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that  this  treatment is not  readily  understood by 
advanced level students  we  present a new  treat- 
ment which leads  to  solutions which appear  more 
readily  interpretable.  (For  completeness  we  include A rolling  sphere 

on a tilted the  vectorial  mechanics  solution in an  appendix.) 
Also we present  some  results  from a simple  test 

ro ta ting turn Uniform sphere rolling on a tilted rotating table 

experiment. 

The configuration is shown in figure  1.  The  rotating 
plane is inclined so that  the  normal ri is at an angle 

J R Sambles, T W PreiSt, S R and y axes  parallel  to  the  plane of the  table  such 
a: to  the  vertical.  It is convenient to introduce x 

Lang and R P Toms 

There  are  many  experiments  and  demonstrations in 
physics in which the  response of a system  to a 
driving  force is ‘intuitively obvious’.  By  contrast 
there  are very few  simple  experiments which may 
easily be  set  up in a school or first year  under- 
graduate  laboratory, in which the  response of the 
system is contrary  to  almost  everyone’s  expecta- 
tions.  Gyroscope  experiments  are  one of the  few 
which come  into  this  category  but in general  such 
experiments  are  qualitative  rather  than  quantitative. 
A far  better  example of this class of non-intui- 
tively obvious  experiments is that of the  motion 
of a rolling  ball  on a rotating  table.  Not  only is 
this  experiment  easy  and  cheap  to  assemble  but it 
also  lends itself to  quantitative  analysis.  Further- 
more  the  mathematical  solution of the  problem is 
itself an  elegant  demonstration of rigid body 
mechanics  and  thus  the  problem  provides  an  ideal 
combination of applied  mathematics,  demonstra- 
tion  physics  and  experimentally  observable physics 
for  advanced  level  students. 

Recently  several  articles  have  appeared in the 
American  Journal of Physics (Weltner  1979,  Burns 
1981,  Romer  1981) which called  our  attention  to 
this  problem.  The  vectorial  mechanics  solution is to 
be  found in Milne (1948), a most  elegant  textbook 
on  vectorial  mechanics.  However  because  we feel 

that  the y axis points  up  the  line of greatest  slope 
with the x axis perpendicular  to  it.  The  origin of 
the  axes 0 is taken as the  point in the  plane which 
coincides  with  the axis of rotation. 

The rolling  sphere will experience a normal  reac- 
tion  through  its  centre  as well as a frictional  force 
in the  plane of the  table.  Since  the  weight  and 
normal  reaction  both  act  through  the  centre of 
mass of the  body  they do  not  cause it to  rotate  and 
the  frictional  force is the  only  source of torque 
about  the  centre of mass.  Consequently  the  compo- 
nent of the  angular velocity of the  ball  perpendicu- 
lar  to  the  plane is conserved  and in the  following 
calculation  we  need  only  consider  the  variations in 
the  components of the  angular velocity parallel  to 
the  plane.  We will take a, the  total  angular  veloc- 
ity,  to  have  components 0, and 0, along  the x and 
y axes  (and 0, perpendicular  to  the  plane);  simi- 
larly  the  frictional  force F at  any  instant will have 
components F, and F, (figure 2). 

The  equations of motion of the  centre of mass 
are 

Mx = F, 

M y  = F, - Mg sin (Y (1) 

where M is the  mass of the  sphere, g is the 
acceleration  due  to  gravity  and a is the  angle of tilt 
of the  table  to  the  horizontal.  Likewise  there  are a 
pair of torque  equations which determine  the  rota- 
tion  about  the  centre of mass,  namely 

Ih, = aF, 
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where a is the  radius of the  sphere  and I = 3 Maz is 
its moment of inertia  about  an axis through its 
centre. 

To these  equations  we  must  add  the  requirement 
that  the  sphere  rolls without slipping, which implies 
that  the velocity of the  point of contact of the 
sphere  with  the  table is equal  to  the velocity of the 
table  at  that  point. The latter  has  magnitude or 
perpendicular  to OP, where r is the  radial  distance 
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Figure 1 Experimental arrangement 

- 
Figure 2 Coordinates for ball on a tilted  table 

from  the axis of rotation  to  the  centre of mass of 
the  sphere  (length OP) and W is the  constant  angular 
frequency of rotation of the  table. 

Equating  the x and y components of the 
velocities gives 

w r c o s O = w x = y + a R ,  

- w r s i n O = - w y = x - a f l ,  

Since  equations ( 2 )  contain h, and h, it is 
convenient  to  differentiate  the  rolling  conditions 
giving 

wx = y +a& 

-wy = x -an, (3) 

Eliminating F,, F,, h, and h, between  the  three 
pairs of equations (l), (2) and (3) gives 

[ (Ma2/ I )+  1]x = -wy 

[ (Ma*/I )+ l]y = wx - (Ma*/ I )  g sin a 

or  
x = -wry 

y = w,x - g‘ sin a 

where 

W I  gMa 
W , = -  

I + Ma2 
and g‘=- 

I + Ma2 

Integrating  equations (4) and  introducing  the ini- 
tial conditions  that  at  time t = 0 the  centre of mass 

of the  sphere is at  the  point ( x o ,  y o )  and is moving 
with velocity (vx, v , )  gives 

x -v, = -WAY - Y o )  

y - U, = w,(x - x o )  - g ’ t  sin a ( 5 )  

The  substitution of equation (5) into  equation (4) to  
eliminate x and y gives 

X = -w,v, - w:(x - x o )  + g’w,t sin a 

y = w,u, - w f ( y  - y o )  - g’ sin a (6) 

These  equations  are  now  uncoupled in that  they 
only  contain  either x or y or  their  respective  de- 
rivatives. They  may  readily  be  solved by defining 

X = x - x , , + ~ - - - s m a  v g‘t  . 

and  noting  that X =  B, Y =  y .  Then  equations (6) 
become 

x = - w : x  

Y = - w : y  

which are  both  equations of simple  harmonic 
motion  with  solutions of the  form 

X = A sin (w,t + 9) 
Y = A’ sin (w,t + 6’) 

where A, C$ and A‘,  4’ are  constants  determined by 
the  initial  conditions. 

Consequently 

x = A s i n ( w , t + C $ ) + x o - - + - s s l n a  U, g’t . 
W,  W, 

and  substitution of these  expressions  into  the first 
equation of (4) gives 

-Aw? sin (w,t + 4 )  = -A’w:  cos (w,t + 4’)  

which must  be  true  for all values of t. This is only 
possible if A = A’ and 4’ = C#J - ~ / 2 ,  so that 

x = A s i n ( w , t + C $ ) + x , - - + - s s l n a  U, g‘t  . 
W, 0 ,  

y=-Acos(w,t++)+yo+--- ,s ina v ,  g’ 

W, W, 

At t = 0 ,  x = x o  so that 

A sin C$ = 
V 

W ,  
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A c o s 4 =  - ~ s m a + v , / w ,  
W ,  

g '  . 

Hence 

and 

These  equations  represent, in parametric  form,  the 
trajectory of the  sphere  for  any  initial  conditions 
(xo, yo) and (vx, U,)  and  we  now  examine  the  motion 
of the  sphere  for  various  conditions. 

Examples of types of motion 

(a) Horizontal  table, a = 0. From  equation 

and  eliminating t by squaring  and  adding gives 

where vn is the  starting  speed of the  ball.  Thus  the 
ball executes a circular  orbit on  the  table of radius 
v,,/w, and  centre (xo- ,,/W,, y o +  v,/w,). Thus  we 
have  the  remarkable and  non-obvious result that 
this rolling sphere describes perfect circles about a 
centre not coincident  with the centre of rotation of  the 
table and, regardless o f  starting conditions, its fre- 
quency around  the orbit is 3 of  the frequency of 
rotation of the table. As is discussed  below,  this 
result is not  only  extremely  easy  to  demonstrate  but 
also is quantitatively  verifiable  with  simple  equip- 
ment.  Before discussing the  experimental  side it is 
worthwhile  taking  the  problem a stage  further  to 
look  at  the  behaviour of this  same  sphere  when  the 
table is tilted-in this  circumstance  the  result is 
even less obvious  than  the  previous  case. 

(b) Table tilted, ball starts at rest from the origin. 
Now  the initial conditions  are x[] = yo = v, = v, = 0 
so that 

x =- 
g'sin a 

W ,  

g' sin a 

W ,  

(w,t -sin w,t) 

y = 2 (cos w,t - 1) 

Putting  g'sin a / w f  = L and  eliminating  the  sines 
and  cosines by squaring  and  adding gives 

(x - W&)' + ( y  + L)* = L' 

This  corresponds  to  motion in  a circle of radius L 
with  the  centre  drifting  uniformly in the x direction, 
across the  table, with  velocity o,L = g' sin a/w,  = 

$(g/w) sin a. Note  that  the  radius of the circle is 
small and  for a frequency of 1 Hz is only 
-sin a cm.  Thus  for  low  angles of tilt as  used 
below,  this  remarkable cycloidal motion  across  the 
table  approximates closely to  the  even  more 
extraordinary  straight  line  drift  across  and  not  down 
the  table. To achieve a perfect  straight  line  drift 
one  needs a  slightly  modified  initial condition as 
discussed  next. 

(c) Straight line motion  on a tilted table. Inspec- 
tion of equation (7) shows  that if we start  the ball 
with v, = 0 and v, = (g'iw,) sin a then  the  resultant 
solution is 

x = x. + (g' t/w,) sin a 

Y = y o  

giving the  surprising  result  that  the ball moves 
horizontally  across  the  tilted  table  with  uniform 
velocity (g'iw,) sin a. In practice i t  is difficult to 
establish  this  motion,  while it is relatively  simple  to 
establish  the  condition (b)  which leads  to a  very 
close  approximation  to (c) for  small tilt of the  table. 
In general,  however.  for  any  starting  condition  the 
motion of the ball is not so simple,  as  we discuss 
below. 

(d) General  motion. We  may  rearrange  equation 
(7 )  to give 

i W ,  

where  squaring  and  adding yields 

ix-. (1 +;- o,Lt + y - y o - - + L  U W ,  Y V 

= (:lZ+ 
This is readily  interpreted as motion of the ball in 

a circle,  again  with  frequency W,, of radius 
{(u,/o,)~ +[(v,/o,) - with  the  centre  moving 
horizontally  across  the  table with  velocity w,L, i.e. 
the ball performs  an epicycloidal motion  across  the 
table. 

All of the  above  motions  may  be  readily  demon- 
strated  and  quantitative verification of the  frequency 
of rotation of the ball and its drift  speed as related 
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0 
fboll /Hz  t i s -  f islnaIHz-. 

Figure 3 a, Graph showing  frequency of rotation of horizontal  table  against  frequency of rotation of ball about its orbit 
The full  line is ftable = $fball. b, Graph showing frequency of rotation of table against  time for ball to travel one radius 
of the table (r = 0.1175 m) for fixed angle of tilt of the table, 0.622”. The full line is the theoretical prediction 
f = t[(5g/4ar) sin a]. E, Graph showing  time for ball to travel one radius of the table (r = 0.1175 m) against the 
frequency of rotation of the table divided by the sine of the angle of tilt. In this case the frequency of the table is 
kept nearly constant at about 4 Hz while the angle of tilt is varied. The full line is the theoretical prediction 
t =(f/sin a ) ( 4 n r / ~ g )  

to  the  frequency  and  angle of tilt of the  table  may 
easily be  achieved  as  shown  below. 

Basic equipment 

The essential  requirement  for  this  experiment is a 
flat smooth circular  table.  In  order  to  establish  the 
rolling  condition it is not  necessary  to  have a sur- 
face  with a high coefficient of friction-in fact a 
rough  surface  leads to ‘bouncing’  and  violation of 
the  rolling  condition. Initially we  used a 23 cm 
diameter  polished  aluminium  plate which was 
superseded by a 38 cm  diameter  plastic-laminated 
glass sheet.  This  was  mounted  on a central  vertical 
bearing  with  some  means of driving it at  various 
frequencies of rotation.  In  our  experiment  we  used 
a simple  voltage  controlled  variable  speed DC 

motor.  The  bearing  on which the  plate is mounted 
is rigidly attached  to  one  end of a long  base  plate 
which has  two  adjusting  screws  at  the  rear  end  and 
one  at  the  far  end (figure 2). These  screws  are  for 
adjusting  horizontality of the  table,  the  single  screw 
being  used  to  adjust  the  angle of tilt. 

The ball we  used, as in Romer’s  experiment 
(Romer 1981), is a l in (2.5 cm)  diameter  steel ball 
bearing;  other  steel ball bearings  were  used  but  this 
proved  to  be  the  most  successful. 

Horizontal table 
Initially  the  table is set  horizontal  with a certain 
amount of care  and  the  verification of equation (8) 
is attempted.  We  found  that  rotation  frequencies 
above  about 6 Hz  were  not  very  satisfactory  as 
there  was  then a much  greater  tendency  for  the ball 
to  fly off the  table  rather  quickly  (due  to  imperfect 
rolling  contact  with  the  table). To start  the ball  in 
motion  we  used a paper  tube  just a little  bigger 

than  the  ball.  Placing  the ball anywhere  on  the 
rotating  table  inside  this  tube  (held vertically) and 
then  releasing  pressure  from  the ball allowed it to 
come  into  rolling  equilibrium  with  the  table.  After 
a short  while, typically  a  few seconds,  the  tube  can 
be  carefully  removed  and  the ball is seen  to  remain 
with its centre  stationary,  rolling in contact  with  the 
table. If now  a slight  motion is imparted  to  the ball 
by tapping  gently  with  the  paper  tube it will be  seen 
to  perform circles as  described by equation (8). It is 
then a simple  matter  to  time  the  rate of rotation of 
the ball around  the  circle.  After  several  orbits  the 
circle will be  seen  to  be  increasing in size  (due to 
non-perfect  rolling)  and  eventually  the ball will fall 
off the  edge of the  table. 

This  occurrence is made  more  frequent if the 
orbit of the ball takes i t  very  near  to  the  centre of 
the  table.  Varying  the  frequency of the  table  and 
repeating  this  experiment  confirms  that w,=sw.  
Typical  results of such  an  experiment  are  shown in 
figure 3a.  These  data  were  recorded  using a stop- 
watch  to  time  the ball  while  a stroboscope was used 
to  monitor  the  frequency of the  table.  It is apparent 
from  the  results  that  agreement  between  theory 
and  experiment is good  and  such  agreement, or 
better,  should easily be  achieved.  Notice  that  below 
rates of rotation of 1 Hz  and  above  about 6 Hz we 
found  that it was very difficult to obtain  data. 

Tilted table 

If the  table is tilted  at a small angle  and  the ball is 
set in motion  as in the  horizontal  table  experiment 
it is easy t o  verify the  extraordinary cycloidal 
motion of the ball across and  not down the  table.  It is 
also a simple  matter  to verify quantitatively  expres- 
sion (7 ) .  We  found it best  to  start  with  the ball at 
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the  very  centre of the  table,  condition  (b),  and  to 
measure S, its speed of horizontal  motion, by timing 
how  long it took  to fall off the  edge of the  table. 
This we did  at  an  approximately fixed frequency, 
varying a, and also at fixed a, varying  frequency. 
Again,  for  frequencies  above 6 H z ,  problems  arose 
because of non-perfect rolling. Typical  results  for 
both  types of experiment  are  presented in figures 
3b  and  3c.  Figure  3b  presents  data  for a fixed angle 
of tilt, 0.622‘; it shows  the  somewhat  surprising 
result  that as the  frequency of rotation of the  table 
is raised it takes  longer  for  the ball to  drift  across 
the  radius. In figure  3c  the  data  are  for  an  approxi- 
mately fixed table  frequency of -4 Hz  with  various 
angles of tilt. In both  these figures the full line is 
the  theoretical  prediction,  showing very close 
agreement  between  theory  and  experiment. 

Conclusions 
The ease  with which this  experiment  may  be  per- 
formed,  the  elegance of the  mechanics  describing 
the  motion of the  ball,  the  most  remarkable 
non-obviousness of the  behaviour  and  the  straight- 
forward  manner in which quantitative  results  can 
be  obtained  make  this a very  suitable  experiment  for 
advanced A-level students  and first year  under- 
graduates in  physics. Also  the  experiment,  as a 
demonstration,  provides a very  simple  illustration 
of how  the  intuitively  obvious answer-in this  case 
the ball ‘falling’ off the  tilted table-is not  the 
correct  one. 
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Appendix: VeCtOlkd theory 

Sphere rolling on a horizontal rotating table. Con- 
sider a solid  sphere,  radius a and  mass M, rolling in 
perfect  rolling  contact on a horizontal  table  which 
is rotating  at a constant  angular  frequency W (27r X 

frequency)  about a vertical axis  (figure 4).  Let i be 
a unit  vector in the  upward  direction  and r the 
horizontal  vector  distance of the  centre of the 
rolling  sphere  from  the axis of rotation. The angu- 
lar velocity of the  rotating  plane is of and  the 

angular velocity of the  sphere,  about its centre, is 
undefined;  we  label  this a. There will be a reaction 
force R at  the  point of contact of the  sphere  with 
the  table.  We  can  now  write  down  the  two  equa- 
tions of motion  for  the  sphere. 

Firstly,  we  have  an  equation  involving  linear 
momentum 

M(d2r/d t2)  = R - Mgi =Mr (AI) 

Next  there is an  equivalent  expression  for  the  rate 
of change of angular  momentum 

I ( d a / d t )  = - a i  X R = Ih (A2) 

where I is the  moment of inertia of the  sphere 
about  its  centre.  Substituting  equation (Al)  into 
(A2) gives 

Ih = - a i  X (Mi:+   Mgi)  
or 

h = ( M a / I ) r X z  (A3) 

Now  we  add in the final constraint  that  the 
sphere is in perfect  rolling  contact  with  the  table. 
This  constraint is expressed  mathematically by 
equating  the velocity of the  point of contact  between 
the  sphere  and  the  table  (the  point  at r - a i )  with 
the  velocity of the  sphere  at  that  point,  i.e. 

w i x ( r - a i ) = i + f l x ( - a z )  

i is just  the velocity of the  centre of the  sphere  and 
ax ( - a i )  is that velocity  which has  to  be  added  to 
i t o  give the velocity of the  point in contact  with 
the  table.  This simplifies to 

w i ~ r = i - a a X f  

Differentiating  this  with  respect  to  time gives 

w i x r = r - a ( h x f )  (A41 

Substituting  from  equation  (A3)  into (A4) for  6 we 
have 

w i  X i = r - (Ma2/I ) (r  X 2) X i 

O B  x i = [l + (Ma’/I)]r  

This  may  now  be  integrated  with  respect  to  time 
giving 

or 

w i x ( r - r o ) = [ l + ( M a 2 / I ) ] i  (A51 

where ro is an  arbitrary  constant of integration 
which is defined by the  starting  condition  imposed 
upon  the  sphere.  This  equation is readily  inter- 
preted.  It  means  that  the  centre of the  sphere 
defined by r describes a  circle of angular  frequency 

W 2 
1 + ( M ~ ~ / I )  = 7 

because I = ;Ma2. 
Since ro is defined  by  the  starting  conditions,  the 
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Figure 5 Coordinate5 for a ball on a tilted table 

Figure 4 Coordinates for a ball on a horizontal table 

circle has  an  arbitrary  centre,  not necessarily the 
centre of the  table  (note ru does  not  move  round 
with the  table).  Moreover  because r appears on 
both  sides of the  equation,  the  radius of the circle 
described by the  centre of the  rolling  sphere is also 
arbitrary  being  defined by the  starting  velocity. 
Furthermore,  regardless of W ,  the size of the  sphere 
or the  distance  from  the  centre of the  table,  the 
frequency of rotation of the  sphere  around its  circle 
is always $ times  the  frequency of rotation of the 
table. 
Sphere rolling on a tilted rotating table. Let a be  the 
angle of inclination of the  plane  to  the  horizontal 
(figure 5 ) .  Take an origin 0 which is on the axis of 
rotation of the  table  and  at  a  distance a up  the  axis. 
This axis is now in a  direction n which,  being  the 
normal  to  the  table, is at an  angle a to  the i axis. r 
is now a vector  from  the  origin 0 to  the  centre of 
the  sphere.  We  can  once  more  write  down  the 
equation  involving  rate of change of linear  momen- 
tum  to give 

M ? = R - M g i  

while the  equivalent  equation  for  angular  momen- 
tum is 

I ~ = - ~ ~ X R = ~ R X A  

We  may  again  eliminate R to  obtain 

h = ( a M / l ) ( r  + gi) X A (A6) 

Once  more  we  introduce  the  equation of rolling 
contact,  i.e. 

o l i x ( r - a r i ) = i + i ’ k x ( - a n )  
or 

w A x r = i - a i ’ k x A  

Differentiating with respect  to  time gives 

a h x n = - w n x i + r  

Then  substituting  from  equation (A6) for h we 

have 

( a * M / Z ) [ ( i ; + g i ) X A ] X n = - w r i X i + i :  

or because r is perpendicular  to n 

[ l  + ( M a 2 / I ) ] r  - ( M a * / I ) g ( i  x n )  x A = wli x i 

but i X n = - L  sin a where h is a  horizontal  unit 
vector  perpendicular  to f and  at right angles to the 
maximum  slope of the  plane.  Integrating with 
respect to  time gives 

[l + ( M a 2 / I ) ] i +  ( M a Z / l ) g t  sin a h X ii = wli X ( r  - r, ,)  

where r,, is a  constant of integration.  Therefore 

r =  
W 

x [ ( r  - ro) + (Ma’/oI)gt sin ah] 
1 + ( M a z / I )  

(A7) 

This is a very similar  result to equation (A51 
except  that  now  superimposed on the  circular 
motion of the ball is a  uniform velocity in the  direction 
h with a  drift  speed S .  given by 

S = (Ma’/wl)g sin a = ; (g /w)  sin a (A8) 

Thus the  motion of the  sphere is now  an  epicyc- 
loid  which moves across the tilt of the  table  and not 
down,  a  certainly  non-intuitive  solution. 
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