159)

• Note that the associated Laguerre polynomials are obtained by simply differentiating the ordinary
Laguerre polynomials.

• Rodrigues formula for the associated Laguerre polynomials:

Lkm(x) =
x−kex

m!

dm

dxm
(
xm+ke−x

)
(4.160)

• NOTE: This last form is actually valid for non-integer k, and can be used to define Lkm(x) for any real
k > −1.

• Orthogonality: ∫ ∞
0

dx xke−xLkm(x)Lkn(x) =
(m+ k)!

m!
δmn (4.161)

• Recurrence relations:

(n+ 1)Lkn+1(x)− (2n+ k + 1− x)Lkn(x) + (n+ k)Lkn−1(x) = 0 (4.162)

x
d

dx
Lkn(x)− nLkn(x) + (n+ k)Lkn−1(x) = 0 (4.163)
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5 Partial differential equations

5.1 Examples of partial differential equations

• Laplace’s equation:
∇2u = 0 (5.1)

• Helmholtz equation:
∇2u+ k2 u = 0 (5.2)

• Diffusion equation:

∇2u =
1

α2

∂u

∂t
(heat flow) (5.3)

− ~2

2m
∇2ψ + V ψ = i~

∂ψ

∂t
(quantum mechanics) (5.4)

• Source-free wave equation:

∇2u− 1

v2

∂2u

∂t2
= 0 (5.5)

• Vector wave equations (E&M):

∇2E− 1

c2
∂2E

∂t2
= 0 , ∇2B− 1

c2
∂2B

∂t2
= 0 (5.6)

• Poisson’s equation:
∇2u = f(r) (5.7)

where f is some source (e.g., charge density in electrostatics, mass density in Newtonian gravity).

• Navier-Stokes equation: (non-linear, fluid mechanics)

∂v

∂t
+ (v ·∇)v = −∇p

ρ
+ ν∇2v + g (5.8)

5.2 Separation of variables

• The most common method of solution of a PDE is called separation of variables. It amounts to
assuming that the function u can be written as a product of functions, which depend on only a single
variable—e.g., u(x, y, z) = X(x)Y (y)Z(z).

• Separation of variables converts a single PDE into separate ODEs (the number of ODEs equal to the
number of independent variables).

• Not all PDEs can be solved using separation of variables. Only certain types of PDEs can be sepa-
rated, and only in certain coordinate systems—e.g., Laplace’s equation in Cartesian, cylindrical polar
coordinates, spherical polar coordinates, ... The BCs must also have the appropriate symmetry and
homogeneity in order for the separation of variables method to work.

5.3 Laplace’s equation

• Laplace’s equation is
∇2u = 0 (5.9)

where u is a function of the spatial coordinates x, y, z or ρ, φ, z, etc.

• We are interested in solving the above equation for u subject to specified boundary conditions, using
separation of variables.

• The choice of coordinates is usually dictated by the geometry of the problem.

• In the following subsections, we solve Laplace’s equation in the context of steady-state temperature
distributions in: (i) a rectangular plate, (ii) a cylinder, and (iii) a sphere, subject to different BCs.

47



5.3.1 Steady-state temperature in a rectangular plate

• Example: Find the steady-state temperature distribution u(x, y) in a two-dimensional rectangular plate
0 ≤ x ≤ a and 0 ≤ y ≤ b, subject to BCs that the temperature is zero along three of the edges (x = 0,
x = a, y = b) and is equal to a constant u0 along the other edge (y = 0).

• Answer:

u(x, y) =
4u0

π

∞∑
n=1,3,···

1

n sinh
(
nπb
a

) sin
(nπx

a

)
sinh

[
nπ(b− y)

a

]
(5.10)

• Solution method:

Differential equation:

0 = ∇2u =
∂2u

∂x2
+
∂2u

∂y2
(5.11)

Separation of variables:
u(x, y) ≡ X(x)Y (y) (5.12)

Resultant set of ordinary differential equations:

X ′′

X
= −Y

′′

Y
= −k2 (5.13)

where k2 is a separation constant, whose sign was chosen to be able to satisfy the BCs.

Solutions of the x-equation:

X(x) = A0 +B0 x , for k = 0 (5.14)

X(x) = A sin(kx) +B cos(kx) , for k 6= 0 (5.15)

Solutions of the y-equation:

Y (y) = C0 +D0 y , for k = 0 (5.16)

Y (y) = C eky +De−ky , for k 6= 0 (5.17)

BCs at x = 0 and x = a imply:

X(x) = A sin kx , where k =
nπ

a
, n = 1, 2, · · · (5.18)

BC at y = b implies:

Y (y) = E sinh

[
nπ(b− y)

a

]
(5.19)

Notes:

1) There is no non-zero k = 0 solution which satisfies the BCs.

2) We need only consider positive integers n, since negative n introduces only an overall sign change
from positive n, which can be absorbed in the multiplicative constant.

General solution satisfying these three BCs:

u(x, y) =

∞∑
n=1

En sin
(nπx

a

)
sinh

[
nπ(b− y)

a

]
(5.20)

Apply final BC at y = 0:

u0 = u(x, 0) =

∞∑
n=1

En sinh

(
nπb

a

)
sin
(nπx

a

)
(5.21)
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Orthogonality of sinusoids: ∫ a

0

dx sin
(nπx

a

)
sin
(mπx

a

)
=
a

2
δnm (5.22)

implies

Cn ≡ En sinh

(
nπb

a

)
=

{
4u0/nπ n = 1, 3, · · ·

0 n = 2, 4, · · · (5.23)

Thus,

u(x, y) =
4u0

π

∞∑
n=1,3,···

1

n sinh
(
nπb
a

) sin
(nπx

a

)
sinh

[
nπ(b− y)

a

]
(5.24)

NOTE: To solve Laplace’s equation inside the same rectangular region for more complicated BCs (e.g.,
where more than one edge has non-zero values), we can simply superimpose the ‘single-edge’ solutions,
which all have a form similar to the above solution.

5.3.2 Steady-state temperature in a cylinder

• Example: Find the steady-state temperature distribution u(ρ, φ, z) in a cylinder of radius a and height
b, subject to the BCs that the temperature is zero on the top of the cylinder (z = b) and the curved
surface (ρ = a), and is equal to a constant u0 on the bottom (z = 0).

• Answer:

u(ρ, φ, z) = 2u0

∞∑
n=1

1

x0nJ1(x0n) sinh
(
x0nb
a

)J0

(x0nρ

a

)
sinh

[
x0n(b− z)

a

]
(5.25)

where x0n is the nth zero of the Bessel function J0(x).

• Solution method:

Differential equation:

0 = ∇2u =
1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+

1

ρ2

∂2u

∂φ2
+
∂2u

∂z2
(5.26)

Separation of variables:

u(ρ, φ, z) ≡ R(ρ)Q(φ)Z(z) (5.27)

leads to

0 =
1

R

1

ρ

d

dρ

(
ρ
dR

dρ

)
+

1

ρ2

1

Q

d2Q

dφ2
+

1

Z

d2Z

dz2
(5.28)

where we’ve divided the whole equation by u = RQZ.

If the separation constants are chosen so that

Z ′′(z) = k2Z(z) , (5.29)

Q′′(φ) = −ν2Q(φ) (5.30)

then

R′′(ρ) +
1

ρ
R′(ρ) +

(
k2 − ν2

ρ2

)
R(ρ) = 0 (5.31)

which is Bessel’s equation of order ν.

Solutions of the z-equation:

Z(z) = A0 +B0 z , for k = 0 (5.32)

Z(z) = Aekz +B e−kz , for k 6= 0 (5.33)
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Solutions to the φ-equation:

Q(φ) = C0 +D0φ , for ν = 0 (5.34)

Q(φ) = C sin(νφ) +D cos(νφ) , for ν 6= 0 (5.35)

Periodic boundary condition:
Q(φ+ 2πn) = Q(φ) (5.36)

implies D0 = 0 and ν = m an integer, so

Q(φ) = Ceimφ , m = 0,±1,±2, · · · (5.37)

where C is a complex multiplicative constant.

For ν = m, the ρ-equation becomes:

R′′(ρ) +
1

ρ
R′(ρ) +

(
k2 − m2

ρ2

)
R(ρ) = 0 (5.38)

Solutions to the ρ-equation:

R(ρ) = E0ρ
|m| + F0ρ

−|m| , for k = 0 (5.39)

R(ρ) = EJm(kρ) + FNm(kρ) , for k 6= 0 (5.40)

Apply BC that the solution should be finite on the axis of the cylinder, ρ = 0:

F0 = 0 , F = 0 (5.41)

Apply BC that u = 0 when ρ = a:

R(ρ) = EJm(kρ) , where k =
xmn
a

, n = 1, 2, · · · (5.42)

where xmn is the nth zero of the mth Bessel function Jm(x).

Note that there is no non-zero k = 0 solution which satifies the boundary condition.

BC at z = b implies:

Z(z) = A sinh

[
xmn(b− z)

a

]
(5.43)

General solution satifying all the BCs except the one at z = 0:

u(ρ, φ, z) =

∞∑
m=−∞

∞∑
n=1

Emn Jm

(xmnρ
a

)
sinh

[
xmn(b− z)

a

]
eimφ (5.44)

Apply final BC at z=0:

u0 = u(ρ, φ, 0) =

∞∑
n=1

En sinh

(
x0nb

a

)
J0

(x0nρ

a

)
(5.45)

Note that we are able to set m = 0 since u0 = const is independent of φ.

Orthogonality of Bessel functions:∫ a

0

dρ ρJ0

(x0nρ

a

)
J0

(x0n′ρ

a

)
=
a2

2
J2

1 (x0n) δnn′ (5.46)

implies

Cn ≡ En sinh

(
x0nb

a

)
=

2u0

a2J2
1 (x0n)

∫ a

0

dρ ρJ0

(x0nρ

a

)
(5.47)
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To do the integral, use the recurrence relation:

d

dx
[xJ1(x)] = xJ0(x) (5.48)

to get

Cn =
2u0

x0nJ1(x0n)
(5.49)

Thus,

u(ρ, φ, z) = 2u0

∞∑
n=1

1

x0nJ1(x0n) sinh
(
x0nb
a

)J0

(x0nρ

a

)
sinh

[
x0n(b− z)

a

]
(5.50)

5.3.3 Steady-state temperature in a sphere

• Example: Find the steady-state temperature distribution u(r, θ, φ) in a sphere of radius a, subject to
the BC that the temperature on the bottom hemisphere is zero, while the temperature on the upper
hemisphere is a constant u = u0.

• Answer:

u(r, θ, φ) = u0

[
1

2
P0(cos θ) +

3

4

( r
a

)
P1(cos θ)− 7

16

( r
a

)3

P3(cos θ) + · · ·
]

(5.51)

• Solution method:

Differential equation:

0 = ∇2u =
1

r2

∂

∂r

(
r2 ∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2
(5.52)

Separation of variables:
u(r, θ, φ) ≡ R(r)P (θ)Q(φ) (5.53)

leads to

Q′′(φ) = −m2Q(φ) (5.54)

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
+

[
l(l + 1)− m2

sin2 θ

]
P (θ) = 0 (5.55)

d

dr

(
r2 dR

dr

)
= l(l + 1)R(r) (5.56)

where l and m are (at this stage) arbitrary real separation constants.

Solutions of the φ-equation are

Q(φ) = A0 +B0φ , for m = 0 (5.57)

Q(φ) = Aeimφ +B e−imφ , for m 6= 0 (5.58)

Periodic BCs for Q(φ) imply:

Q(φ) = C eimφ , m = 0,±1,±2, · · · (5.59)

just as we saw for the cylinder case.

The θ-equation can be put into more standard form by making a change of variables from θ to x = cos θ
and then expanding the derivative:

(1− x2)P ′′(x)− 2xP ′(x) +

[
l(l + 1)− m2

1− x2

]
P (x) = 0 (5.60)
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This is just the associated Legendre’s equation.

Recall that in order for the solutions Pml (x) to be finite at the poles (x = ±1), the constants l and m
must be restricted to:

l = 0, 1, 2, · · · , m = −l,−l + 1, · · · , l (5.61)

Solutions to the radial equation:

R(r) = Drl + Er−(l+1) (5.62)

Finiteness of the solution at the center of the sphere (r = 0) implies E = 0, so

R(r) = Drl (5.63)

General solution satisfying all of the BCs except the one at r = a:

u(r, θ, φ) =

∞∑
l=0

l∑
m=−l

Elm r
lPml (cos θ)eimφ (5.64)

NOTE: Ignorning an overall normalization factor, the combination Pml (cos θ)eimφ is a spherical har-
monic, usually denoted by Y ml (θ, φ).

Apply final BC at r = a:

u(a, θ, φ) =

{
u0 0 ≤ θ < π/2
0 π/2 < θ ≤ π

}
=

∞∑
l=0

El a
lPl(cos θ) (5.65)

Note that m = 0 again since the BC is independent of φ.

Orthogonality of Legendre polynomials∫ 1

−1

dxPl(x)Pl′(x) =
2

2l + 1
δll′ (5.66)

implies

Cl ≡ Elal =
2l + 1

2
u0

∫ 1

0

dx Pl(x) (5.67)

Evaluating the first few integrals using explicit expressions for the Legendre polynomials yields:

C0 =
1

2
u0 , C1 =

3

4
u0 , C2 = 0 , C3 = − 7

16
u0 , · (5.68)

Thus,

u(r, θ, φ) = u0

[
1

2
P0(cos θ) +

3

4

( r
a

)
P1(cos θ)− 7

16

( r
a

)3

P3(cos θ) + · · ·
]

(5.69)

5.4 Diffusion equation

• The diffusion equation is

∇2u =
1

α2

∂u

∂t
(5.70)

where α2 is the diffusion constant, which is a property of the material, and u is a function of both
spatial coordinates and time.

• In the following subsections, we will solve the diffusion equation in the context of: (i) heat flow through
a rectangular slab of infinite extent in the y and z directions, and (ii) a quantum-mechanical “particle
in a box”.
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5.4.1 Heat flow through a rectangular slab

• Example: Find the temperature distribution as a function of time u(x, t) in a rectangular slab of
thickness L and infinite in extent in the other directions, subject to the initial condition:

u(x, 0) =
u0x

L
, for 0 ≤ x ≤ L (5.71)

and BCs:
u(0, t) = 0 , u(L, t) = 0 , for t > 0 (5.72)

NOTE: By having a slab of infinite in extent in the y and z directions, we are able to neglect any heat
flow in those directions. Equivalently, we could consider a rectangular slab of finite extent in the y and
z directions, provided we insulate the faces having y = const and z = const.

• Answer:

u(x, t) =
2u0

π

∞∑
n=1

(−1)n+1

n
sin
(nπx
L

)
e−n

2π2α2t/L2

(5.73)

• Solution method:

Differential equation:
∂2u

∂x2
=

1

α2

∂u

∂t
(5.74)

Separation of variables:
u(x, t) = X(x)T (t) (5.75)

leads to
X ′′

X
=

1

α2

T ′

T
= −k2 (5.76)

Solutions of the x-equation:

X(x) = A0 +B0 x , for k = 0 (5.77)

X(x) = A sin(kx) +B cos(kx) , for k 6= 0 (5.78)

Solutions of the t-equation:

T (t) = Ce−k
2α2t (5.79)

BCs at x = 0 and x = L imply:

X(x) = A sin(kx) , where k ≡ nπ

L
, n = 1, 2, · · · (5.80)

Note that there is no non-zero k = 0 solution which satisfies the BCs.

Substituting for k:

T (t) = Ce−n
2π2α2t/L2

(5.81)

General solution satisfying all of the BCs except the initial condition:

u(x, t) =
∑
n

Cn sin
(nπx
L

)
e−n

2π2α2t/L2

(5.82)

Apply initial condition:
u0x

L
= u(x, 0) =

∑
n

Cn sin
(nπx
L

)
(5.83)

Orthogonality of sinusoids leads to:

Cn =
2

L

∫ L

0

dx
u0x

L
sin
(nπx
L

)
=

2u0

nπ
(−1)

n+1
(5.84)

Thus,

u(x, t) =
2u0

π

∞∑
n=1

(−1)n+1

n
sin
(nπx
L

)
e−n

2π2α2t/L2

(5.85)
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5.4.2 Quantum-mechanical particle in a box

• Example: Find the allowed energies for a quantum mechanical particle of mass m in a 1-d box

V (x) =

{
0 for 0 ≤ x ≤ L
∞ otherwise

(5.86)

• Answer: The allowed energies are quantized:

En =
n2π2~2

2mL2
, where n = 1, 2, · · · (5.87)

• Solution method:

Differential equation (Schrödinger’s equation):

− ~2

2m
∇2Ψ + V Ψ = i~

∂Ψ

∂t
(5.88)

For the specified form of the potential V , we need to solve

− ~2

2m

∂2Ψ

∂x2
= i~

∂Ψ

∂t
(5.89)

for 0 ≤ x ≤ L, subject to the BCs that Ψ(x, t) vanish at x = 0 and x = L for all t.

Separation of variables:

Ψ(x, t) = X(x)T (t) (5.90)

leads to

X ′′ = −k2X (5.91)

T ′ = − iE
~
T , where E ≡ ~2k2

2m
(5.92)

Solutions of the x-equation:

X(x) = A0 +B0 x , for k = 0 (5.93)

X(x) = A sin(kx) +B cos(kx) , for k 6= 0 (5.94)

Solutions of the t-equation:

T (t) = Ce−iEt/~ (5.95)

BCs at x = 0 and x = L imply:

X(x) = A sin(kx) , where k ≡ nπ

L
, n = 1, 2, · · · (5.96)

Note that there is no non-zero k = 0 solution which satisfies the BCs.

Thus, the most general solution is

Ψ(x, t) =
∑
n

Cn sin
(nπx
L

)
e−iEnt/~ (5.97)

where

En =
n2π2~2

2mL2
(5.98)
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5.5 Wave equation

• The wave equation is

∇2u− 1

v2

∂2u

∂t2
= 0 (5.99)

where v is the velocity of the wave.

• It differs from the diffusion equation in that there is a second partial derivative wrt time, instead of a
single partial derivative wrt time.

• In the following subsections, we will solve the wave equation in the context of: (i) a vibrating guitar
string, and (ii) a vibrating circular drum head.

5.5.1 Vibrating guitar string

• Example: Solve for the motion of a guitar string, initially plucked in the middle and let go.

The guitar string is fixed at both ends:

u(0, t) = 0 , u(L, t) = 0 (5.100)

The initial displacement of the string plucked in the middle is

u(x, 0) =

{
2hx/L , 0 ≤ x ≤ L/2

2h (1− x/L) , L/2 ≤ x ≤ L (5.101)

and has zero initial velocity
∂u

∂t
(x, 0) = 0 (5.102)

• Answer:

u(x, t) =
8h

π2

[
sin
(πx
L

)
cos

(
πvt

L

)
− 1

9
sin

(
3πx

L

)
cos

(
3πvt

L

)
+

1

25
sin

(
5πx

L

)
cos

(
5πvt

L

)
− · · ·

]
(5.103)

• Solution method:

Differential equation:
∂2u

∂x2
− 1

v2

∂2u

∂t2
= 0 (5.104)

Separation of variables:

u(x, t) ≡ X(x)T (t) (5.105)

leads to:
X

′′

X
=

1

v2

T
′′

T
= −k2 (5.106)

Solutions to the x-equation:

X(x) = A0 +B0 x , for k = 0 (5.107)

X(x) = A sin(kx) +B cos(kx) , for k 6= 0 (5.108)

Solutions to the t-equation:

T (t) = C0 +D0 t , for k = 0 (5.109)

T (t) = C sin(kvt) +D cos(kvt) , for k 6= 0 (5.110)
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BCs at x = 0 and x = L imply:

X(x) = A sin(kx) , where k ≡ nπ

L
, n = 1, 2, · · · (5.111)

Note that there is no non-zero k = 0 solution which satisfies the BCs.

Zero initial velocity implies:

T (t) = D cos

(
nπvt

L

)
(5.112)

Thus, the most general solution satisfying all of the BCs except the initial condition on the displacement
is

u(x, t) =

∞∑
n=1

Cn sin
(nπx
L

)
cos

(
nπvt

L

)
(5.113)

which is a sum of standing waves with discrete wavelengths and frequencies

λn =
2L

n
, fn =

v

λn
=
nv

2L
, where n = 1, 2, · · · (5.114)

The standing wave solutions for different values of n correspond to different modes of vibration of the
guitar string. The vibrational frequency of the nth mode is simply fn = nf1, where f1 = v/2L is the
fundamental frequency.

Note that each standing wave can be written as the sum of a right-moving and left-moving wave

sin
(nπx
L

)
cos

(
nπvt

L

)
=

1

2
[sin (kn(x− vt)) + sin (kn(x+ vt))] (5.115)

where kn = 2π/λn = nπ/L.

Apply the initial condition on the displacement:

u(x, 0) =

∞∑
n=1

Cn sin
(nπx
L

)
(5.116)

Orthogonality of sinusoids leads to:

Cn =
2

L

∫ L

0

dx u(x, 0) sin
(nπx
L

)
=

{
8h
n2π2 (−1)

(n−1)/2
n = 1, 3, 5, · · ·

0 n = even
(5.117)

Thus,

u(x, t) =
8h

π2

[
sin
(πx
L

)
cos

(
πvt

L

)
− 1

9
sin

(
3πx

L

)
cos

(
3πvt

L

)
+

1

25
sin

(
5πx

L

)
cos

(
5πvt

L

)
− · · ·

]
(5.118)

5.5.2 Vibrating drum head

• Example: Solve for the vibrational modes of a circular drum head of radius a, fixed at the circumference.

• Answer: The vibrational modes are given by

umn(ρ, φ, t) = Jm

(xmnρ
a

)
eimφ

[
Amn sin

(
xmnvt

a

)
+Bmn cos

(
xmnvt

a

)]
(5.119)

with frequency

fmn =
xmnv

2πa
, where m = 0, 1, · · · , and n = 1, 2, · · · (5.120)

where xmn is the nth zero of the mth Bessel function Jm(x).

NOTE: The vibrational modes are labeled by two integers (m,n), where m labels the number of nodal
diameters of the mode, and n labels the number of nodal circles. (There is always one nodal circle,
located at the circumference of the drum head.)
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• Solution method:

Differential equation:

0 =
1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+

1

ρ2

∂2u

∂φ2
− 1

v2

∂2u

∂t2
(5.121)

Separation of variables:
u(ρ, φ, t) ≡ R(ρ)Q(φ)T (t) (5.122)

leads to

T ′′(t) = −k2v2Z(t) , (5.123)

Q′′(φ) = −ν2Q(φ) (5.124)

R′′(ρ) +
1

ρ
R′(ρ) +

(
k2 − ν2

ρ2

)
R(ρ) = 0 (5.125)

Solutions of the t-equation:

T (t) = A0 +B0 t , for k = 0 (5.126)

T (t) = A sin(kvt) +B cos(kvt) , for k 6= 0 (5.127)

In order to have oscillatory solutions for the vibrational modes, we must have k 6= 0.

Solutions to the φ-equation:

Q(φ) = C0 +D0φ , for ν = 0 (5.128)

Q(φ) = C sin(νφ) +D cos(νφ) , for ν 6= 0 (5.129)

Periodic BCs for Q(φ) imply:

Q(φ) = Ceimφ , m = 0,±1,±2, · · · (5.130)

just as we saw for the cylinder case.

For ν = m, the ρ-equation becomes:

R′′(ρ) +
1

ρ
R′(ρ) +

(
k2 − m2

ρ2

)
R(ρ) = 0 (5.131)

which is Bessel’s equation of order m.

Solutions to the ρ-equation:

R(ρ) = EJm(kρ) + FNm(kρ) , for k 6= 0 (5.132)

Finiteness of R(ρ) at ρ = 0 implies F = 0.

The BC that u = 0 at ρ = a implies:

R(ρ) = EJm(kρ) , where k =
xmn
a

, n = 1, 2, · · · (5.133)

where xmn is the nth zero of Jm(x).

Thus, the most general solution satisfying all of the above BCs is:

u(ρ, φ, t) =

∞∑
m=−∞

∞∑
n=1

Emnumn(ρ, φ, t) (5.134)

where

umn(ρ, φ, t) ≡ Jm
(xmnρ

a

)
eimφ

[
Amn sin

(
xmnvt

a

)
+Bmn cos

(
xmnvt

a

)]
(5.135)
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Note that the frequency of the vibrational mode labeled by (m,n) is:

fmn =
xmnv

2πa
, where m = 0, 1, · · · , and n = 1, 2, · · · (5.136)

where xmn is the nth zero of the mth Bessel function Jm(x).

The fundamental (i.e., lowest) frequency is

f01 =
x01v

2πa
(5.137)

The next five lowest frequencies, expressed as multiples of the fundamental frequency f01, are

f11 = 1.5933f01 , f21 = 2.1355f01 , f02 = 2.2954f01 , f31 = 2.6531f01 , f12 = 2.9173f01 ,
(5.138)

Note that the frequencies of the vibrational modes are not harmonically related as we saw for the
guitar string where fn = nf1, with f1 = v/2L.

5.6 Poisson’s equation

• Poisson’s equation is
∇2u = f (5.139)

where f = f(r) is a source term.

• In electrostatics, f(r) is proportional to the charge density ρ(r). In Newtonian gravity, f(r) is propor-
tional to the mass density µ(r).

• The most general solution to Poisson’s equation is given by

u = uc + up (5.140)

where uc (the complementary function) is the general solution to the homogeneous equation ∇2uc = 0,
and up (a particular solution) is any solution to the inhomogeneous equation.

• The constants of integration that appear in the complementary function will be determined by the
boundary conditions.

5.6.1 Point source exterior to a grounded sphere

• Example: Determine the electrostatic potential V (r, θ, φ) due to a point charge q exterior to a grounded
sphere of radius R. Choose coordinates so that the center of the sphere is at the origin, and the point
charge is located on the z-axis a distance a from the center of the sphere.

• Answer:

V (r, θ, φ) =
q√

r2 + a2 − 2ra cos θ
− qR/a√

r2 + (R2/a)2 − 2r(R2/a) cos θ
(5.141)

• Solution method:

Differential equation:
∇2V = −4πρ(r) (in Gaussian units) (5.142)

where ρ(r) = q δ(r− aẑ).

The general solution will be
V = Vp + Vc (5.143)

where Vp is a particular solution to the above equation, and Vc is the general solution to the homoge-
neous equation ∇2Vc = 0 exterior to the sphere.
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Particular solution:
Vp(r, θ, φ) =

q

|r− aẑ|
=

q√
r2 + a2 − 2ra cos θ

(5.144)

To prove this claim we will show that

∇2

(
1

r

)
= −4π δ(r) (5.145)

Proof: For r 6= 0,

∇2

(
1

r

)
=

1

r2

∂

∂r

(
r2 ∂

∂r

(
1

r

))
=

1

r2

∂

∂r

(
r2−1

r2

)
=

1

r2

∂

∂r
(−1) = 0 (5.146)

To determine the behavior at r = 0, we integrate ∇2(1/r) over a spherical volume of radius ε, and then
take the limit ε→ 0:∫

sphere

dV ∇2

(
1

r

)
=

∮
boundary

da n̂ ·∇
(

1

r

)
= ε2

∫ 2π

0

dφ

∫ π

0

sin θ dθ
−1

r2

∣∣∣∣
r=ε

= −4π (5.147)

where we used the divergence theorem to get the first equality, and n̂ da = r̂ ε2 sin θ dθdφ to get the
second and third equalities. Note that this result is independent of ε, and thus holds for any spherical
volume that includes the origin, no matter how small.

Thus, ∇2(1/r) = 0 for all r 6= 0, but integrates to −4π for any volume that contains the origin r = 0.
This means that ∇2(1/r) = −4π δ(r) as claimed.

Complementary function:

Vc(r, θ, φ) =

∞∑
l=0

Cl r
−(l+1)Pl(cos θ) (5.148)

Notes:

1) This expansion can be taken almost directly from an earlier subsection where we considered the
steady-state temperature distribution in a sphere.

2) Like that problem, there is no m-dependence in the above expansion since the problem is azimuthally
symmetric (i.e., there is no dependence on φ).

3) Unlike that problem, the finite solution to the radial equation exterior to the sphere is

R(r) = Ar−(l+1) (5.149)

as opposed to R(r) = Arl, which was appropriate when solving Laplace’s equation interior to a sphere.

Thus,

V (r, θ, φ) =
q√

r2 + a2 − 2ra cos θ
+

∞∑
l=0

Cl r
−(l+1)Pl(cos θ) (5.150)

Apply BC that the sphere is grounded—i.e., V (R, θ, φ) = 0.

0 =
q√

R2 + a2 − 2Ra cos θ
+

∞∑
l=0

ClR
−(l+1)Pl(cos θ) (5.151)

=
q

a

∞∑
l=0

(
R

a

)l
Pl(cos θ) +

∞∑
l=0

ClR
−(l+1)Pl(cos θ) (5.152)

=

∞∑
l=0

[
q

a

(
R

a

)l
+ ClR

−(l+1)

]
Pl(cos θ) (5.153)
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where we used the generating function for Legendre polynomials

1√
1− 2xh+ h2

=

∞∑
l=0

hlPl(x) (5.154)

to get the second equality.

Thus, setting the coefficients multiplying Pl(cos θ) equal to zero implies

Cl = −qR
2l+1

al+1
(5.155)

so that

V (r, θ, φ) =
q√

r2 + a2 − 2ra cos θ
−
(
qR

a

) ∞∑
l=0

(
R2

a

)l
1

rl+1
Pl(cos θ) (5.156)

=
q√

r2 + a2 − 2ra cos θ
− qR/a√

r2 + (R2/a)2 − 2r(R2/a) cos θ
(5.157)

where we used the generating function for Legendre polynomials again to get the last line.

The interpretation of the second term is the potential due to an image point charge qI ≡ −qR/a
located at rI ≡ (R2/a)ẑ. Note that the image charge is opposite in sign to the actual charge and is
located inside the sphere, along the same line that connects the origin to the actual point charge.

Thus, the electrostatic potential exterior to a grounded sphere sphere due to a single point charge
outside the sphere is equivalent to the electrostatic potential due to the original point charge plus an
image point charge, without any grounded sphere present!

5.6.2 Green’s function methods

• Suppose you want to solve an inhomogeneous equation, like Poisson’s equation,

∇2u = f(r) (5.158)

but already know the solution G(r, r′) to the same equation with a Dirac delta function source:

∇2G(r, r′) = δ(r− r′) (5.159)

• G(r, r′) is called a Green’s function of the differential equation. One thinks of the argument r as the
field point and the argument r′ as the source point.

• If the BCs are such that both u(r) and G(r, r′) vanish on the boundary, then the solution to the original
equation is given by

u(r) =

∫
dV ′ G(r, r′)f(r′) (5.160)

• Proof:

∇2u(r) =

∫
dV ′ (∇2G(r, r′))f(r′) =

∫
dV ′ δ(r− r′)f(r′) = f(r) (5.161)

• If G(r, r′) vanishes on the boundary but u(r) does not, then the solution to the original equation is
given by

u(r) =

∫
V

dV ′ G(r, r′)f(r′) +

∮
S

da′ u(r′) n̂′ ·∇′G(r, r′) (5.162)

where S is the boundary of V and u(r′) are the values of u specified on the boundary. The vector n̂′

is the unit normal to the surface S that points outward from the volume V .

• Such a Green’s function is called a Dirichlet Green’s function.
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• From the previous subsection, we see that:

(i) the Green’s function for Poisson’s equation, which vanishes at infinity is

G(r, r′) = − 1

4π|r− r′|
(vanishes at infinity) (5.163)

(ii) the Dirichlet Green’s function for Poisson’s equation exterior to a sphere of radius R is

G(r, r′) = − 1

4π|r− r′|
+

R/r′

4π|r− (R2/r′2)r′|
(vanishes on surface of sphere) (5.164)

• NOTE: Recall that to obtain (ii), we let

G(r, r′) = − 1

4π|r− r′|
+W (r, r′) (5.165)

where W (r, r′) was the general solution to the homogeneous equation ∇2W = 0, and then chose the
arbitrary constants in the expression for W such that

G(r, r′)
∣∣∣
S

=

[
− 1

4π|r− r′|
+W (r, r′)

] ∣∣∣∣∣
S

= 0 (5.166)
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6 Complex analysis

6.1 Analytic functions

• A function f(z) of a complex variable z = x+ iy can be written as

f(z) = u(x, y) + iv(x, y) (6.1)

where u(x, y) and v(x, y) are real-valued functions of (x, y). f is a mapping from complex numbers
z = x+ iy to complex numbers w = u+ iv.

• Definition: The derivative of f(z) is defined as

f ′(z) ≡ df

dz
≡ lim

∆z→0

f(z + ∆z)− f(z)

∆z
(6.2)

The above definition is identical in form to that for a function of a real variable f(x).

• Definition: A function f(z) of a complex variable is analytic in a region of the complex plane if it
has a unique derivative at every point of the region. (By unique we mean that the limit should be
independent of how ∆z approaches 0.)

• Theorem: f(z) = u(x, y)+ iv(x, y) is analytic in a region if and only if u, v and their partial derivatives
with respect to x and y are continuous and satisfy the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(6.3)

• Proof: Using the chain rule for f(z) = f(x+ iy):

∂f

∂x
=
df

dz

∂z

∂x
=
df

dz
,

∂f

∂y
=
df

dz

∂z

∂y
= i

df

dz
(6.4)

it follows that
∂f

∂x
= −i∂f

∂y
(6.5)

In addition, since f = u+ iv:

∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
,

∂f

∂y
=
∂u

∂y
+ i

∂v

∂y
(6.6)

Thus,
∂u

∂x
+ i

∂v

∂x
= −i

(
∂u

∂y
+ i

∂v

∂y

)
(6.7)

Equating the real and imaginary parts gives

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(6.8)

• Theorem: If f = u+ iv is analytic, then both u and v satisfy the 2-dimensional Laplace equation:

∇2u = 0 , ∇2v = 0 (6.9)

Conversely, any function u (or v) that satisfies the 2-dimensional Laplace equation in a simply-
connected region is the real (or imaginary) part of an analytic function f(z) = u+ iv.

• Terminology: Any function that satisfies the 2-dimensional Laplace equation is said to be a harmonic
function.
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• Exercise: Show that u(x, y) = x2 − y2 satisfies the 2-dimensional Laplace equation, and then find an
analytic function f for which u is the real part. (The corresponding u and v are called conjugate
harmonic functions.)

• Answer: v(x, y) = 2xy + C, where C is a constant. The resulting function is f(z) = z2 + C.

• Definitions:

(i) z0 is a regular point of f(z) if f is analytic at z0.

(ii) z0 is a singular point of f(z) if f is not analytic at z0.

(iii) z0 is an isolated singular point of f(z) if f is analytic at every other point inside some small circle
centered at z0.

• Theorem: If f(z) is analytic in a region, then it has derivatives of all orders at points inside the region,
and it can be expanded in a Taylor series about any point z0 inside the region. The Taylor series
converges inside the circle about z0 that extends to the nearest singular point of f(z).

• The above theorem is a very powerful result. For functions of a real variable, being differentiable does
not imply infinitely differentiable. An example is

f(x) =

{
0 x ≤ 0
x2 x ≥ 0

(6.10)

This function is continuous and once differentiable with

f ′(x) =

{
0 x ≤ 0

2x x ≥ 0
(6.11)

But because f ′(x) has a kink at x = 0 it is not differentiable there (the derivative from the left is zero;
the derivative from the right is two). Thus, the second derivative of f(x) at x = 0 does not exist even
though the first derivative did exist.

6.2 Contour integration

• Definition: A simple closed curve is a curve that does not intersect itself and has at most a finite number
of kinks.

• Cauchy’s theorem: If f(z) is analytic inside and on a simple closed curve C, then∮
C

f(z) dz = 0 (6.12)

• Proof: (We will assume that f ′(z) is continuous, which is not necessary, but makes the proof easier.)
We will also use Green’s theorem in the plane∮

C

P dx+Qdy =

∫
S

(
∂Q

∂x
− ∂P

∂y

)
dxdy (6.13)

which is valid for continuous P , Q, and their partial derivatives, and which follows from Stokes’ theorem∮
C

F · ds =

∫
S

(∇× F) · n̂ da (6.14)

for

F(x, y) = P (x, y) x̂ +Q(x, y) ŷ , ds = dx x̂ + dy ŷ (6.15)
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Thus, ∮
C

f(z) dx =

∮
C

(u+ iv)(dx+ idy) (6.16)

=

∮
C

[u dx− v dy] + i

∮
c

[v dx+ u dy] (6.17)

=

∫
S

(
−∂v
∂x
− ∂u

∂y

)
dxdy + i

∫
S

(
∂u

∂x
− ∂v

∂y

)
dxdy (6.18)

= 0 (6.19)

where the third equality follows from Green’s theorem and the fourth equality follows from the Cauchy-
Reimann equations, since f(z) is analytic.

• Cauchy’s integral formula: If f(z) is analytic inside and on a simple closed curve C, then the value of
f(z) at a point z = a inside C is given by

f(a) =
1

2πi

∮
C

f(z)

z − a
dz (6.20)

• Proof: Consider a simple closed curve Γ which consists of C (traversed counter-clockwise) and a small
circle C ′ centered at a (traversed clockwise) connected by a straight line, which is traversed in both
directions. Then inside and on Γ, the function f(z)/(z − a) is analytic so

0 =

∮
Γ

f(z)

z − a
dz =

∮
C,ccw

f(z)

z − a
dz +

∮
C′,cw

f(z)

z − a
dz =

∮
C,ccw

f(z)

z − a
dz −

∮
C′,ccw

f(z)

z − a
dz (6.21)

Thus ∮
C

f(z)

z − a
dz =

∮
C′

f(z)

z − a
dz (6.22)

where both C and C ′ are traversed counter-clockwise. But since C ′ is a small circle centered at a, we
can write

z − a = ρeiφ , dz = iρeiφ dφ (6.23)

for which ∮
C′

f(z)

z − a
dz ≈ f(a)

∮
C′

dz

z − a
= f(a)

∫ 2π

0

iρeiφ

ρeiφ
dφ = 2πif(a) (6.24)

Note that we used the fact that ρ can be arbitrarily small to approximate f(z) by f(a) around C ′.
Thus,

f(a) =
1

2πi

∮
C

f(z)

z − a
dz (6.25)

which is the desired result.

• One often rewrites Cauchy’s integral formula as

f(z) =
1

2πi

∮
C

f(w)

w − z
dw (6.26)

which has the following interpretation: A function f(z) which is analytic inside a region bounded by
a simple closed curve C is completely determined by its values on the boundary C.

• Exercise: Show that ∮
C

dz

(z − z0)n
=

{
2πi n = 1
0 for any other integral value of n

(6.27)

for C a circle of radius ρ centered at z0.
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6.3 Laurent series

• Theorem: Let C1, C2 be two circles centered at z0. Suppose f(z) is analytic in the region between C1

and C2. Then we can expand f(z) as a Laurent series about z0:

f(z) = a0 + a1(z − z0) + a2(z − z0)2 + · · ·+ b1(z − z0)−1 + b2(z − z0)−2 + · · · (6.28)

where

an =
1

2πi

∮
C

f(z) dz

(z − z0)n+1
, bn =

1

2πi

∮
C

f(z) dz

(z − z0)−n+1
(6.29)

and C is any simple closed curve surrounding z0 and lying in the region between C1 and C2.

• Proof: To derive the above expressions for an and bn, divide f(z) by the appropriate power of (z− z0)
and integrate around C. Use the result of the exercise at the end of the previous section to evaluate
the integrals.

• Notes:

(i) The part of the expansion involving the b terms is called the principal part of the Laurent series.

(ii) The inner circle C1 might be a point and the outer circle C2 might have infinite radius.

• Important series expansions:

1

1− z
= 1 + z + z2 + z3 + · · · , |z| < 1 (6.30)

1

1 + z
= 1− z + z2 − z3 + · · · , |z| < 1 (6.31)

• Exercise: Show that the function

f(z) =
12

z(2− z)(1 + z)
(6.32)

can be expanded in three different ways:

(i) For 0 < |z| < 1:

f(z) =
6

z
− 3 +

9

2
z − 15

4
z2 +

33

8
z3 + · · · (6.33)

(ii) For 1 < |z| < 2:

f(z) = 1 +
z

2
+
z2

4
+ · · ·+ 2

z
+ 4

(
1

z2
− 1

z3
+ · · ·

)
(6.34)

(iii) For 2 < |z|:

f(z) = −12

z3

(
1 +

1

z
+

3

z2
+

5

z3
+ · · ·

)
(6.35)

Hint: Use partial fractions to write

f(z) =
12

z(2− z)(1 + z)
=

4

z

(
1

1 + z
+

1

2− z

)
(6.36)

and then expand 1/(1 + z) for |z| < 1 and |z| > 1, and 1/(2− z) for |z| < 2 and |z| > 2, etc.

• Definitions:

Let f(z) be expanded in a Laurent series that converges around z0.

(i) If all the b’s are zero, then f(z) is analytic at z0 and z0 is a regular point of f(z).

(ii) If bn 6= 0, but all the b’s after bn equal zero, then f(z) is said to have a pole of order n at z0. If
n = 1, z0 is called a simple pole.

(iii) If an infinite number of b’s are non-zero, then f(z) is said to have an essential singularity at z = z0.

(iv) The coefficient b1 of 1/(z − z0) is called the residue of f(z) at z0, denoted Res(f, z0).
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• Example: The function

f(z) = ez = 1 + z +
1

2!
z2 + · · · (6.37)

is analytic at z = 0. The residue of ez at z = 0 is 0.

• Example: The function

f(z) =
ez

z3
=

1

z3
+

1

z2
+

1

2!

1

z
+

1

3!

1

z2
+ · · · (6.38)

has a pole of order 3 at z = 0. The residue of ez/z3 at z = 0 is 1/2!.

• Example: The function

f(z) = e1/z = 1 +
1

z
+

1

2! z2
+ · · · (6.39)

has an essential singularity at z = 0. The residue of ez at z = 0 is 1.

6.4 Residue theorem

• Theorem: Let f(z) be analytic inside and on some simple closed curve C except for possibly a finite
number of isolated singularities. Then∮

C

f(z) dz = 2πi
∑
i

residues of f(z) inside C (6.40)

where the summation is over all the singular points of f inside C.

• Proof: Consider a simple closed curve Γ consisting of C (traversed counter-clockwise) and small circles
C1, C2, C3, ... centered at the singularities z1, z2, z3, ... (traversed clockwise) connected by cuts, and
proceed as in the proof of Cauchy’s integral formula. One finds∮

C

f(z) dz =
∑
i

∮
Ci

f(z) dz (6.41)

where each of the curves are traversed in the counter-clockwise direction. For each of the integrals on
the RHS, make a Laurent series expansion of f(z) about the singularity zi inside Ci, which leads to∮

Ci

f(z) dz = 2πib1 = 2πi · (residue of f(z) at zi) (6.42)

Thus, ∮
C

f(z) dz = 2πi
∑
i

residues of f(z) inside C (6.43)

as claimed.

• Methods for finding residues of f(z) at an isolated singular point z0:

(a) Laurent series: If one has a Laurent series expansion of f(z) about z0, then the residue of f(z) at
z0 is simply the coefficient b1 of the 1/(z − z0) term in the expansion.

(b) Simple pole: If z0 is a simple pole of f(z), then

Res(f, z0) = lim
z→z0

(z − z0)f(z) (6.44)

The proof of this follows from the Laurent series expansion of f(z) about z0.

(c) Pole of order n: If z0 is a pole of order n of f(z), then

Res(f, z0) = lim
z→z0

{
1

(m− 1)!

dm−1

dzm−1
[(z − z0)mf(z)]

}
(6.45)

where m is any integer m ≥ n. The proof of this follows again from the Laurent series expansion of
f(z) about z0.
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6.5 Evaluation of definite integrals

6.5.1 Integrals of trig functions

• Let G(sin θ, cos θ) be any rational function of sin θ and cos θ, whose denominator is never zero for any
value of θ between 0 and 2π. Then the integral

I =

∫ 2π

0

dθ G(sin θ, cos θ) (6.46)

can be cast as a contour integral around the unit circle by making the substitutions

z = eiθ , dz = zi dθ , cos θ =
1

2
(z + z−1) , sin θ =

1

2i
(z − z−1) (6.47)

and can then be evaluated using the residue theorem.

• Example:

I =

∫ 2π

0

dθ

5 + 4 cos θ
=

2π

3
(6.48)

6.5.2 Indefinite integrals

• Consider the rational function P (x)/Q(x), where P (x) and Q(x) are polynomials with the degree of Q
at least two greater than the degree of P , and assume that Q(z) has no zeros on the real axis. Then
the indefinite integral

I =

∫ ∞
−∞

dx
P (x)

Q(x)
(6.49)

can be evaluated as a contour integral around the closed boundary of a semi-circular region extending
to infinity. The contribution to the integral from the semi-circular part of the contour is zero in the
limit that the radius ρ→∞.

• Example:

I =

∫ ∞
−∞

dx

1 + x2
= π (6.50)

• Theorem: Suppose P (x) and Q(x) are polynomials with the degree of Q at least one greater than the
degree of P . (Note that Q(z) may have zeros on the real axis.) Then the above method can be used
to calculate the indefinite integrals

I =

∫ ∞
−∞

dx
P (x)

Q(x)
cos(mx) , I =

∫ ∞
−∞

dx
P (x)

Q(x)
sin(mx) (6.51)

provided one adds half of the residues of the simple poles on the real axis to the residues due to
singularities inside the contour.

• Example: ∫ ∞
−∞

dx
cosx

x
= 0 ,

∫ ∞
−∞

dx
sinx

x
= π (6.52)

6.5.3 Principal value of an integral

• Suppose we want to evaluate the definite integral
∫ b
a
dx F (x), but the integrand F (x) is singular at

x = x0 ∈ [a, b]. We define the principal value of the integral to be

PV

∫ b

a

dx F (x) = lim
ε→0

[∫ x0−ε

a

dx F (x) +

∫ b

x0−ε
dx F (x)

]
(6.53)
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• NOTE: The calculation of the integral from the previous example∫ ∞
−∞

dx
cosx

x
= 0 (6.54)

where we used a contour that avoided the singularity at x = 0 is an example of calculating the principal
value of an integral.

• Example:

PV

∫ 5

0

dx

x− 3
= ln(2/3) , (6.55)

• Example:

PV

∫ ∞
−∞

dx

x3
= 0 (6.56)

6.5.4 Integrals of multivalued functions

• Multivalued functions like zp can be integrated provided we chose a contour that stays within a single
branch of the function. For example, integrals of certain real-valued functions from 0 to ∞ can be
evaluated by chosing a circular contour in the complex z-plane with a branch cut along the positive
x-axis that encircles the origin. [On the portion of the cut just above the positive x-axis, θ = 0, so
z = rei0 = r. Just below the positive x-axis, we have θ = 2π, so z = rei2π.]

• Example: ∫ ∞
0

dx

√
x

1 + x2
=

π√
2

(6.57)

• Example: ∫ ∞
0

dr
rp−1

1 + r
=

π

sinπp
, 0 < p < 1 (6.58)

6.5.5 Argument principle

• Consider a function f(z) which has a finite number of poles inside some simple closed curve C and
does not vanish anywhere on C. Then∮

c

f ′(z) dz

f(z)
= 2πi(N − P ) = i∆ΘC (6.59)

where N (and P ) are the total number of zeros (and poles) of f(z), and ∆ΘC is the change in the
angle of f(z) around the contour. (Zeros (poles) of order n are counted as n zeros (poles).)

• Example: The function f(z) = z3 + 4z + 1 has exactly one zero in the first quadrant. [HINT: To
prove this, evaluate the change in the angle of f(z) around the boundary of a quarter circle in the first
quadrant, extending to infinity.]

6.5.6 Inverse Laplace transform

• Recall that the Laplace transform F (p) of a function f(t) is defined as:

F (p) =

∫ ∞
0

dt f(t)e−pt , Re(p) > k (6.60)
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• Theorem: The inverse Laplace transform of F (p) is given by

f(t) =
1

2πi

∫ c+i∞

c−i∞
dp F (p)ept , t > 0 (6.61)

=
∑
i

residues of F (p)ept at all poles (6.62)

where c = const > k. To obtain the last equality, we consider a contour that is the boundary of a
semi-circular region to the left of the line x = c, in the limit that the radius of the semi-circle goes to
infinity.

• Proof: To derive the above expression for the inverse Laplace transform, substitute p = x + iy in the
definition of the Laplace transform and compare the resulting expression with the Fourier transform of

φ(t) ≡
{
f(t)e−xt , t > 0

0 t < 0
(6.63)

Then take the inverse Fourier transform to solve for φ(t) and then f(t).

• The above integral for the inverse Laplace transform is called the Bromwich integral.

• Example:

F (p) =
5

(p+ 2)(p2 + 1)
(6.64)

has inverse Laplace transform

f(t) = e−2t + 2 sin t− cos t , t > 0 (6.65)
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