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Load relevant packages

0. Useful mathematical identities, special functions, etc.
Review of vector calculus, calculus of variations, linear algebra, ...

Trig identities

Double-angle formulae

Hyperbolic function identities

Some standard integrals

Beta function, Gamma function

Elliptic functions and elliptic integrals

1. Lagrangian mechanics (1-5)
Write down the Lagrangian for a simple system in terms of generalized coordinates.

Distinguish generalized coordinates from Cartesian coordinates.

Write down Lagrange's equations.

Define the action in terms of the Lagrangian, and derive Lagrange's equations starting from the action.

Show that Lagrange's equations are unchanged if one adds a total time derivative  to .

Include holonomic and non-holonomic constraint forces in the Lagrangian formalism by introducing Lagrange multipliers.

Define and give examples of a closed system, constant external field, and uniform field.

2. Conservation laws (6-10)
Show how conservation of energy, momentum, and angular momentum are connected to time translation, space translation, and rotational symmetry.

Derive the transformation equations for energy, momentum, and angular momentum from one inertial frame  to another .

Write down the general expression for the energy function .

Explain what it means for a function to be homogeneous of degree .

Write down the expression for the generalized momentum .

Write down the expression for the center of mass (COM) of a system of particles.

Write down the virial theorem for a system whose motion takes place in a finite region of space and whose potential energy is a homogoneous function of degree .

3. Hamiltonian mechanics (40)
Write down the Hamiltonian  for a simple system starting from a Lagrangian .

Write down Hamilton's equations for  and .

Explain the fundamental difference between Hamilton's equations and Lagrange's equations.

Show the equivalence of Hamilton's equations and Lagrange's equation for simple systems.

4. Central force motion (11, 13-15)
Write down an integral expression for  in terms of  for 1-d motion in a constant external field .

Determine the allowed values of the energy and turning points for 1-d motion in a constant external field.

Transform the problem of two interacting particles into an effective one-body problem by working in the COM frame.

Show that both energy and angular momentum are conserved for a central potential.

Write down an expression for the effective potential  in terms of  and .

Plot the effective potential for some simple central force potentials.

From the graph of the effective potential, determine the different types of allowed motion.

Write down integral expressions for  and  in terms of  for a general central potential.

Evaluate these two integrals for Kepler's problem for bound orbits, using appropriate trig substitutions.

Derive the relationship between , , , , , and  for an ellipse.

State the only two central potentials that have closed bound orbits.

State and derive Kepler's three laws of planetary motion.

Explain the difference in  and  for elliptical, parabolic, and hyperbolic motion.

5. Collisions and scattering (16-20)
Draw diagrams relating velocities in the lab and COM frames for the disintegration of a single particle.

Draw diagrams relating the momenta in the lab and COM frames for an elastic collision of two particles (  initially at rest in the lab frame).

Explain what information can and cannot be obtained for an elastic collison of two particles, using just conservation of momentum and kinetic energy.

Derive formulas relating the scattering angles , ,  in the COM and lab frames.

Draw diagrams showing how the scattering angle  is related to the angle of closest approach .

Relate the impact parameter  and initial velocity  to the energy  and angular momentum .

Derive an integral expression for  and solve it for simple potentials---e.g.,  for Rutherford scattering.

Write down expressions for  in terms of , , , , or , , .

Explain how one can obtain an expression for small-angle scattering starting from the integral equation for .

6. Small oscillations (21-23)
Explain what stable equilibrium means in terms of the potential energy .

Calculate the frequency for small oscillations about a position of stable equilibrium.

Solve the equations of motion for both free and forced oscillation in one dimension, noting the difference between the general solution of the homogeneous equation and a

particular integral of the inhomogeneous equation.

Calculate the normal mode frequencies and normal mode solutions for small oscillations of systems with more than one DOF.

7. Rigid body motion (31-36, 38)
Draw a diagram showing the body frame and fixed inertial reference frame.

Show that the angular velocity vector is unchanged under a shift of the origin of the body frame.

Write down an expression for the components  of the inertia tensor as a sum over discrete mass points or as an integral over the volume of the body.

Indicate how the components of the inertia tensor change if you shift the origin of the body frame.

Obtain or identify the principal axes of inertia for various rigid bodies.

Calculate the principal moments of inertia for various rigid bodies.

Calculate the kinetic energy of a rigid body in terms of its COM motion and rotational kinetic energy.

Write down an expression for the angular momentum vector  in terms  and .

Write down the equations of motion for a rigid body with respect to an inertial frame.

Derive Euler's equations for rigid body motion (equations of motion in the body frame).

Draw a diagram showing the definition of the Euler angles .

Calculate the components of  wrt the body frame in terms of the Euler angles and their time derivatives.

Solve for the reaction forces for rigid bodies in static equilibrium.

8. Non-inertial reference frames (39)
Draw a diagram relating an inertial and non-inertial reference frame.

Write down the relationship between velocity vectors in inertial and non-inertial reference frames.

Distinguish non-inertial reference frames associated with translational and rotational motion.

Derive the Coriolis, centrifugal, translational acceleration, and rotational acceleration fictitious force terms.

Explain the physical significance of Foucault's pendulum.

0. Useful mathematical identities, special functions, etc.
1) Review of vector calculus, etc.: https://link.springer.com/content/pdf/bbm%3A978-3-319-68780-3%2F1.pdf

2) Trig identities:

3) Double-angle formulae:

4) Hyperbolic function identities:

5) Some standard integrals:

6) Beta function and Gamma function:

 is a generalization of the factorial function :

Useful value:

7) Elliptic functions and integrals:

Consider an ellipse with semi-major axis , semi-minor axis , and eccentricity :

As usual let

For a given , define the following three functions

where the argument  is defined by

Then it's easy to show that

where we have dropped the  dependence above (and henceforth) to simplify the notation.

One can also prove the following differential identities:

These equations can be integrated, e.g., the first being

or, equivalently,

This equation is typically written in mathematical handbooks as the Jacobi elliptic function of the 1st kind with amplitude  and modulus :

Setting  gives the complete elliptic integral of 1st kind:

There are also Jacobi elliptic functions and complete elliptic integrals of the 2nd and 3rd kind:

2nd kind:

3rd kind:

The Jacobi elliptic functions and complete elliptic integrals of the 2nd kind arise when computing the arclength along the circumference of an ellipse.

NOTE: The functions ,  are generalizations of the circular functions ,  to an ellipse with eccentricity . When , , , , and 

.

The Jacobi elliptic parameter  is related to  via:

The angle  gives us a different parameterization of the ellipse defined by

Note that  is not the same as the polar coordinate angle  nor the elliptic parameter . These three parameters are related by

1. Lagrangian mechanics (1-5)
1) Write down the Lagrangian for a simple system in terms of generalized coordinates.

Example:

More generally:

for a system of particles in an external field.

2) Distinguish generalized coordinates from Cartesian coordinates.

Example: Double pendulum

Use the two angles ,  for the generalized coordinates , , as opposed to the Cartesian coordinates  and , which are subject to constraints imposed by the

pendulum rods.

3) Write down Lagrange's equations.

This is of the form

where  and , for the case where the kinetic energy  does not depend explicitly on .

4) Define the action in terms of the Lagrangian, and derive Lagrange's equations starting from the action.

Action:

Lagrange's equations are obtained by setting  for variations  that vanish at the end points  and .

The following derivation is for a single degree of freedom. For multiple degrees of freedom, we should vary each ,  independently.

Derivation:

Integrate the second term by parts using

obtaining

The last two terms vanish given the condition that the variations  vanish at  and . Since  is arbitrary, setting  is equivalent to the integrand vanishing:

5) Show that Lagrange's equations are unchanged if one adds a total time derivative  to .

Define

Then

From this we see that , since  at  and . So the EOMs for  and  are the same.

Note: one can obtain the same result by working directly with Lagrange's equations for  and .

6) Include holonomic and non-holonomic constraint forces in the Lagrangian formalism by introducing Lagrange multipliers.

(i) Holonomic constraints are relationships between the generalized coordinates and possibly time

where  labels the different constraints. Holonomic constraints can be included in the Lagrangian formalism by adding to the Lagrangian a term of the form , where 

 are the so-called Lagrange multipliers. The modified equations of motions are then

Together with the constraint equations, these are  equations for the  unknowns  and . Note that the generalized constraint force  is orthogonal to

the constraint surface.

(ii) Non-holonomic constraints are relationships between the coordinate differentials

that cannot be integrated to yield relations between just the generalized coordinates. Non-holonomic constraints can be included in the Lagrangian formalism at the level of the

variation of the action. The modified equations of motion are

where  are Lagrange multipliers. Together with the constraint equations, these are  equations for the  unknowns  and .

Examples of non-holonomic constraints include dissipative forces like friction, and the reaction force for a sphere that rolls without slipping or pivoting on a horizontal surface:

where  is the velocity of the COM of the sphere of radius ,  is the angular velocity vector, and  is a unit vector normal to the surface.

7) Define and give examples of a closed system, constant external field, and uniform field.

Closed system: The potential  is a function of only the relative position vectors , etc.

Constant external field: The potential  has no explicit time dependence

Uniform field: The potential , where  is independent of , , etc. Thus,  has no position dependence.

The Newtonian gravitational field near the surface of the Earth, , is an example of a constant, external, uniform field.

2. Conservation laws (6-10)
1) Show how conservation of energy, momentum, and angular momentum are connected to time translation, space translation, and
rotational symmetry, respectively.

Symmetry of the Lagrangian means that  under a transformation of time, space, ...

(i) Time translation symmetry:

for which

Then  for all  implies

Using Lagrange's equation, we can replace  by  for which

Thus,

This is conservation of energy.

(ii) Space translation symmetry:

for which

Then  for all  implies

where the second equality follows from Lagrange's equations.

Thus,

This is conservation of total linear momentum.

(iii) Rotational symmetry:

for which

Then  for all  implies

where the second equality follows from Lagrange's equations.

Thus,

This is conservation of total angular momentum.

2) Derive the transformation equations for energy, momentum, and angular momentum from one inertial frame  to another .

Consider two inertial frames  and , with  moving with velocity  wrt . To simplify the calculations, assume that the origin of the two coordinate systems coincide at the

instant under consideration, so that the position vectors  and  of mass point  wrt to the two inertial frames agree.

The velocities  and  wrt the two frames are related by

Energy:

Now

where  is the total mass, and  and  are the energy and the total momentum wrt .

Thus

Momentum:

Angular momentum:

where  is the position vector of the COM wrt .

In summary:

3) Write down the general expression for the energy function .

4) Explain what it means for a function to be homogeneous of degree .

A function  is homogeneous of degree  if

For such a function

which can be proved by differentiating both sides of the first equation with respect to , and then evaluating at .

Example: the kinetic energy

is homogeneous of degree 2 in the generalized velocities , so that

5) Write down the expression for the generalized momentum .

6) Write down the expression for the center of mass (COM) of a system of particles.

7) Write down the virial theorem for a system whose motion takes place in a finite region of space and whose potential energy is a
homogoneous function of degree  in the coordinates.

Recall that the virial theorem relates the time-averaged KE to the time-averaged potential energy.

For Newtonian gravity, with a mass  in circular orbit of radius  about a fixed mass :

which implies

More generally, for a potential that is homogeneous of degree :

where angle bracket means time average:

For Newtonian gravity, the potential  is homogeneous of degree .

Proof:

If  is homogeneous of degree , then

The LHS of the above equation can be written as

where the first equality follows from Lagrange's equations and the second equality follows from the product rule.

Thus,

The last term equals twice the kinetic energy  since , and the first term vanishes if we take the time average, assuming that the motion is bounded (i.e., finite velocities

and finite distances). Thus,

3. Hamiltonian mechanics (40)

1) Write down the Hamiltonian  for a simple system starting from a Lagrangian .

General relationship:

where on the RHS all of the  are expressed in terms of , , and .

1-d example:

has

leading to

2) Write down Hamilton's equations for  and .

EOMs:

3) Explain the fundamental difference between Hamilton's equations and Lagrange's equations.

Hamilton's equations are  first-order differential equations for , , while Lagrange's equationis are  second-order equations for .

4) Show the equivalence of Hamilton's equations and Lagrange's equation for simple systems.

In [1]: %load_ext autoreload
%autoreload 2

In [2]: import numpy as np
import scipy.special as special
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.lines as lines
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

mpl.rcParams['figure.dpi'] = 100
#mpl.rcParams['figure.figsize'] = [5,3]
mpl.rcParams['text.usetex'] = True
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4) Show the equivalence of Hamilton's equations and Lagrange's equation for simple systems.

For the above 1-d Lagrangian and Hamiltonian we have:

Lagrange's equation:

Hamilton's equations:

Solving the first of Hamilton's equations for , and then substituting this solution into the second equation yields:

which is the same as Lagrange's equation.

4. Central force motion (11, 13-15)

1) Write down an integral expression for  in terms of  for 1-d motion in a constant external field .

Conservation of energy:

where  is a constant. This is a separable differential equation with

2) Determine the allowed values of the energy and turning points for 1-d motion in a constant external field.

Allowed values of the energy:

since kinetic energy is positive.

Turning points are solutions to the equation .

3) Transform the problem of two interacting particles into an effective one-body problem by working in the COM frame.

Lagrangian for two interacting particles:

Total momentum in conserved since  is unchanged by a spatial translation . Thus, we can work in the COM frame where the COM is the origin of coordinates:

In terms of the relative separation vector

we have

The kinetic energy becomes

where

is the reduced mass. Thus,

4) Show that both energy and angular momentum are conserved for a central potential.

For a central potential,  depends only on the magnitude of the relative separation vector

Energy

is conserved since the Lagrangian does not depend explicitly on time.

Angular momentum

is conserved since the Lagrangian is unchanged by a rotation

Since  is conserved, we can choose the orientation of our COM frame such that  points along the -axis. Then the motion is in the -plane and we can write the Lagrangian in

terms of plane-polar coordinates  and their time derivatives:

Conservation of angular momentum then manifests itself as conservation of

since  does not depend explicitly on . Taking the derivative, we have

or, equivalently,

5) Write down an expression for the effective potential  in terms of  and .

Energy:

with

6) Plot the effective potential for some simple central force potentials.

The code below produces plots for the following potentials:

Newtonian gravity: 

3d harmonic oscillator: 

General relativity: 

Text(0.5, 1.0, 'Newtonian gravity')

Text(0.5, 1.0, '3d harmonic oscillator')

Text(0.5, 1.0, 'General relativity')

7) From the graph of the effective potential, determine the different types of allowed motion.

Different values of the energy  determine the different types of allowed motion.

Example: Newtonian gravity ( )

: not allowed

: stable circular orbit

: bound (elliptical) orbit

: (parabolic) scattering orbit

: (hyperbolic) scattering orbit

For more general potentials, the bound and scattering orbits need not be conic sections.

8) Write down integral expressions for  and  in terms of  for a general central potential.

Start with the energy equation written in the form:

This is a separable equation for , which can be solved for  as

To obtain an integral expression for  in terms of , use the conservation of angular momentum equation

which implies

This leads to separable equation for , which can be solved for  as

9) Evaluate these two integrals for Kepler's problem for bound orbits, using appropriate trig substitutions

Kepler's problem:  where  with

denoting the total and reduced mass of the system.

For bound orbits, .

(i) To solve the orbit equation for , first make the substitution  in the  integral:

This integral now has the standard form

which can either be looked up in a handbook of integrals or solved by completing the square of the expression inside the square root. What type of substitution you make depends on

the sign of .

Completing the square:

where

Thus,

This suggests the trig substitution

for which the integral becomes

It is convenient to choose the constant such that  where  for the orbit. Then

But since  is a turning point of the motion, it follows that

Thus, making this substitution for the constant, and solving for , we obtain

This has the form of an ellipse

where  is the semi-latus rectum of the ellipse and  is the eccentricity (discussed in detail below). Solving for  and :

Using the fact that the semi-major axis  and semi-latus rectum  for an ellipse are related by

it follows from the above expressions that

(ii) To solve for the time dependence of the orbit, we rewrite the time integral as

where we have simplified the square-root in the denominator by pulling out a factor of .

We then use the expressions

to further simplify the integral:

Completing the square in the square root is now easy:

where we used  to get the last equality. This suggests the trig substitution

where we have chosen to use a cosine function so that  corresponds to . Making this substitution into the integral yields

where we have set the constant to zero so that  corresponds to .

Thus, we have the parametric representation

We can also find an expression for  and  in terms of :

We start with

Using

it follows that

Substituting for  then gives

To find

we write it instead as

Substituting for  and  in terms of  gives:

A complete orbit is traversed when  goes from 0 to .

Parametric representation of the time-evolution of an elliptical orbit

Text(0.5, 1.0, 'elliptical orbit')

10) Derive the relationship between , , , , , and  for an ellipse.

Central force motion is described by two parameters, e.g.,

 and  (the energy and angular momentum of the motion)

 and  (the semi-major and semi-minor axes of the ellipse)

 and  (the semi-major axis and eccentricity of the ellipse)

 and  (the semi-major axis and semi-latus rectum of the ellipse)

 and  (the minimum and maximum radii, perihelion and aphelion for motion around the Sun)

or other combinations of the above

It is useful to be able to derive expressions relating the different parameterizations.

Ellipse: 

Using that fact that

where  and  are the distances from the two focals points to a point on the ellipse, one can show that

We also have

We also showed earlier that

so that  only depends on  and  only depends on .

These last two results can also be derived from the conservation of energy equation:

evaluated at  and , where . One then has two equations which can be solved for  and  in terms of  and  (or  and , which

leads back to the boxed equations.

11) State the only two central potentials that have closed bound orbits.

 (Newtonian gravity)

 (3d harmonic oscillator)

Other potentials can have bound orbits, but they won't be closed. For example, precessing ellipses in general relativity (perihelion precession of Mercury).

12) State and derive Kepler's three laws of planetary motion.

Kepler's laws:

I. Planets go around the Sun in elliptical orbits with the Sun at one focus

II. A line connecting a planet to the Sun sweeps out equal areas in equal times

III.  for all planets, where  is the orbital period of a planet and  is the semi-major axis of its elliptical orbit around the Sun

NOTE: Kepler's laws need to be adjusted slightly given the finite mass of the Sun. Since the Sun has finite mass, the focal point of the elliptical orbit is actually at the COM of the planet

and the Sun. Also, the constant in Kepler's 3rd law is not related to the mass of the Sun but to the total mass of the Earth-planet system.

Proof:

I. We already proved this law by integrating the orbit equation to find  as a function of .

II. Equal areas in equal times means that  should be constant. From the following figure

we see that the differential area swept out in time interval  is approximately a triangle, so

Dividing both sides by  and using , it follows that

Note that Kepler's 2nd law is a consequence of conservation of angular momentum, and is therefore valid for any central potential.

III. For Kepler's 3rd law, we need to calculate the period of a planet's orbit around the Sun. This can be obtained by integrating Kepler's 2nd law for one complete elliptical orbit:

where we used  for the area of an ellipse.

Then substituting for

we get

so

which is the desired result. In terms of the angular frequency , we have

13) Explain the difference in  and  for elliptical, parabolic, and hyperbolic motion.

Elliptical orbits: , 

Parabolic (scattering) motion: , 

Hyperbolic (scattering) motion: , 

5. Collisions and scattering (16-20)
1) Draw diagrams relating velocities in the lab and COM frames for the disintegration of a single particle.

Notation:

 is the velocity of one of the particles produced by the disintegration as seen in the COM frame

 is its velocity with respect to the lab frame

 is the velocity of the COM of the system (i.e., the velocity of the particle in the lab frame before disintegration)

 is the angle that  makes wrt  as seen in the COM frame

 is the angle that  makes wrt  as seen in the lab frame

Case : 

Case : 

For the case , the particles produced by the disintegration are emitted only in the forward direction as seen in the lab frame, . The maximum angle  is

2) Draw diagrams relating the momenta in the lab and COM frames for an elastic collision of two particles (  initially at rest in the
lab frame).

Notation:

,  are the momenta of the two particles as seen in the lab frame after the collision

 is the direction of particle 1 as seen in the COM frame after the collision (subscript '0' denotes quantities wrt COM frame)

 is the magnitude of the relative velocity vector  before the collision (note: )

 is the reduced mass of the system, 

 is the velocity of the COM of the system  since 

 is the angle that particle 1 makes wrt  as seen in the COM frame

 is the angle that particle 1 makes wrt  as seen in the lab frame

 is the angle that particle 2 makes wrt  as seen in the lab frame

Case : 
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∂ẋ

∂L

∂x

dU

dx
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In [3]: # Newtonian gravity (Kepler's problem) effective potential
eps = 1e-4
r = np.linspace(eps, 5, 1000)

U = -3./r
Ueff = U + 1./r**2

plt.figure()
plt.plot(r, Ueff)
plt.axhline(y=0, color='k')
plt.xlim((0.05, 4))
plt.ylim((-4,4))
plt.xlabel('$r$')
plt.ylabel('$U_{\mathrm{eff}}$')
plt.title('Newtonian gravity')
#plt.savefig('newtonian_gravity')

Out[3]:

In [4]: # 3d harmonic oscillator effective potential
eps = 1e-4
r = np.linspace(eps, 5, 1000)

U = r**2
Ueff = U + 1./r**2

plt.figure()
plt.plot(r, Ueff)
plt.axhline(y=0, color='k')
plt.xlim((0.05, 4))
plt.ylim((-1,10))
plt.xlabel('$r$')
plt.ylabel('$U_{\mathrm{eff}}$')
plt.title('3d harmonic oscillator')
#plt.savefig('3d_harmonic_oscillator')

Out[4]:

In [5]: # GR effective potential
eps = 1e-4
r = np.linspace(eps, 5, 1000)

U1 = -3./r
U2 = -0.08/r**3
Ueff = U1 + U2 + 1./r**2

plt.figure()
plt.plot(r, Ueff)
plt.axhline(y=0, color='k')
plt.xlim((0.1, 2))
plt.ylim((-4,2))
plt.xlabel('$r$')
plt.ylabel('$U_{\mathrm{eff}}$')
plt.title('General relativity')
#plt.savefig('general_relativity')

Out[5]:
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In [6]: # parameters for ellipse
a = 1
e = 0.5
G = 1
M = 1

xi = np.linspace(0, 2*np.pi, 10000)
t = np.sqrt(a**3/(G*M)) * (xi - e*np.sin(xi))
r = a*(1-e*np.cos(xi))
x = a*(np.cos(xi)-e)
y = a*np.sqrt(1-e**2)*np.sin(xi)

plt.figure()
plt.plot(xi, t)
plt.xlabel('xi [radian]')
plt.ylabel('t')
plt.title('t versus xi')

plt.figure()
plt.plot(xi, x, xi, y, xi, r)
plt.xlabel('xi [radian]')
plt.ylabel('x, y, r')
plt.title('x, y, r versus xi')

plt.figure()
plt.plot(x,y)
plt.xlabel('x')
plt.ylabel('y')
plt.title('elliptical orbit')

Out[6]:
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Case : 

Case : 

Conservation of momentum (wrt lab frame):

In the COM frame, the total momentum is zero, since the momenta of the two particles are equal and opposite. After the collision:

Elastic collision: The magnitude  of the relative velocity vector  is the same before and after the collision, .

For the case where  is initially at rest (i.e., ) we have . Thus,

so  lies on the boundary of the circle.

For the case , we can only have forward scattering of the particles in the lab frame, .

3) Explain what information can and cannot be obtained for an elastic collison of two particles, using just conservation of
momentum and kinetic energy.

An elastic collision of two particles is mostly simply analyzed in the COM frame. In this frame, the momenta of the two particles both before and after the collision are equal in

magnitude and opposite in direction. Conservation of kinetic energy implies that the magnitude of the relative velocity vector  is unchanged by the collision since

where

Hence an elastic collision can only change the direction of the relative velocity vector. This direction cannot be determined. It is denoted by  in the above figures.

4) Derive formulas relating the scattering angles , ,  in the COM and lab frames.

From either of the last two figures, one sees that

so

Also

Using

where the last two results hold since , it follows that

For differential cross-section calculations (see below), it is more convenient to invert these equations for  in terms of  and :

and

In the above equation for  in terms of , we should take the + sign for  in order that  corresponds to . For , both signs are necessary, indicating

that there are two possible values of  for a single value of .

5) Draw diagrams showing how the scattering angle  is related to the angle of closest approach .

Repulsive scattering: 

Attractive scattering: 

For repulsive scattering

For attractive scattering

Both of these relations can be captured by

6) Relate the impact parameter  and initial velocity  to the energy  and angular momentum .

Relation:

where  is the reduced mass of the system .

7) Derive an integral expression for  and solve it for simple potentials---e.g.,  for Rutherford scattering.

Start with the central force differential equation for :

Integrate the LHS from 0 to  and the RHS from  to :

If we substitute for  and  using

we obtain

Rutherford scattering:

Take . Note that  corresponds to repulsive scattering and  to attractive scattering.

Similar to what we did when solving for the orbit for Kepler's problem, make the substitution . Then  and

Again we can complete the square for the quadratic in the square root leading to a trig substitution of the form

which allows us to evaluate the integral:

For calculating the differential cross section (see below), it is useful to find an explicit relationship between the impact parameter  and scattering angle . Using the above expression

for , we get

Then using

we have

8) Write down expressions for  in terms of , , , , or , , .

Differential cross section:

In the COM frame:

In the lab frame (for particle 1):

which implies

The same applies for , .

Thus we need to be able to calculate quantities like  and .

Recall:

and

for which:

and

9) Explain how one can obtain an expression for small-angle scattering starting from the integral equation for .

Recall:

Small-angle scattering corresponds to

We expect  to deviate slightly from the  value of .

Expand the factor of 1/sqrt in the integrand:

The first term when multiplied by  and integrated from  to  gives .

The second term when multiplied by  and integrated from  to  gives

where we have substituted for  and replaced the limit  by  to get the last approximate equality.

Thus,

Now the integral

can be integrated by parts setting

for which

where the last result was obtained making the substitution  to do the integral for .

Thus,

where the first term vanishes assuming  faster than  as .

Substituting  back into the expression for  gives

which is the desired result.

6. Small oscillations (21-23)

1) Explain what stable equilibrium means in terms of the potential energy .

Stable equilibrium means there exists a local minimum at some :

2) Calculate the frequency for small oscillations about a position of stable equilibrium.

Lagrangian:

Let  be a position of stable equilibrium, and define

which implies .

Then for small deviations around ,

where

So for small deviations around 

where  and we have dropped the constant  from the Lagrangian.

Lagrange's equation:

gives

which has general solution

3) Solve the equations of motion for both free and forced oscillation in one dimension, noting the difference between the general
solution of the homogeneous equation and a particular integral of the inhomogeneous equation.

From the previous part we saw that the EOMs for free oscillations is

which has general solution

This solution can also be written as

where

or as the real part of a complex solution

Forced oscillations:

or, equivalently,

where .

This 2nd-order ODE for  can be converted to a 1st-order ODE by defining

for which

and

This is a linear 1st-order ODE for  similar to

which we can rewrite in differential notation as

Although the LHS is not an exact differential, it can be made so by multiplying by an integrating factor  for which

for some function . The integrating factor  can be found by solving

which is a consequence of

leading to

To find  we solve

The solution to the 2nd equation is

for some function .

The function  is determined by substituting this solution for  back into the 1st equation:

Substituting our previous solution for  leads to

which implies

Thus,

The solution to the original 1st-order ODE for  is then given by . So

Returning to the differential equation for , we see that  plays the role of  and  plays the role of .

Thus, the solution for  is given by

By choosing the limits on the integral to run from  to , the constant becomes . Thus,

The first term on the RHS is a particular solution  to the differential equation for ; the second term is the general solution to the homogeneous equation and involves the

complex integration constant .

To return to , we recall the definition

which implies

NOTE: The same solution for  can be obtained if we first restrict attention to a sinusoidal force

for which a particular solution of the differential equation  is then

Note that we added the last term (proportional to a solution of the homogeneous equation) so that .

By Fourier's theorem, the most general  is a superposition of sinusoidal forces:

which means that a particular solution for the most general  is a superpostion of particular solutions for sinusoidal forces:

Factoring out an  we find

Rearranging the order of the integrals then gives

which is the particular solution we found earlier.

4) Calculate the normal mode frequencies and normal mode solutions for small oscillations of systems with more than one DOF.

The Lagrangian

becomes

for small oscillations around , where

Lagrange's equations

imply

We guess a sinusoidal aolution of the form

which converts the above EOMs to

or, equivalently,

These equations have a non-trivial solution for the  only if the matrix  is not invertible.

Thus, we must have

where  means take the determinant. This is an th-order polynomial equation for the normal mode frequencies .

The normal mode oscillations are the corresponding eigenvectors , which are solutions to the matrix equation

7. Rigid body motion (31-36, 38)
1) Draw a diagram showing the body frame and fixed inertial reference frame.

Notation:

: inertial frame

: body frame (non-inertial)

: point mass  fixed in the body frame

, : position vectors of  wrt to the inertial and body frames

: position vector of the origin  of the body frame (usually taken at the COM of the body)

2) Show that the angular velocity vector is unchanged under a shift of the origin of the body frame.

Consider a shift of origin of the body frame from  to . Let  and  denote the position vectors of a mass point fixed in the rigid body wrt these two origins. Then

Wrt to the inertial frame:

where . Expanding the RHS of the above expression, we have

where

This means that the angular velocity vector  is a property of the rigid body as a whole; it is not associated with any particular point in the body.

3) Write down an expression for the components  of the inertia tensor as a sum over discrete mass points or as an integral over
the volume of the body.

Discrete mass points:

Continuous mass distribution:

where we have simply replaced  by  and the summation by an integral.

4) Indicate how the components of the inertia tensor change if you shift the origin of the body frame.

Consider a shift of the origin of the body frame from the COM to . Let  denote the position of mass point  wrt the COM and  the position of  wrt the origin at . Then

for which

where  is the total mass, and we used  (the definition of COM frame) to get the last equality.

Thus

The parallel-axis theorem is a special case of the above general result, with the moment of inertia about an axis  defined as .

5) Obtain or identify the principal axes of inertia for various rigid bodies.

With respect to principal axes , ,  passing through the COM of the body, the moment of inertia tensor is diagonal:

Principal axes always agree with symmetry axes of the body, if they exist.

If the rigid body lacks such symmetry, one can always diagonalize  (which is a real symmetric matrix) by finding the eigenvectors and eigenvalues of the matrix . The eigenvalues

are the principal moments of inertia; the eigenvectors are the principal axes.

6) Calculate the principal moments of inertia for various rigid bodies.

One can use the above expressions to calculate the principal moments of inertia for various rigid bodies consisting of either discrete mass points or for continuous mass distributions.

This is primarily an exercise in doing multi-dimensional integrals.

Simplifications occur if the rigid body has a uniform mass distribution, since the mass density  is then a constant and can be pulled out of the integral.

One needs to use the volume element appropriate for the geometry of the rigid body:

Cartesian coordinates  for box-type objects: 

Spherical coordinates  for spherical objects or ellipsoids, with the axes appropriately rescaled: 

Cylindrical coordinate  for cylinders or cones: , where 

For objects like a cone or cylinder, with degenerate prinicipal axes (  and ) in the plane perpendicular to the main symmetry axis, one can calculate  using the following

"trick":

which implies

m1 < m2, v2 = 0

m1 > m2, v2 = 0

(m1 + m2)V = p′
1 + p′

2

p′
10 = mvn0 = −p′

20

v v v = v′

m2 v2 = 0 v = v1

m2V = m2 = mv1 = mv
m1v1

m1 + m2

B

m1 > m2 θ1, θ2 < π/2

v

T = m1|v10|2 + m2|v20|2 = m|v0|2
1
2

1
2

1
2

m ≡ , v0 ≡ v10 − v20 = v1 − v2 ≡ v
m1m2

m1 + m2

n0

χ θ1 θ2

χ + 2θ2 = π (from isosceles triangle OBC)

θ2 = (π − χ)
1
2

tan θ1 =
mv sin χ

m1V + mv cos χ

m ≡ , v = v1 , V =
m1m2

m1 + m2

m1v1

m1 + m2

v2 = 0

tan θ1 =
m2 sin χ

m1 + m2 cos χ

χ θ1 θ2

cos χ = − ( ) sin2 θ1 ± cos θ1√1 − ( )2

sin2 θ1
m1

m2

m1

m2

χ = π − 2θ2

cos χ θ1 m1 < m2 χ = 0 θ1 = 0 m1 > m2

χ θ1

χ ϕ0

χ + 2ϕ0 = π

ϕ0 + (ϕ0 − χ) = π ⇒ 2ϕ0 − χ = π

χ = |π − 2ϕ0|

ρ v∞ E M

E = mv2
∞ , M = mρv∞

1
2

m m ≡ m1m2/(m1 + m2)

ϕ0 U(r) = α/r

ϕ

dϕ =
Mdr/r2

√2m(E − U(r)) − M 2

r2

ϕ0 rmin ∞

ϕ0 = ∫ ∞

rmin

Mdr/r2

√2m(E − U(r)) − M 2

r2

E M

E = mv2
∞ , M = mρv∞

1
2

ϕ0 = ∫ ∞

rmin

ρdr/r2

√1 − −
2U(r)

mv2
∞

ρ2

r2

U(r) = α/r α > 0 α < 0

u = ρ/r du = −ρdr/r2

ϕ0 = ∫ ρ/rmin

0

du

√1 − u − u22α

ρmv2
∞

u + A = B sin θ , A ≡ , B ≡ √1 + A2α

ρmv2
∞

ϕ0 = cos−1 α/ρmv2
∞

√1 + ( )2
α

ρmv2
∞

ρ χ

ϕ0

ρ = tan ϕ0
|α|

mv2
∞

ϕ0 = ∓
π

2
χ

2

ρ = cot( )|α|

mv2
∞

χ

2

dσ dρ dχ dθ1 dθ2 dΩ dΩ1 dΩ2

dσ = 2πρdρ (differential area of annular region)

dΩ = 2π sin χdχ = 2πd(cos χ) (solid angle)

=
∣
∣
∣

∣
∣
∣

= ρ
∣
∣
∣

∣
∣
∣

(absolute value to keep things positive)
dσ

dΩ
ρ

sin χ

dρ

dχ

dρ

d(cos χ)

dΩ1 = 2π sin θ1dθ1 = 2πd(cos θ1)

=
∣
∣
∣

∣
∣
∣

= ρ
∣
∣
∣

∣
∣
∣

=
∣
∣
∣

∣
∣
∣

dσ1

dΩ1

ρ

sin θ1

dρ

dθ1

dρ

d(cos θ1)
dσ

dΩ
d(cos χ)

d(cos θ1)

dσ1 =
∣
∣
∣

∣
∣
∣

dΩ1 where dΩ1 = 2π sin θ1 dθ1
dσ

dΩ
d(cos χ)

d(cos θ1)

dθ2 dΩ2

d(cos χ)/d(cos θ1) d(cos χ)/d(cos θ2)

cos χ = − ( ) sin2 θ1 ± cos θ1√1 − ( )2

sin2 θ1
m1

m2

m1

m2

χ = π − 2θ2 ⇒ cos χ = cos(π − 2θ2) = − cos(2θ2)

d(cos χ) = d(cos θ1)

⎡⎢⎢⎢⎢⎣
2 ( ) cos θ1 +

⎤⎥⎥⎥⎥⎦
(for m1 < m2)

d(cos χ) = d(cos θ1) (for m1 > m2)

(1)

(2)

m1

m2

(1 + ( )2
cos(2θ1))m1

m2

√1 − ( )2
sin2 θ1

m1

m2

2 (1 + ( )2
cos(2θ1))m1

m2

√1 − ( )2
sin2 θ1

m1

m2

d(cos χ) = −d(cos(2θ2)) = −4 cos θ2 d(cos θ2)

ϕ0

ϕ0 = ∫ ∞

rmin

ρdr/r2

√1 − −
2U(r)

mv2
∞

ρ2

r2

ϵ ≡ − ≪ 1
2U(r)

mv2
∞

ϕ0 U(r) → 0 ϕ0 = π/2

= ≈ [1 − ] = −
1

√1 − ρ2/r2 + ϵ

1

√(1 − ρ2/r2) [1 + ]ϵ

1−ρ2/r2

1

√1 − ρ2/r2

1
2

ϵ

1 − ρ2/r2

1

√1 − ρ2/r2

1
2

ϵ

(1 − ρ2/r2)3/2

ρdr/r2 rmin ∞ π/2

ρdr/r2 rmin ∞

− ∫ ∞

rmin

≈ ∫ ∞

ρ

1
2

ϵρdr/r2

(1 − ρ2/r2)3/2

1

mv2
∞

U(r)ρdr/r2

(1 − ρ2/r2)3/2

ϵ rmin ρ

ϕ0 ≈ + ∫ ∞

ρ

= + [∫ ∞

ρ

]π

2
1

mv2
∞

U(r)ρdr/r2

(1 − ρ2/r2)3/2

π

2
1

mv2
∞

∂
∂ρ

U(r)dr

√1 − ρ2/r2

I ≡ ∫ ∞

ρ

U(r)dr

√1 − ρ2/r2

u = U(r) , dv = =
dr

√1 − ρ2/r2

r dr

√r2 − ρ2

du = dr , v = √r2 − ρ2dU

dr

x = r2 − ρ2 v

I = U(r)√r2 − ρ2 ∣∣∣
∞

ρ
− ∫ ∞

ρ

dr √r2 − ρ2 = − ∫ ∞

ρ

dr √r2 − ρ2dU

dr

dU

dr

U(r) → 0 1/r r → ∞

I ϕ0

ϕ0 ≈ − [∫ ∞

ρ

dr √r2 − ρ2] = + ∫ ∞

ρ

dr
π

2
1

mv2
∞

∂
∂ρ

dU

dr

π

2
ρ

mv2
∞

dU

dr

1

√r2 − ρ2

U(q)

q0

∣∣∣q0

= 0 , ∣∣∣q0

> 0
dU

dq

d2U

dq2

L = a(q)q̇ 2 − U(q)
1
2

q0

x ≡ q − q0

ẋ = q̇

q0

U(q) = U(q0) + ∣∣∣q0

(q − q0) + ∣∣∣q0

(q − q0)2 + ⋯ ≈ U0 + kx2dU

dq

1
2

d2U

dq2

1
2

U0 ≡ U(q0) , k ≡ ∣∣∣q0

d2U

dq2

q0

L = mẋ2 − kx21
2

1
2

m ≡ a(q0) U0

( ) =
d

dt

∂L

∂ẋ

∂L

∂x

mẍ = −kx

x = c1 cos(ωt) + c2 sin(ωt) , ω ≡ √ k

m

mẍ = −kx

x = c1 cos(ωt) + c2 sin(ωt) , ω ≡ √ k

m

x = a cos(ωt + α)

a = √c2
1 + c2

2 , tan α = −c2/c1

x = re [Aeiωt] , A = aeiα

mẍ = −kx + F(t)

ẍ + ω2x =
F(t)

m

ω ≡ √k/m

x(t)

ξ ≡ ẋ + iωx

ξ̇ = ẍ + iωẋ

ξ̇ − iωξ =
F(t)

m

ξ(t)

y′(x) + P(x)y(x) = Q(x)

dy + [P(x)y − Q(x)] dx = 0

µ(x)

µ(x)dy + µ(x) [P(x)y − Q(x)] dx = dU

U(x, y) µ(x)

= (µ(x) [P(x)y − Q(x)]) = µ(x)P(x)
dµ

dx

∂
∂y

= with = µ(x) [P(x)y − Q(x)] , = µ(x)
∂2U

∂x∂y

∂2U

∂y∂x

∂U

∂x

∂U

∂y

µ(x) = eI(x) , I(x) ≡ ∫ P(x)dx

U

= µ(x) [P(x)y − Q(x)] , = µ(x) ,
∂U

∂x

∂U

∂y

U(x, y) = µ(x)y + g(x)

g(x)

g(x) U

µ′(x)y + g′(x) = µ(x) [P(x)y − Q(x)]

µ(x)

g′(x) = −µ(x)Q(x)

g(x) = − ∫ dx µ(x)Q(x) = − ∫ dx eI(x)Q(x)

U(x, y) = eI(x)y − ∫ dx eI(x)Q(x)

y U(x, y) = const

y = e−I(x) [∫ dx eI(x)Q(x) + const] , I(x) ≡ ∫ P(x)dx

ξ(t) −iω P(x) F(t)/m Q(x)

ξ(t)

ξ = eiωt [∫ dt e−iωt + const]F(t)
m

0 t ξ(0) ≡ ξ0

ξ = eiωt [∫
t

0
dt̄ e−iωt̄ + ξ0]F(t̄ )

m

ξp(t) ξ(t)
ξ0

x(t)

ξ ≡ ẋ + iωx

ẋ = re[ξ] , x = im[ξ/ω]

ξ(t)

F(t) ≡ F0eiω′t

ξ̇ − iωξ = F(t)/m

ξp(t) = (eiω′t − eiωt)F0

im(ω′ − ω)

ξp(0) = 0

F(t)

F(t) = ∫ ∞

−∞
dω′ ~

F (ω′)eiω′t

F(t)

ξp(t) = ∫ ∞

−∞
dω′ (eiω′t − eiωt)

~
F (ω′)

im(ω′ − ω)

eiωt

ξp(t) = eiωt ∫ ∞

−∞
dω′ [ei(ω′−ω)t − 1] = eiωt ∫ ∞

−∞
dω′ ∫

t

0
dt̄ ei(ω′−ω)t̄

~
F (ω′)

im(ω′ − ω)

~
F (ω′)

m

ξp(t) = eiωt ∫
t

0
dt̄ e−iωt̄ ∫ ∞

−∞
dω′ eiω′t̄ = eiωt ∫

t

0
dt̄ e−iωt̄

~
F (ω′)

m

F(t̄ )
m

L = ∑
ik

aik(q)q̇ iq̇ k − U(q)
1
2

L = ∑
i,k

mikẋiẋk − ∑
i,k

kikxixk

1
2

1
2

qi0

xi ≡ qi − qi0 , mik ≡ aik(q0) , kik ≡ ∣∣∣q0

∂2U

∂qi∂qk

( ) = , i = 1, 2, ⋯ , n
d

dt

∂L

∂ẋi

∂L

∂xi

∑
k

mikẍk = − ∑
k

kikxk , i = 1, 2, ⋯ , n

xi = Aie
iωt , i = 1, 2, ⋯ , n

∑
k

−ω2mikAkeiωt = − ∑
k

kikAkeiωt , i = 1, 2, ⋯ , n

∑
k

(kik − ω2mik)Ak = 0 , i = 1, 2, ⋯ , n

Ai (kik − ω2mik)

|kik − ω2mik| = 0 (eigenvalue equation)

| | n ω2
α

Akα

∑
k

(kik − ω2
αmik)Akα = 0 , i = 1, 2, ⋯ , n (eigenvector equation)

(X, Y , Z)
(x1, x2, x3)
m m

r r m

R O

R R′ ≡ R + a r r′

r = r′ + a

v ≡ = V + Ω × r
dr

dt

V ≡ dR/dt

v = V + Ω × (r′ + a) = V + Ω × r′ + Ω × a = V′ + Ω′ × r′

V′ ≡ = V + Ω × a , Ω′ = Ω
dR′

dt

Ω

Iik

Iik = ∑
a

ma(δik|ra|2 − rairak)

Iik = ∫ dV ρ(r) (δik|r|2 − rirk)
ma ρ(r)dV

a r m r′ m a

r = r′ + a

I ′
ik

= ∑ m(δik|r′|2 − r′
i
r′

k
) = ∑ m [δik|r − a|2 − (ri − ai)(rk − ak)] = Iik + µ (δik|a|2 − aiak)

µ ≡ ∑ m ∑ mr = 0

I ′
ik

= Iik + µ (δik|a|2 − aiak)
n̂ I(n̂) = ∑

i,k Iiknink

x1 x2 x3

Iik = Iiδik

Iik Iik

ρ(r)

(x, y, z) dV = dx dy dz

(r, θ, ϕ) dV = r2 sin θ dr dθ dϕ

(s, z, ϕ) dV = s ds dz dϕ s2 ≡ x2 + y2

x y I ≡ I1 = I2

I1 = ∫ dV ρ[r2 − x2] , I2 = ∫ dV ρ[r2 − y2] , I3 = ∫ dV ρ[r2 − z2] = ∫ dV ρ s2



Thus

where the last integral is often easy to do.

Cylinder:

Applying these results to a uniform cylinder of total mass , height , and radius , we find:

It is interesting to take the following limits:

 for a thin disk:

 for a thin rod:

Cone:

For a cone, it is simplest to first calculate the components of the inertia tensor wrt  axes with the origin at the tip of the cone and the azimuthal symmetry axis directed along 

. For a uniform right-circular cone of total mass , height , and base radius , the total volume of the cone is . The COM of mass is located at , , 

.

So we first find:

Then use

to transform the components of the inertia tensor wrt the primed axes  to the principal axes  passing through the COM. The final result is

7) Calculate the kinetic energy of a rigid body in terms of its COM motion and rotational kinetic energy.

Kinetic energy of the rigid body viewed as a collection of discrete mass points:

where  is the position vector of  wrt to the inertial frame.

Since , where  is the position vector of the COM and  is the position vector of  wrt to the COM, we have

where  is the velocity of the COM wrt to the inertial frame and  is the angular velocity of the rigid body. Note that there is no additional velocity term on the RHS since the

mass point  is fixed wrt the rigid body.

Thus,

The three terms on the RHS are:

1st term:

where  which is the kinetic energy of the COM wrt the inertial frame.

2nd term:

since  by definition of the COM frame.

3rd term:

Using vector identities

and

it follows that

so

where

Thus, putting all the pieces together:

The first term is the translational kinetic energy of the rigid body (its COM motion), and the second is its rotational kinetic energy about the COM.

8) Write down an expression for the angular momentum vector  in terms  and .

The angular momentum of a rigid body depends on the origin about which it is defined. For rigid body motion it is simplest to define the angular momentum  of the system wrt to an

inertial frame whose origin is instantaneously comoving with the COM of the rigid body.

In that case

where  is the position vector of mass point  with respect to the COM and  is its velocity.

Since  is fixed in the rigid body

Thus,

where we used

It is more informative to write this last expression in component notation:

or

where  are the components of the moment of inertia tensor.

9) Write down the equations of motion for a rigid body with respect to an inertial frame.

The EOMs for a rigid body wrt an inertial frame are the force and torque equations

where  is the total momentum of the rigid body wrt the inertial frame and  is its angular momentum relative to the COM. There are six equations because there are 6 DOFs

describing a rigid body: 3 coordinates for the origin of the body frame and the 3 Euler angles specifying the orientation of the body frame with respect to a fixed (space) frame. The

time derivatives are wrt an inertial frame, not wrt the non-inertial body frame.

Note that  and  are the net external force and torque acting on the body, since the internal forces and torques cancel out by Newton's 3rd law.

One can prove the force and torque equations two different ways:

1st method:

For the angular momentum equation we will do the calculation in an inertial reference frame that is instantaneously at rest wrt the COM of the rigid body. Then

where we used the result that  is proportional to  in the inertial reference frame that we have chosen, so .

NOTE: This relationship is actually valid in any inertial frame since if  is defined wrt to the COM of the body, it is unchanged by a transformation from one inertial frame to another.

(Recall:  for two inertial reference frames  and  related by velocity , where  is the location of the COM wrt . For us,  in .)

2nd method:

THe EOMs can also be obtained from the Lagrangian:

viewed as a function of the translational and rotational coordinates  (COM) and  (Euler angles) and their time derivatives  and .

Proof:

Vary :

where we used

under a translation of the COM and rotation of the rigid body, respectively.

Thus

So Lagrange's equations

are simply

10) Derive Euler's equations for rigid body motion (equations of motion in the body frame).

Euler's equations for rigid body motion are the components of the force and torque equations  and  expressed wrt the principal axes of the body.

We use the general relation:

where  denotes the time derivative of any vector  wrt the inertial frame and  denotes the time derivative of that same vector wrt to the body frame. Recall that the time

derivative of a vector wrt to any reference frame is obtained by simply time differentiating the Cartesian components of that vector wrt to that frame, e.g., .

Force equation:

Wrt principal axes

so that

Thus,

Torque equation:

Wrt the principal axes

so that

Thus,

11) Draw a diagram showing the definition of the Euler angles .

First rotate around  by , then around the transformed  axis (which is the line of nodes ) by , and then around the transformed  axis (which is now the  axis) by .

Perform Euler angle rotations of body frame

input rotation axis (x,y,z; q to quit): z
input rotation angle (degrees): 20

/var/folders/mm/kvzrm4_d52z6vkt_1fl8thrh0000gn/T/ipykernel_16682/904232827.py:27: MatplotlibDeprecationWarning: Calling gca() with keyword arguments was 
deprecated in Matplotlib 3.4. Starting two minor releases later, gca() will take no keyword arguments. The gca() function should only be used to get the 
current axes, or if no axes exist, create new axes with default keyword arguments. To create a new axes with non-default arguments, use plt.axes() or plt
.subplot().
  ax = fig.gca(projection='3d')

input rotation axis (x,y,z; q to quit): x
input rotation angle (degrees): 30

input rotation axis (x,y,z; q to quit): z
input rotation angle (degrees): 30

input rotation axis (x,y,z; q to quit): q

12) Calculate the components of  wrt body frame in terms of the Euler angles and their time derivatives.

From the above diagram, one sees that

where

Adding these together we get

with

13) Solve for the reaction forces for rigid bodies in static equilibrium.

In static equilibrium a rigid body has no translational or rotational acceleration:

Given the EOMs for a rigid body, the above equations are equivalent to

where the reaction forces are included in the summations over  and .

The number of force and torque equations (i.e., the number of different components, which is at most 6) must equal the number of unknown components of the reaction forces that you

are trying to solve for.

8. Non-inertial reference frames (39)

1) Draw a diagram relating an inertial and non-inertial reference frame.

Notation:

: inertial frame

: non-inertial frame

: point mass  (not necessarily fixed in either frame)

, : position vectors of  wrt to , 

: position vector of the origin  of the non-inertial reference frame

2) Write down the relationship between velocity vectors in inertial and non-inertial reference frames.

Since

it follows that

where  and  are the translational and rotational velocity of  wrt , and  is the velocity of  wrt .

3) Distinguish non-inertial reference frames associated with translational and rotational motion.

A non-inertial reference frame associated with translational motion would need to have a non-zero linear acceleration .

A non-inertial reference frame associated with rotational motion only needs to have a non-zero angular velocity . A non-zero angular acceleration  is not required.

4) Derive the Coriolis, centrifugal, translational acceleration, and rotational acceleration fictitious force terms.

Newton's 2nd law in the inertial frame is:

where  is the acceleration of  in the inertial frame.

To obtain Newton's 2nd law in the non-inertial reference frame, we need to express  in terms of the acceleration  wrt the non-inertial frame plus other terms, which give rise to

fictitious forces.

Recall that the time derivative of any vector  wrt the inertial frame  is given by

where  is the time derivative of  wrt the non-inertial frame . (The time derivative of a vector wrt to any reference frame is obtained by simply time differentiating the

Cartesian components of that vector wrt that frame.)

Applying this formula to each side of the velocity vector

we have

LHS:

RHS:

Thus,

Newton's 2nd law in a non-inertial reference frame:

The fictitious forces terms on the RHS are associated with translational acceleration, rotational acceleration, Coriolis, and centrifugal forces.

The above equation can also be derived from Lagrange's equations starting with the Lagrangian

The variation of  wrt  and  is

which implies

Lagrange's equations:

LHS

where we used , , and  since .

Equating with  gives

where we used .

5) Explain the physical significance of Foucault's pendulum.

The precession of the plane of oscillation of Foucault's pendulum is proof that a lab attached to the surface of the Earth is a non-inertial reference frame.

Reference frame: 

Precession of plane of oscillation: 

The main contribution to the precession comes from Earth's daily rotational motion. One solves

for the motion of the pendulum bob in the -plane, ignoring any motion in the vertical direction.

Code for producing the precessional motion is given below.

T = 2198.6568517060523 sec
Text(0.5, 1.0, 'Foucault pendulum: precession of plane of oscillation')

2I = I1 + I2 = ∫ dV ρ[2r2 − x2 − y2] = ∫ dV ρ[2(s2 + z2) − s2] = ∫ dV ρ[s2 + 2z2] = I3 + 2 ∫ dV ρ z2

I ≡ I1 = I2 = I3 + ∫ dV ρ z21
2

µ h R

I1 = I2 = µ (R2 + h2) , I3 = µR21
4

1
3

1
2

h → 0

I1 = I2 = µR2 , I3 = µR21
4

1
2

R → 0

I1 = I2 = µh2 , I3 = 0
1
12

(x′, y′, z′)
z′ µ h R V = πR2h/3 x′ = 0 y′ = 0
z′ = 3h/4

I ′
1 = I ′

2 = µ (R2 + 4h2) , I ′
3 = µR23

20
3
10

I ′
ik

= Iik + µ (δik|a|2 − aiak)
(x′, y′, z′) (x, y, z)

I1 = I2 = µ (R2 + h2) , I3 = µR23
20

1
4

3
10

T = ∑
a

ma|va|2
1
2

va ≡ dra/dt ma

ra = R + ra R ra ma

va = V + Ω × ra

V ≡ dR/dt Ω
ma

T = ∑
a

ma|va|2 = ∑
a

ma|V + Ω × ra|2 = ∑
a

ma [|V|2 + 2V ⋅ (Ω × ra) + (Ω × ra) ⋅ (Ω × ra)]1
2

1
2

1
2

∑
a

ma|V|2 = µV 21
2

1
2

µ ≡ ∑a ma

∑
a

ma2V ⋅ (Ω × ra) = (∑
a

mara) ⋅ (V × Ω) = 0
1
2

∑a mara = 0

∑
a
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In [7]: def Rx(a):
    '''
    calculate passive rotation matrix around x-axis
    '''
    
    R = np.array([[1,          0,         0],
                  [0,  np.cos(a), np.sin(a)],
                  [0, -np.sin(a), np.cos(a)]])
    
    return R

In [8]: def Ry(a):
    '''
    calculate passive rotation matrix around y-axis
    '''
    
    R = np.array([[np.cos(a), 0, -np.sin(a)], 
                  [0,         1,          0],
                  [np.sin(a), 0,  np.cos(a)]])
    
    return R

In [9]: def Rz(a):
    '''
    calculate passive rotation matrix around z-axis
    '''
    
    R = np.array([[ np.cos(a), np.sin(a), 0], 
                  [-np.sin(a), np.cos(a), 0],
                  [         0,         0, 1]])
    
    return R

In [10]: def rotate(axis, angle, prevRot):
    '''
    actively rotate basis vectors about transformed axis thru angle (in radians)
    
    prevRot: previous rotation matrix (3x3)
    '''
    
    # passive rotation matrix about axis thru angle
    if axis == 'x':
        rot = Rx(angle)
        
    if axis == 'y':
        rot = Ry(angle)
        
    if axis == 'z':
        rot = Rz(angle)
        
    # convert to active rotation
    R = np.linalg.inv(rot)
    
    # conjugate R by previous active rotation to rotate around *transformed* axis
    Rprime = np.dot(prevRot, np.dot(R, np.linalg.inv(prevRot)) )
    
    # new combined rotation
    newRot = np.dot(Rprime, prevRot)
        
    # rotate basis vectors
    ex = np.dot(newRot, np.array([1, 0, 0]))
    ey = np.dot(newRot, np.array([0, 1, 0]))
    ez = np.dot(newRot, np.array([0, 0, 1]))
    
    return ex, ey, ez, newRot

In [12]: # interactive rotations

# initial rotation (identity)
prevRot = np.eye(3)
    
# loop for successive rotations
counter = 1
while 1!=0:
    
    # input axis, angle
    print('\n')
    axis  = input('input rotation axis (x,y,z; q to quit): ')
    if axis=='q':
        break
        
    angle = input('input rotation angle (degrees): ')
    
    # convert string input to float and degrees to radians
    angle = float(angle)
    angle = np.deg2rad(angle)
    
    # perform rotation
    ex, ey, ez, newRot = rotate(axis, angle, prevRot)

    # plot    
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ax.set_axis_off()
    ax.view_init(elev=20,azim=15)
    
    # space frame
    ax.quiver(0, 0, 0, 1, 0, 0, color='k', linestyle='-')
    ax.quiver(0, 0, 0, 0, 1, 0, color='k', linestyle='-')
    ax.quiver(0, 0, 0, 0, 0, 1, color='k', linestyle='-')
    
    # body frame
    ax.quiver(0, 0, 0, ex[0], ex[1], ex[2], color='b', linestyle='--')
    ax.quiver(0, 0, 0, ey[0], ey[1], ey[2], color='g', linestyle='--')
    ax.quiver(0, 0, 0, ez[0], ez[1], ez[2], color='r', linestyle='--')
    
    # savefig
    figtitle = 'euler_' + str(counter)
    plt.savefig(figtitle, bbox_inches='tight', dpi=400)
    
    # display figure
    plt.show()
    
    # prepare for next rotation
    prevRot = newRot
    counter = counter + 1
    

Ω

Ω = ϕ̇ + θ̇ + ψ̇

ϕ̇ = ϕ̇ [sin θ sin ψ x̂1 + sin θ cos ψ x̂2 + cos θ x̂3] , θ̇ = θ̇ [cos ψ x̂1 − sin ψ x̂2] , ψ̇ = ψ̇ x̂3

Ω = Ω1 x̂1 + Ω2 x̂2 + Ω3 x̂3

Ω1 = ϕ̇ sin θ sin ψ + θ̇ cos ψ , Ω2 = ϕ̇ sin θ cos ψ − θ̇ sin ψ , Ω3 = ϕ̇ cos θ + ψ̇
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In [13]: # Foucault pendulum analysis

# some constants
T_day = 24*3660 #s
D = 1 # m
g = 9.8 # m/s^2
L = 30 # m
lat = 49 # degree (Paris)
theta = 90-lat # degree

# angular frequency of oscillation
# NOTE: reduced by a factor of 200 so that one can easily see precession after a few oscillations
w = np.sqrt(g/L) * (1/200)
T = 2*np.pi/w # period
print('T =', T, 'sec')
Nt = 10000
t = np.linspace(0, 3*T, Nt)

# angular velocity
Omega = 2*np.pi/T_day
Omega_z = Omega*np.cos(np.deg2rad(theta))

# solution
x = D*( np.cos(Omega_z*t)*np.cos(w*t) + (Omega_z/w)*np.sin(Omega_z*t)*np.sin(w*t) )
y = D*(-np.sin(Omega_z*t)*np.cos(w*t) + (Omega_z/w)*np.cos(Omega_z*t)*np.sin(w*t) )

# plot trajectory in x-y plane
plt.figure()
plt.plot(x, y)
#plt.axis('equal')
plt.xlim(-1.2, 1.2)
plt.ylim(-1.2, 1.2)
plt.axis('equal')
plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.title('Foucault pendulum: precession of plane of oscillation')
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