
Chapter 1
Elementary Newtonian Mechanics

Much of classical mechanics was developed to provide powerful mathematical tools
for obtaining the equations of motion for systems of objects subject to external
and internal forces. These include Newton’s laws, the principle of virtual work, and
Hamilton’s principle, whichwe shall discuss, in turn, in the first three chapters. These
tools let us choose coordinates that are most suitable for the solution of a given
problem; they also allow us to describe motion when observed from non-inertial
reference frames, such as the rotating surface of the Earth. A deeper study of these
mathematical tools and how they respond to different transformations of the system
(e.g., translations or rotations of the coordinates) leads to a better understanding of
the nature of Newtonian mechanics, and points the way to the modern physics of
quantum mechanics and special relativity.

For the greater part of this book, we will concentrate on Newton’s formulation of
mechanics, in which the universe exists in a flat, three-dimensional space described
by Euclidean geometry. Changes in this Newtonian universe are measured using
a standard clock that ticks at a uniform rate over all space. Adapting Newtonian
mechanics to the non-Euclidean geometry of special relativity will be discussed at
the end of the text in Chap.11.

In this chapter, we review some of the basic methods familiar from introductory
physics for obtaining and solving the equations of motion for single particles and
then systems of particles, with and without constraints on their motion.
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2 1 Elementary Newtonian Mechanics

1.1 Newton’s Laws of Motion

From introductory physics, we are familiar with Newton’s laws of motion. The first
law describes the motion of an object with respect to an inertial reference frame:

Newton’s 1st law: Unless acted on by an outside force the natural motion of
an object is constant velocity.

One way of thinking about this law is that it provides us with a procedure for deter-
mining if we are using an inertial reference frame. That is, if we can find a way to
turn off (or shield) all external and internal forces from a system, and we find that all
particles in the system are moving with constant velocities, then we will know that
we are describing the system in an inertial frame of reference.

Once we have determined that we are in an inertial reference frame, Newton’s
2nd law tells us how an applied force will alter this natural motion:

Newton’s 2nd law: The effect of an applied force F upon an object of mass
m is to induce an acceleration a such that

F = ma . (1.1)

This simple form of Newton’s 2nd law assumes that the mass is constant, but we
can include the effect of a varying mass by writing Newton’s 2nd law in terms of
momentum p ≡ mv, so that

F = ṗ ≡ dp
dt

. (1.2)

Note that unless specifically stated otherwise, we will assume throughout this text
that the mass of an object is constant, for which F = ma and F = ṗ are equivalent
statements of Newton’s 2nd law.

When there are multiple objects exchanging forces between themselves within a
system, Newton’s 3rd law describes how the forces of interaction behave:

Newton’s 3rd law: If an object applies a force F on a second object, then the
second object applies an equal and opposite force −F on the first object.

In its simplest form, the 3rd law insures that the internal forces between particles
in a system do not provide an unbalanced force on the system as a whole, which
would allow the system to spontaneously accelerate away in the absence of external
forces. Note that not all forces obey Newton’s 3rd law, but these involve a field
which can carry away momentum.1 There is also a strong form of Newton’s 3rd

1A simple example of such a force is the electromagnetic force between two moving point charges;
see, e.g., Sect. 8.2.1 of Griffiths (1999).
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1.1 Newton’s Laws of Motion 3

law, which requires that FI J , the interparticle forces between particles I and J , not
only satisfy FJ I = −FI J , but also point in the direction of the lines connecting pairs
of particles—i.e., FJ I ∝ rI J , where r I J ≡ r I −rJ is the displacement vector joining
particles I and J . Such forces are called central (or radial) forces. The strong form
of Newton’s 3rd law is needed for conservation of angular momentum, as we will
explore in more detail in Sect. 1.4.

Example 1.1 Consider a rocket moving in interstellar space, free of all external
forces, as shown in Fig. 1.1. We want to determine the velocity v of the rocket as a
function of time, assuming that its mass decreases at a constant rate, dm/dt ≡ −α

(where α is positive so dm/dt is explicitly negative), as it expels exhaust gases
through the nozzle of the rocket engine.

To do this calculation, we need to use Newton’s 2nd law in the form F = dp/dt ,
since the mass of the rocket is not constant. (We have dropped the vector symbols in
this equation since this is a 1-dimensional problem.) Let’s assume that at time t the
rocket has mass m, and that it is moving vertically upward with velocity v. At time
t + dt , the rocket will have lost mass dm ′ ≡ −dm > 0 (the exhaust gases), and will
have changed its velocity to v + dv. We will assume that the exhaust gases dm ′ exit
the rocket with constant velocity −u with respect to the rocket, so that with respect
to the fixed inertial frame, the exhaust gases are moving with velocity v − u. The
change in the total momentum of the system over the time interval t to t + dt is then

dp = p(t + dt) − p(t)

=
[
(m − dm ′)(v + dv)+ dm ′(v − u)

]
− mv

= m dv − u dm ′

= m dv + u dm ,

(1.3)

Fig. 1.1 A rocket moving in
interstellar space, free of all
external forces. Panel (a):
Rocket at time t (mass m,
velocity v). Panel (b): Rocket
and exhaust at time t + dt
(mass m − dm′, velocity
v + dv; mass dm′, velocity
v − u)

v

m

(a)

v+dv

v-u

m-dm

dm
(b)
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4 1 Elementary Newtonian Mechanics

where we ignored the −dm ′ dv term (since it is 2nd-order small) to get the third line,
and switched back to dm to get the last line. But note, however, that there are no
external forces acting on the system, so dp/dt = F = 0, which implies

0 = m dv + u dm , (1.4)

or, equivalently,

dv = −u
dm
m

. (1.5)

This is a separable differential equation,which can be immediately integrated, subject
to the initial condition that v = v0 when m = m0:

v − v0 = −u ln(m/m0) . (1.6)

To get the time dependence of v, we make use of the assumption that the mass-loss
rate is constant,

dm
dt

≡ −α = const , (1.7)

which implies
m(t) = m0 − αt . (1.8)

Making this substitution into (1.6), we have

v(t) = v0 − u ln
(
1 − αt

m0

)
. (1.9)

Note that this equation is valid only up to time tf , when all of the fuel has been
exhausted, and the mass of the rocket is mf (> 0). After that time, the rocket moves
with constant velocity vf = v0 − u ln(mf/m0). %&

Exercise 1.1 What fraction of the total initial mass m0 of a rocket must be
exhausted as fuel in order for a payload of mass mf to be accelerated through a
change in velocity "v?

Exercise 1.2 Repeat the analysis of Example 1.1 for a rocket moving in a
uniform gravitational field g pointing opposite to v. You should find

v(t) = v0 − gt − u ln
(
1 − αt

m0

)
. (1.10)
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1.2 Single-Particle Mechanics 5

1.2 Single-Particle Mechanics

In this section, we will discuss the motion of a single object (a particle) that is
subject to external forces. Our use of the term “particle” implies that the object has
no internal structure and no physical extent (i.e., it is effectively a zero-dimensional
point). This will allow us to focus simply on its motion without having to consider
the influence that the external forces may have on the internal structure or orientation
of the object. (We will treat real three-dimensional objects later in Chaps. 6 and 7,
in the context of rotational motion.) Note that we can use the particle approximation
even for extended objects provided the changes in internal energy or rotational state
of the object are negligible. In these cases, we simply use a point within the object
as a stand-in for the particle’s position.

Let’s first consider a particle viewed in an inertial frame of reference. Within this
frame, the position of the particle is defined by a time-dependent vector r(t), and its
linear momentum is p = mṙ = mv. Since we are in an inertial frame, any variation
in p will be due to an impressed external force, so F = ṗ.

Exercise 1.3 Let a particle’s position be given by r(t) in an inertial frame O ,
and let the mass be constant, so that F = ṗ = ma = mr̈. Transform to a new
reference frame O ′ that is moving at constant velocity u with respect to the
original one, so r′(t) = r(t) − u t . Show that mr̈′ = mr̈ = F, so that Newton’s
2nd law has the same form in this new reference frame. Thus, the new reference
frame is also inertial.

In a single particle universe, if mass is conserved, then the mass of the particle
must be constant. The impressed force F ≡ F(r, ṙ, t) then governs the acceleration
of the particle, and we obtain a 2nd-order differential equation, which must be solved
in order to determine the motion r(t). In the remainder of this section, we will re-
view the fundamentals of single-particle mechanics and recover some of the familiar
conservation laws.

Example 1.2 Air resistance can be modeled as a velocity-dependent force with F =
−bv, where b is a real, positive proportionality constant. If a particle starts with an
initial velocity v0, how far does it go before coming to rest under the influence of air
resistance alone?

We can obtain the equation of motion from F = ma and solve for r(t), but we
are more interested in v as a function of r. Note that the problem is essentially one-
dimensional, so let’s choose a coordinate system with an x-axis that lies along the
initial velocity, so we can dispense with the boldface vector notation. Then Newton’s
2nd law reads:

F = −bv = ma = m
dv
dt

= m
dx
dt

dv
dx

= mv
dv
dx

. (1.11)

This leaves us with the simple differential equation

joseph.romano@utrgv.edu



6 1 Elementary Newtonian Mechanics

− b
m

= dv
dx

, (1.12)

which is solved by v = v0−bx/m. Consequently the distance traveled by the particle
is the value of x for which v = 0. This is x = mv0/b. %&

1.2.1 Work

When a particle is subject to an external force, the force does work on the particle
as it moves along a path s(t) according to the line integral

W12 ≡
∫ ℘2

℘1

F · ds , (1.13)

where ℘1 and ℘2 are the endpoints of the path, corresponding to the times t = t1 and
t = t2. (See Fig. 1.2.) The work can be thought of as the amount of energy deposited
into the particle by the agent producing the force. Note that, in general, the work
done by a force will be dependent upon the path taken by the particle.

Fig. 1.2 The work W12 is
calculated for the particular
path that a particle takes in
moving from point ℘1 to
point ℘2

1

2

r(t1)

r(t2)

ds F

x

y

z
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1.2 Single-Particle Mechanics 7

Exercise 1.4 A particle of mass m is subject to a force that is dependent upon
its velocity, F = −bv, where b is a real, positive proportionality constant. (a)
Calculate thework done by the force as the particlemoveswith constant velocity
along the x-axis from x = −a to x = +a. (b) Calculate the work done by the
force if the particle moves with constant speed along a semicircle of radius a
from x = −a to x = +a. (c) Along which path does the force do the most
work?

Exercise 1.5 A particle of mass m is subject to a force that is dependent upon
its velocity, F = −bv2v̂, where b is a real, positive proportionality constant and
v̂ is a unit vector in the direction of v. Assuming that this is the only force acting
on the particle, show that the work done by this force as the particle moves a
distance a along a straight line is

W = 1
2
mv20

(
e−2ba/m − 1

)
, (1.14)

where v0 is the initial velocity. (Hint: Treat this as a 1-dimensional problem and
use F = ma to solve for v as a function of x .)

1.2.2 Work-Energy Theorem

The expression for the kinetic energy of a particle,

T ≡ 1
2
mv2 , (1.15)

arises naturally if one calculates the work done on the particle by the net force in
moving it from one location to another. To see this, assume that the mass m of the
particle is constant, so that the net force is given by F = ma = mdv/dt . Then

∫ ℘2

℘1

F · ds =
∫ ℘2

℘1

m
dv
dt

· ds =
∫ ℘2

℘1

mdv · v =
∫ ℘2

℘1

d
(
1
2
mv2

)
. (1.16)

But this last integral is trivial to evaluate, so

W12 ≡
∫ ℘2

℘1

F · ds = 1
2
mv22 − 1

2
mv21 ≡ T2 − T1 , (1.17)
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8 1 Elementary Newtonian Mechanics

where vi is the velocity of the particle at point ℘i . This is the work-energy theorem
for a single particle, which relates the work done on a particle by the net force to its
change in kinetic energy.

1.2.3 Conservative Forces

There is a certain class of forces for which the work done is independent of the
path and depends only upon the endpoints. These forces are called conservative
forces. In order for a line integral to be independent of the path, the integrand must
be expressible as the gradient of a scalar function. Specifically, if F = −∇U (r) for
some function U , then F is conservative and U (r) is the potential energy for the
force F. For a conservative force, the work done is the difference between the values
of the potential energy at the endpoints:

W12 =
∫ ℘2

℘1

F · ds = −
∫ ℘2

℘1

∇U · ds = − (U2 −U1) . (1.18)

If we combine the above result for a conservative force with (1.17), which holds in
general, we see that U1 −U2 = T2 − T1 or, equivalently, T1 +U1 = T2 +U2, so the
quantity

E ≡ T +U, (1.19)

called the mechanical energy of the particle, is constant throughout the motion.
Thus, the mechanical energy of a particle is conserved if the external forces are
conservative.

1.2.4 Angular Momentum

We can also define angular momentum about a preferred point, even in a single
particle universe. If we place the origin of our coordinate system at this preferred
point, then the angular momentum is defined as

! ≡ r × p . (1.20)
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1.2 Single-Particle Mechanics 9

The time derivative of ! is

!̇ = ṙ × p+ r × ṗ = r × F , (1.21)

where we have used Newton’s 2nd law and the fact that ṙ×p = ṙ× (mṙ) = 0. Thus,
the angular momentum is conserved if the torque τ ≡ r × F is zero.

Exercise 1.6 In an inertial frame with a Cartesian coordinate system, a particle
of mass m starts at rest with an initial position of r0 = x0x̂ + y0ŷ. At t = 0
the particle experiences a force F = F x̂. (a) Using Newton’s 2nd law F = ṗ,
solve the equation of motion to obtain r(t) and p(t). (b) Determine the angular
momentum about the origin and show that it satisfies τ = !̇. (c) Now choose a
new coordinate system that is translated in the y direction by y0, so that r′

0 = x0x̂.
Repeat part (a) and calculate the new torque τ . Is angular momentum conserved
in this coordinate system?

1.3 Systems of Particles

When we expand our scope to include systems with multiple particles, we must take
into account interparticle forces and the apparent bulk motion of the entire system.
For a system of N particles, the momentum pI of the I th particle can change due
to interactions with other particles as well as to impressed external forces. Thus,
Newton’s 2nd law reads

dpI

dt
= F(e)

I +
∑

J (=I

FJ I , I = 1, 2, · · · , N , (1.22)

where the sum is over all other particles in the system (J runs from 1 to N , excluding
I ), and FJ I is the force that particle J exerts on particle I . (To simplify the notation
in what follows, we will define FI I = 0 so that such sums can run over all indices,
including J = I .) The total linear momentum of the system is then the sum of the
individual particle momenta,

P ≡
∑

I

pI . (1.23)

The change in the total linear momentum is then

dP
dt

= d
dt

∑

I

pI =
∑

I

dpI

dt
=

∑

I

F(e)
I +

∑

I,J

FJ I , (1.24)
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10 1 Elementary Newtonian Mechanics

where the double summation
∑

I,J ≡ ∑
I

∑
J counts each particle twice (once as I

and once as J ). But from Newton’s 3rd law, FJ I = −FI J , so the interparticle forces
sum to zero. Defining the net external force to be F(e) ≡ ∑

I F
(e)
I , we have

dP
dt

= F(e) , (1.25)

which shows that the total linear momentum of a system is conserved if the net
external force on the system is zero.

1.3.1 Center of Mass

The total momentum of a system of particles acts as if the system were a single
particle under the influence of the net external applied force. Thus, it is possible to
define a single position for the system. This position is known as the center of mass,
which is defined by

R ≡ 1
M

∑

I

m I r I , (1.26)

where M ≡ ∑
mI is the total mass of the system.

Exercise 1.7 Show that the total momentum can be expressed as P = MṘ.
(Note that we assume that the masses of the individual particles are constant.)

1.3.2 Angular Momentum

In a similar fashion to the definition of the total (linear) momentum, we can define
the total angular momentum of a system of particles to be the sum of the individual
angular momenta,

L ≡
∑

I

!I . (1.27)

If the interparticle forces are central (i.e., they are all directed along the line segments
joining pairs of particles), then the total angular momentum responds to the action
of the net external torque in the same way that a single particle does, i.e.,
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1.3 Systems of Particles 11

dL
dt

= τ (e) , (1.28)

where τ (e) ≡ ∑
I τ

(e)
I is the sum of the external torques on the individual parti-

cles. Thus, we see that the total angular momentum of a system is conserved if the
interparticle forces are central and the net external torque on the system is zero.

Exercise 1.8 Verify (1.28). (Hint: You will need to assume that the interparticle
forces are central (i.e., FJ I ∝ r I J ≡ r I − rJ ) in order to have only the external
torques τ

(e)
I ≡ r I × F(e)

I contribute to the final sum.)

Exercise 1.9 For a system of particles, we can write the position of particle I as
r I = R+ r′

I , where r
′
I is the position of the particle relative to R—the location

of the center of mass. Show that

L = R × P +
∑

I

r′
I × p′

I , (1.29)

where p′
I ≡ mI ṙ′

I .

1.3.3 Work

The time evolution of a single particle is described by the path traced-out in three
dimensions by its position vector r(t). For a system of N particles, each particle
traces out a different path r I (t), where I = 1, 2, · · · , N , so time evolution of a
system corresponds to motion of a point in an abstract 3N -dimensional space, called
the configuration space of the system. Thus, the instantaneous positions of all the
particles of the system correspond to a single point in configuration space. As the
system evolves, this point traces out a (1-dimensional) curve in configuration space.
Thework done on a systemof particles as it goes fromconfiguration 1 to configuration
2 is the sum of the work done on each individual particle in the system. Thus,

W12 =
∑

I

∫ 2

1
FI · dsI . (1.30)

Defining the total kinetic energy of the system of particles to be

T ≡
∑

I

1
2
mI v2I , (1.31)
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12 1 Elementary Newtonian Mechanics

we find that the total work done on a system of particles is equal to the change in the
total kinetic energy, so that

W12 = T2 − T1 . (1.32)

This is the work-energy theorem in the context of a system of particles.

1.3.4 Conservative Forces

For a single particle, a force is conservative if it is the gradient of a potential. This
can be simply expressed as F = −∇U (r), where the independent variable r is the
position of the particle. In multi-particle systems, there are coordinates rI for each
particle in the system. Thus, net external forces are conservative if and only if the
external force on each particle is conservative, i.e.,

F(e)
I = −∇ IU

(e)
I (r1, r2, · · · , rN ) , (1.33)

where ∇ I means the gradient of the potential with respect to the coordinate position
of particle I . Note that the potential itself carries a subscript I and may depend on
the properties (e.g., position, mass, charge, · · · ) of each individual particle, but it
does not explicitly depend on the velocities ṙ1, ṙ2, · · · or the time t .

Let’s look at the work done and the conditions that are placed on the forces in
order for us to be able to describe a well-defined potential energy for a system of
particles. In general, the work done is

W12 =
∑

I

∫ 2

1
FI · dsI =

∑

I

∫ 2

1

(

F(e)
I +

∑

J

FJ I

)

· dsI , (1.34)

where the sum over all particles J describes the work done by the interparticle forces.
(Recall that we have defined FI I = 0.) Thus, the work done on the system splits
into two parts—the work done by external forces and the work done by interparticle
forces. If the external forces are conservative, then the work done by them is simply
minus the change in the external potential from configuration 1 to configuration 2—
i.e., −"U (e) ≡ U (e)

1 − U (e)
2 , where U (e) ≡ ∑

I U
(e)
I . The interparticle forces that

appear in the second term of (1.34) may depend on the position of particle J , andmay
contribute to the work in a path-dependent way.We can make this dependence on the
position of particle J explicit by noticing that the double sum over I and J counts
each pair of particles twice—once as experiencing a force and once as exerting a
force. Thus, we can write the sum as

joseph.romano@utrgv.edu



1.3 Systems of Particles 13

∑

I,J

∫ 2

1
FJ I · dsI =

1
2

∑

I,J

[∫ 2

1
FJ I · dsI +

∫ 2

1
FI J · dsJ

]
. (1.35)

Because of Newton’s third law, FI J = −FJ I , we then have

∑

I,J

∫ 2

1
FJ I · dsI =

1
2

∑

I,J

∫ 2

1
FJ I · (dsI − dsJ ) =

1
2

∑

I,J

∫ 2

1
FJ I · dr I J , (1.36)

where dr I J is the change in the relative separation between particles I and J , which
we denote by rI J ≡ r I − rJ . If the interparticle forces can also be described as
a gradient of a potential, so that FJ I = −∇ I JUI J (rI J ), then the integral becomes
path-independent and the total work done is

W12 = U1 −U2 , (1.37)

where

U ≡
∑

I

U (e)
I (r1, r2, · · · , rN )+

1
2

∑

I,J

UI J (rI J ) . (1.38)

This total potential is the sum of the external potential energies of each particle as
well as the internal potential energies due to interparticle interactions. Thus, if all
the forces (both external and internal) are conservative, then the total mechanical
energy E = T +U is conserved for the system.

Example 1.3 Let’s consider the effects of an interparticle force that is not directed
along the line joining the two particles. Let two particles, with m1 = m2 ≡ m, lie
at rest in the xy-plane, separated by an initial distance 2a. These two particles feel
no external force, but are subject to an interparticle force given by F21 = kẑ × r12,
where ẑ is the usual unit vector in the z-direction in cylindrical coordinates and k
is a constant (units of N/m). This force will still obey the weak form of Newton’s
3rd law, so that F12 = −F21. Let’s choose a reference frame in which the center of
mass lies at the origin, as shown in Fig. 1.3. Since the net force on the two particles
is zero, the total momentum is conserved and the center of mass will remain at the
origin. The force on particle 1 is then F21 = 2kr φ̂, where r ≡ |r1| = |r2|. Recalling
that φ̂ changes direction as we move from point to point, this problem is easier to
solve using Cartesian coordinates. Newton’s 2nd law gives the following coupled
equations:

mẍ = −2ky ,

mÿ = +2kx .
(1.39)
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14 1 Elementary Newtonian Mechanics

Fig. 1.3 Initial positions of
the particles in Example 1.3.
The interparticle forces obey
F21 = kẑ × r12

m2

m1r1r2

F21

F12

x

y

We can combine these two equations by defining the complex function ζ ≡ x + iy,
giving the single complex differential equation

mζ̈ = 2ikζ . (1.40)

The solution to this equation is simply

ζ(t) = Aet
√
2ik/m + Be−t

√
2ik/m . (1.41)

The initial conditions for this problem are that ζ(0) = a and ζ̇ (0) = 0. Imposing
these conditions requires A = B = a/2. Defining ω ≡ √

k/m and noting that√
2ik/m = √

k/m (1+ i) = ω (1+ i), we find

ζ(t) = a
2

(
eωteiωt + e−ωte−iωt) . (1.42)

Taking its real and imaginary parts:

x(t) = Re ζ(t) = a
2

(
eωt cosωt + e−ωt cosωt

)
= a cosωt coshωt ,

y(t) = Im ζ(t) = a
2

(
eωt sinωt − e−ωt sinωt

)
= a sinωt sinhωt .

(1.43)

Thus, these particles spiral away from each other, gaining angular momentum and
kinetic energy as shown in Fig. 1.4. The total angular momentum of the system is

L = 2r × p = 2m (x ẏ − yẋ) ẑ = ma2ω [sin (2ωt)+ sinh (2ωt)] ẑ . (1.44)
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1.3 Systems of Particles 15

Fig. 1.4 The trajectories of
the particles under the
influence of the interparticle
force FJ I = kẑ × rI J

This increase is the direct result of the fact that the interparticle forces do not point
along the interparticle separation. Although there are no external forces on this
system, the net torque on the system is

∑

I

τ I = 4r ×
(
kẑ × r

)
= 4kr2ẑ . (1.45)

Exercise 1.10 Calculate the net torque from (1.45) and show that it is equal to
the time derivative of the total angular momentum given in (1.44).

The changing angularmomentum in this problem indicates that there is an increase
in the kinetic energy of the system. This increase comes from the work done by the
interparticle forces. Consider the infinitesimal work dW done by the forces,

dW = F21 · dr1 + F12 · dr2 . (1.46)

Since r1 = −r2, the rate of work done is then

dW
dt

= 4k
(
ẑ × r1

)
· v1 . (1.47)

Exercise 1.11 (a) Using the scalar triple product identity (A.9), show that the
rate at which work is done can be written as

dW
dt

= 2ω2L , (1.48)
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16 1 Elementary Newtonian Mechanics

where L is the magnitude of the total angular momentum vector. (b) Integrate
this equation to show that the work done by the forces as a function of time is

W = ka2 [cosh (2ωt) − cos (2ωt)] . (1.49)

(c) Finally, show that this is equal to the total kinetic energy calculated using
(1.31).

One may be tempted to explain this increase in kinetic energy by invoking some
sort of potential energy that was stored in the system in the process of bringing these
two particles in from infinity to their initial positions. Then the apparent increase
in kinetic energy is simply the release of this potential energy as the particles spiral
back to infinity. However, we can always set up the initial conditions by bringing
the particles together from±∞ along the x-axis. In this way, the interparticle forces
are always perpendicular to the motion of the particles, and so no work is done.
The interparticle forces that are invoked in this example are not conservative, and
it is not possible to define a potential energy associated with these forces. The real
solution to this apparent conundrum is that we are using nonsensical forces in this
example. These forces are the equivalent of frictional forces that point in the direction
of motion (as opposed to against the motion).

Exercise 1.12 We know that a necessary and sufficient condition for a force to
be described as the gradient of a potential is that the integral

∮
C F · ds vanish.

Choose a circle of radius r0 centered on one particle and show that this integral
is non-zero, thus proving that F is non-conservative.

%&

1.4 Conservation Laws

Newton’s laws provide us with 2nd-order differential equations for the motion of a
system of particles rI (t) by relating the accelerations to the known forces acting on
the particles. These are known as the equations of motion for the system. If certain
combinations of the positions and velocities of the particles can be shown to be
time-independent, then these quantities are conserved. Each conserved quantity can
reduce the order of the equations ofmotion by one, so they are also called integrals of
the motion. The common conserved quantities are the total linear momentum, total
angular momentum, and total mechanical energy of the system. Certain conditions
are placed on the forces acting on the system in order for these quantities to be
conserved. From our analyses in the previous sections, we have seen the following
conservation laws:
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1.4 Conservation Laws 17

I. Conservation of Linear Momentum: If the net external force on a system is
zero, then the total linear momentum is conserved:

∑

I

F(e)
I = 0 ⇒ P ≡

∑

I

m IvI = const . (1.50)

II. Conservation of Angular Momentum: If the net external torque on a system
is zero and the strong form of Newton’s 3rd law holds (so that FJ I is directed
along the line connecting particles I and J ), then the total angular momentum
is conserved:

∑

I

τ
(e)
I = 0 , FJ I ∝ r I J ⇒ L ≡

∑

I

rI × pI = const . (1.51)

III. Conservation of Mechanical Energy: If both the external forces and interpar-
ticle forces are expressible as gradients of scalar potentials,

F(e)
I = −∇ IU

(e)
I (r1, r2, · · · , rN ) , FJ I = −∇ I JUI J (rI J ) , (1.52)

then the total mechanical energy of the system E ≡ T +U is conserved:

E = 1
2

∑

I

m I v2I +
∑

I

U (e)
I (r1, r2, · · · , rN )+

1
2

∑

I,J

UI J (r I J ) = const .

(1.53)

We will return to these conservation laws in Sects. 3.3 and 3.6.2, after we have
developed the Lagrangian and Hamiltonian formulations of mechanics.

1.5 Non-inertial Reference Frames

So farwe have restricted our attention to studying themotion of a particle (or a system
of particles) as seen from an inertial frame of reference. We saw in Exercise 1.3 that
inertial reference frames move at constant velocity with respect to one another. We
can formalize this relationship as a coordinate transformation (known as a Galilean
transformation) between the two frames as

r = r′ + ut , (1.54)

where the origin of the primed coordinate system is moving with constant velocity
u within the unprimed coordinate system. Recall that, in an inertial frame, a particle
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18 1 Elementary Newtonian Mechanics

moves with constant velocity (i.e., has zero acceleration) if there are no forces acting
on it. When we are not in an inertial frame, there will be spurious (or fictitious)
accelerations arising from the acceleration of the reference frame. These effects can
be seen in simple every-day situations such as sitting in a vehicle that is accelerating
or rounding a corner. In these situations, loose objects will appear to accelerate
relative to the observer or vehicle.

We perceive these accelerations because we effectively carry around with us an
origin O ′ and a set of orthonormal basis vectors êi ′ that are fixed with respect to us,
as shown in Fig. 1.5. The motion of the origin O ′ is described by the position vector
R(t) as seen in the frame of an inertial observer O , with corresponding orthonormal
basis vectors êi . The position of a particle located at ℘ is described in the inertial and
non-inertial reference frames by the displacement vectors r(t) and r′(t), respectively,
which are defined with respect to the observers O and O ′. These two displacement
vectors are related by the vector R(t) joining O and O ′, so that

r = r′ + R . (1.55)

R(t)

x

y

z

O

O'r'

r

êi

êi'

Fig. 1.5 The motion of a non-inertial observer O ′ described by R(t) in the reference frame of
inertial observer O . O ′ carries a set of orthonormal basis vectors êi ′ . The position ℘ of a particle
is described in the inertial and non-inertial reference frames by the displacement vectors r = r(t)
from O to ℘, and r′ = r′(t) from O ′ to ℘, respectively
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1.5 Non-inertial Reference Frames 19

Note that both the translational motion of the origin O ′ and the rotational motion
of the basis vectors êi ′ relative to the fixed (inertial) frame lead to differences in the
velocity and acceleration of the particle as seen in these two frames. To determine
what these differences are, it is simplest to first separate the effects of the translational
and rotational motion, and then combine the results at the end to handle the more
general case of translational-plus-rotational motion.We do this in the following three
subsections.

1.5.1 Translational Motion

Let’s begin with the simplest scenario, which is to allow O ′ to move with respect O ,
but to keep the basis vectors of the non-inertial reference frame fixed with respect
to the inertial frame—i.e., êi ′ = êi for i = 1, 2, 3. To relate the accelerations of the
particle as measured with respect to both O and O ′, we simply differentiate (1.55)
twice with respect to time—i.e., r̈ = r̈′ + R̈, or, equivalently,

a = a′ + R̈ . (1.56)

Thus, Newton’s 2nd law, F = ma, which is valid in the inertial frame O , becomes

ma′ = F − mR̈ (1.57)

with respect to O ′. Note the presence of the fictitious force Faccel ≡ −mR̈, which is
non-zero if O ′ is accelerating with respect to O , and which points in the direction
opposite to the acceleration R̈.

Example 1.4 Consider a reference frame O ′ that is accelerating with constant linear
acceleration—e.g., a car starting up from a stop. Since the basis vectors in the ac-
celerated and inertial frames are identical, the observed acceleration of loose objects
in the car is simply −R̈. We perceive this acceleration to be caused by the fictitious
force Faccel = −mR̈, which points in the direction opposite to the car’s acceleration.
From the perspective of the passengers in the car, they perceive that they have zero
acceleration relative to their reference frame, i.e., a′ = 0, but this is due to the exact
cancellation of two forces. One is the fictitious force Faccel = −mR̈, which they feel
pushing them back in their seats, and the other is the true force F = ma, which is
accelerating them along with the car, but which they perceive as a normal force from
the seat acting in response to the backward-directed fictitious force. %&
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20 1 Elementary Newtonian Mechanics

1.5.2 Rotational Motion

Now let’s consider the case where the origins O and O ′ of the two reference frames
occupy the same position in space, but the basis vectors êi ′ of the non-inertial frame
are rotating with respect to the basis vectors êi of the inertial frame. Then

êi ′ =
∑

j

Ri ′ j ê j , (1.58)

where Ri ′ j are the component of a rotation matrix R. (Note that Ri ′ j = êi ′ · ê j ≡
cos θi ′ j , where θi ′ j is the angle between êi ′ and ê j . These are just thedirection cosines
relating the basis vectors of the two frames.) Since rotations preserve the length of
vectors, R is an orthogonal matrix, which means that R−1 = RT (the transpose of
R), or, equivalently,2

∑

i ′
Ri ′ j Ri ′k = δ jk ,

∑

i

R j ′i Rk ′i = δ j ′k ′ . (1.59)

Using this result, it follows that the components Ai and Ai ′ of a vectorAwith respect
to the two reference frames are related by

Ai ′ =
∑

j

Ri ′ j A j , (1.60)

which has the same form as the transformation equation (1.58) for the basis vectors.
To calculate the time derivative of A, we will expand A in the two different

reference frames. If we first expand with respect to the inertial frame, we find

dA
dt

= d
dt

(
∑

i

Ai êi

)

=
∑

i

(
dAi

dt
êi + Ai

dêi
dt

)
=

∑

i

dAi

dt
êi , (1.61)

where the last equality follows from the basis vectors êi being at rest in the inertial
frame. If we expand with respect to the rotating frame, we find

dA
dt

= d
dt

(
∑

i ′
Ai ′ êi ′

)

=
∑

i ′

(
dAi ′

dt
êi ′ + Ai ′

dêi ′
dt

)
=

(
dA
dt

)

r
+

∑

i ′
Ai ′

dêi ′
dt

,

(1.62)

2These concepts are described in more detail in Chap.6 and Appendix D.
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where (
dA
dt

)

r
≡

∑

i ′

dAi ′

dt
êi ′ (1.63)

is the time derivative of A as seen in the rotating frame of reference (hence the
subscript ‘r’). To evaluate the last term in (1.62), we use (1.58) and (1.60) to expand
Ai ′ and êi ′ in terms of Ai and êi . This yields

∑

i ′
Ai ′

dêi ′
dt

=
∑

i ′

∑

j

Ri ′ j A j
d
dt

(
∑

k

Ri ′k êk

)

=
∑

j

A j

∑

k

(
∑

i ′
Ri ′ j

dRi ′k

dt

)

êk .

(1.64)
But note that the matrix defined as

Mjk ≡
∑

i ′
Ri ′ j

dRi ′k

dt
(1.65)

is anti-symmetric (i.e., Mjk = −Mkj ) as a consequence of (1.59). Since an anti-
symmetric 3× 3 matrix has three independent components, we can define the com-
ponents ωi of a vector ω in terms of Mjk and the (totally anti-symmetric) Levi-Civita
symbol εi jk , defined in (A.7):

Mjk ≡
∑

i

ωiεi jk ⇔ ωi =
1
2

∑

j,k

εi jkM jk . (1.66)

Thus,

∑

j

A j

∑

k

(
∑

i ′
Ri ′ j

dRi ′k

dt

)

êk =
∑

j

A j

∑

k

M jk êk =
∑

i, j,k

ωi A jεi jk êk = ω × A .

(1.67)
Putting all these results together,

(
dA
dt

)

f
=

(
dA
dt

)

r
+ ω × A , (1.68)

where we have written dA/dt = (dA/dt)f , which follows from (1.61); the subscript
‘f’ indicates the fixed (inertial) frame.

Exercise 1.13 It turns out that ω defined by (1.66) and (1.65) is the instanta-
neous angular velocity vector of the rotating reference frame relative to the
inertial reference frame. Verify that this is indeed the case by calculating ω for
the simple case of a rotation about the z-axis with constant angular velocity ω:
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22 1 Elementary Newtonian Mechanics

Ri ′ j =




cosωt sinωt 0

− sinωt cosωt 0
0 0 1



 . (1.69)

You should find that ω = ωẑ.

Equation (1.68) is a general result, so we can apply it to any vectorA. In particular,
if we take A to be the position vector r of a particle relative to the shared origin of
O and O ′, then

vf = vr + ω × r , (1.70)

where vf and vr are shorthand for (dr/dt)f and (dr/dt)r. Similarly, if we apply (1.68)
to the angular velocity vector ω, we find

(
dω
dt

)

f
=

(
dω
dt

)

r
(1.71)

since ω × ω = 0. Thus, we can write dω/dt ≡ ω̇ without ambiguity. Finally, if we
take A to equal vf from (1.70), we find

(
dvf
dt

)

f
=

(
dvf
dt

)

r
+ ω × vf

=
(
d
dt

(vr + ω × r)
)

r
+ ω × (vr + ω × r)

=
(
dvr
dt

)

r
+

(
dω
dt

)

r
× r + ω ×

(
dr
dt

)

r
+ ω × vr + ω × (ω × r)

=
(
dvr
dt

)

r
+

(
dω
dt

)

r
× r + 2ω × vr + ω × (ω × r) , (1.72)

or, more compactly,

af = ar + ω̇ × r + 2ω × vr + ω × (ω × r) , (1.73)

where af and ar are shorthand for (dvf/dt)f and (dvr/dt)r.
Thus, Newton’s 2nd law F = maf , which is valid in an inertial frame, can be

written in a rotating reference frame as

mar = F − mω̇ × r − 2mω × vr − mω × (ω × r) . (1.74)
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Fig. 1.6 Cyclonic motion of
air currents as seen in the
Northern hemisphere, driven
by pressure gradients and the
Coriolis force associated
with Earth’s rotational
motion

low

high high

highhigh

If we interpret these last three terms as additional (fictitious) forces, then Newton’s
2nd law in the rotating frame has the more standard looking form, mar = Feff . The
first fictitious force term, Fang accel ≡ −mω̇ × r, is related to the angular acceleration
of the rotating reference frame. For a uniformly rotating frame, like a lab attached
to the surface of the Earth, ω̇ = 0, so this fictitious force vanishes. The last two
fictitious force terms are the Coriolis and centrifugal forces, respectively:

Fcoriolis ≡ −2mω × vr , Fcentrifugal ≡ −mω × (ω × r) . (1.75)

The centrifugal force is directed radially away from the axis of rotation and has
magnitude mω2r sin θ where θ is the angle between ω and r. The Coriolis force
is non-zero only if vr (= 0, and is directed perpendicular to both vr and ω. As
viewed along the direction of vr, the Coriolis force associatedwith counter-clockwise
rotationalmotion produces a deflection to the right; for clockwise rotationalmotion, it
produces a deflection to the left. The Coriolis force associated with Earth’s rotational
motion is responsible for the circulating or cyclonicweather patterns associated with
hurricanes and cyclones, as illustrated in Fig. 1.6. Basically, a pressure gradient gives
rise to air currents that tend to flow from high pressure to low pressure regions. But
as the air flows toward the low pressure region, the Coriolis force deflects the air
currents away from their straight line paths. Since the projection of ω perpendicular
to the local tangent plane changes sign as one crosses the equator, the direction of the
cyclonic motion (either counter-clockwise or clockwise) is different in the Northern
and Southern hemispheres.
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24 1 Elementary Newtonian Mechanics

1.5.3 Combined Translational and Rotational Motion

Given (1.57) and (1.74), it is now a simple manner to write down the equivalent of
Newton’s 2nd law in a general non-inertial reference frame having both translational
and rotational motion. The result is

ma′ = F − mω̇ × r′ − 2mω × v′ − mω × (ω × r′) − mR̈ , (1.76)

where the primes ′ denote quantities calculated with respect to the non-inertial frame.

Example 1.5 Consider a carnival ride that spins a cylinder about its central axis with
angular velocity ω, causing all riders to feel that they are pressed against the walls of
the cylinder. In this case, the non-inertial observer feels a net acceleration as he/she
rotates around the central axis, with his/her basis vectors rotating with respect to the
inertial frame at the same rate (See Fig. 1.7). We’d like to know what fictitious forces
the rider feels, and if the rider threw a ball in toward the center of the ride, where
would it land?

To do this problem, we first note that the basis vectors in O ′ are related to those
in O by the rotation matrix

Ri ′ j =




cosωt sinωt 0

− sinωt cosωt 0
0 0 1



 . (1.77)

Fig. 1.7 Basis vectors and
reference frames for an
inertial observer O at the
center of a carnival ride and
for a non-inertial observer O ′

on the ride. The basis vectors
of the non-inertial observer,
ê1′ , ê2′ , rotate along with the
rider at the same rate. Note
that ê3 = ê3′ = ẑ for both
observers, which points out
of the page O

O'

x

y

ê1

ê2

ê1'ê2'

= t
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As shown in Exercise 1.13, the associated angular velocity vector ω is simply ωẑ,
consistent with the motion of the carnival ride. Also, since the position O ′ of the
rider with respect to the inertial frame is

R = R cosωt ê1 + R sinωt ê2 , (1.78)

then R̈ = −ω2R. Thus, Newton’s 2nd law in this non-inertial frame reduces to

ma′ = F − 2mω × v′ + mω2r′ + mω2R , (1.79)

where we have also assumed that the position vector r′ of a particle as seen in the
non-inertial frame has no z-component in order to write the second-to-last term in
that form. The last two terms in the above expression can be thought of as centrifugal
force terms associated with (i) the rotational motion of the basis vectors êi ′ , and (ii)
the rotational motion of the origin O ′ (i.e., the rider) with respect to O . The “origin”
centrifugal force is the fictitious force that appears to drive objects out toward thewall
from the center of the ride. The “basis” centrifugal force is the fictitious force that
appears to drive objects away from the rider. Finally, the Coriolis force −2mω × v′

is the result of the fact that the rider is moving with tangential velocity ω × R. Any
additional velocity of an observed particle will add to this tangential velocity. Thus,
if the rider throws a ball in toward the center, the Coriolis force will cause it to appear
to accelerate in the direction of motion of the rider. We can also understand this by
noting that the ball has an initial velocity of v′ + ω × R with respect to the inertial
frame. As the ball moves in toward the center, its tangential velocity is now greater
than the comoving tangential velocity, so it will appear to move in the direction of
rotation. This is similar to what we saw in Fig. 1.6 for the deflection of air currents
due to the Earth’s rotational motion. %&

1.5.4 Foucault’s Pendulum

A simple way to demonstrate the Earth’s rotational motion is to show that the plane
of a swinging pendulum precesses with time, with a precessional period equal to
(1 day)/ sin λ, where λ = π/2− θ is the latitude of the pendulum’s location.3 In this
subsection, we solve the equations of motion for the swinging pendulum as seen in
a rotating reference frame attached to the surface of the Earth, and derive the above
expression for the precessional period. Such a demonstration is called Foucault’s
pendulum in honor of the French physicist, Jean Léon Foucault who first exhibited
this demonstration in Paris in 1851.

3θ is the usual spherical coordinate angle measured from the z-axis (the North pole), and is called
the co-latitude.
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26 1 Elementary Newtonian Mechanics

Fig. 1.8 Definitions of R
and r for a non-inertial
reference frame with origin
O attached to the surface of
the Earth. The size of the
pendulum bob displacement
r relative to the Earth’s
radius R has been
exaggerated in this figure for
ease of visualization

R
r

O

To simplify the notation in what follows, we will drop the primes on quantities
calculated in the non-inertial frame attached to the surface of the Earth, so that (1.76)
becomes

ma = F − mω̇ × r − 2mω × v − mω × (ω × r) − mR̈f , (1.80)

where R is the radius vector pointing from the center of the Earth to the origin O of
the local reference frame, and r is the displacement of the pendulum bob away from
equilibrium, as shown in Fig. 1.8. (The subscript “f” on R̈f is to indicate that this
acceleration is calculated with respect to the fixed (i.e., inertial) frame.) In addition,
F = T+mg0, where T is the tension in the string attached to the pendulum bob and
g0 points towards the center of the Earth (in the direction of −R); ω̇ = 0, since the
angular velocity of the Earth is constant; and R̈f = ω × (ω × R), as a consequence
of (1.68). Thus,

ma = T+ m
[
g0 − ω × (ω × (r + R))

]
− 2mω × v . (1.81)

The term in square brackets

g ≡ g0 − ω × (ω × (r + R)) , (1.82)

defines the effective local direction of the Earth’s gravitational field, which dif-
fers from g0 by the centrifugal acceleration associated with the Earth’s rotational
motion. Since the displacement r of the pendulum bob away from equilibrium is
small compared to the Earth’s radius R, the centrifugal acceleration is dominated by
−ω × (ω × R). Note that a plumb line (i.e., a mass suspended from the end of a
string) points in the direction of g (and not g0), as shown in Fig. 1.9. Thus, for our
analysis, we will define our local coordinate system so that ẑ points along −g. We
then choose x̂ perpendicular to ẑ, pointing South; and ŷ perpendicular to both ẑ and
x̂, pointing East (along the line of constant latitude), as shown in Fig. 1.10.
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Fig. 1.9 Change in the
direction of the local
gravitational field due to
Earth’s rotational motion.
The deviation from g0 has
been exaggerated for ease of
visualization R

( R)
g0

g

Fig. 1.10 Definition of a
non-inertial reference frame
attached to the surface of the
Earth. Note that ẑ points
along −g, which is opposite
the direction of the effective
local gravitational field. The
direction of g differs slightly
from g0 (which points in the
direction of −R) due to the
centrifugal acceleration
associated with the Earth’s
rotational motion, as shown
previously in Fig. 1.9

g

x

y

z

R

O

Exercise 1.14 Show that the angle δ between g (the direction of a plumb line at
the surface of the Earth at latitude λ = π/2 − θ ) and g0 (the direction pointing
toward the center of the Earth) is given to leading order by

δ ≈ Rω2

g0
sin θ cos θ , (1.83)

with maximum value δ = 0.0017 rad ≈ 0.1◦ at θ = π/4. Show also that the
centrifugal acceleration vector δg ≡ −ω × (ω × R) has maximum magnitude
|δg|/g0 = 0.003 at the equator, θ = π/2.
Hint: First show that the maximum value of ω × (ω ×R) is small compared to
g0 = 9.8 m/s2, where ω = 2π/(1 day) and R = 6400 km. Then use the law of
sines and the small-angle approximation to obtain (1.83).

joseph.romano@utrgv.edu



28 1 Elementary Newtonian Mechanics

So we need to solve

ma = T+ mg − 2mω × v . (1.84)

We will consider small-angle oscillations of the pendulum bob in the xy-plane, so
that vz can be ignored relative to vx and vy , and az ≈ 0. Given these approximations,
we can write

a ≈ ẍ x̂ + ÿ ŷ ,
T ≈ −T (x/L) x̂ − T (y/L) ŷ+ T ẑ ,
g = −g ẑ ,

ω × v ≈ −ωz ẏ x̂ + ωz ẋ ŷ+ ωx ẏ ẑ ,

(1.85)

where L is the length of the pendulum and

ωx ≈ −ω sin θ , ωy = 0 , ωz ≈ ω cos θ . (1.86)

The three equations of motion are thus

mẍ ≈ −T x/L + 2mωz ẏ ,

mÿ ≈ −T y/L − 2mωz ẋ ,

0 ≈ T − mg − 2mωx ẏ .

(1.87)

Now, one can show (Exercise 1.15) that

|ωx ẏ| / g , (1.88)

for a typical pendulum with period P / 1 day = 2π/ω. Thus, we can ignore the
last term in the z̈ ≈ 0 equation in (1.87) and solve it for the tension,

T = mg , (1.89)

giving the expected result. Using this value for T , the ẍ and ÿ equations reduce to:

ẍ ≈ −+2x + 2ωz ẏ ,

ÿ ≈ −+2y − 2ωz ẋ ,
(1.90)

where + ≡ √
g/L is the unperturbed frequency of oscillation that we expect for

a pendulum of length L . Since ω / +, the terms proportional to ωz in the above
equations act as perturbations to the standard simple harmonic oscillator equations
ẍ = −+2x and ÿ = −+2y, which describe simple harmonic motion with angular
frequency +.
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Exercise 1.15 Verify (1.88).Hint: If the maximum displacement of the pendu-
lum bob away from equilibrium is D, then you can show that ẏ is bounded by
D+, where + ≡ √

g/L is the unperturbed (angular) frequency of oscillation.
Note that D / L to be consistent with the small-angle approximation for the
pendulum bob.

To solve the coupled differential equations in (1.90), we perform the same “trick”
that we used in Example 1.3 and form the complex combination

ζ ≡ x + iy , (1.91)

allowing us to recast the two equations in (1.90) as a single complex differential
equation

ζ̈ + 2iωz ζ̇ + +2ζ = 0 . (1.92)

This is a 2nd-order ordinary differential equation with constant coefficients, which
can be solved in the usual way (See, e.g., Chap. 8 in Boas (2006)). Substituting the
trial solution ζ(t) = eλt , with complex λ, we obtain a quadratic equation for λ:

λ2 + 2iωzλ + +2 = 0 . (1.93)

This equation has two complex solutions

λ± = −i
(

ωz ∓
√

+2 + ω2
z

)
≈ −i(ωz ∓ +) , (1.94)

where we’ve used ωz / + to get the last (approximate) equality. Thus, the general
solution to (1.92) is

ζ(t) = Aeλ+t + Beλ−t , (1.95)

where A and B are complex coefficients, to be determined by the initial conditions.
If we assume that the pendulum bob is pulled out a distance D in the x-direction

and released from rest, then

x(0) = D , y(0) = 0 , ẋ(0) = 0 , ẏ(0) = 0 , (1.96)

or, equivalently,
ζ(0) = D , ζ̇ (0) = 0 . (1.97)

Imposing these conditions on ζ(t) determines A and B, leading to (Exercise 1.16):
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x(t) = D
[
cosωz t cos+t + ωz

+
sinωz t sin+t

]
,

y(t) = D
[
− sinωz t cos+t + ωz

+
cosωz t sin+t

]
.

(1.98)

Note that these equations can be written in matrix form

[
x(t)
y(t)

]
=

[
cosωz t sinωz t

− sinωz t cosωz t

] [
x̄(t)
ȳ(t)

]
, (1.99)

where
x̄(t) = D cos+t , ȳ(t) = D

ωz

+
sin+t . (1.100)

The matrix

Rz ≡
[

cosωz t sinωz t
− sinωz t cosωz t

]
, (1.101)

which appears in (1.99), represents a uniform rotation in the xy-plane with angu-
lar velocity ωz = ω cos θ . This is just the precessional frequency of the plane of
oscillation of the pendulum. The period of the precession is then

Pprecession =
2π
ωz

= 1 day
cos θ

= 1 day
sin λ

, (1.102)

where λ = π/2 − θ is the latitude. For example, if we take λ = 49◦, which is the
latitude of Paris (where Foucault first did this demonstration), we have a precessional
period of 31 hours and 48 minutes. At the equator, the pendulum does not precess.

Exercise 1.16 Verify the solution given in (1.98).

Plots of (x(t), y(t)) and (x̄(t), ȳ(t)) are shown in Figs. 1.11 and 1.12. For these
plots,wedecreased the angular frequencyof oscillation+bya factor of 200 compared
to typical values, so as to easily see the precession of the plane of oscillation of the
pendulum after only a few oscillations. Typical Foucault pendulum demonstrations
have suspensions of order L = 30 m (roughly 100 ft). For such an L , the angular
oscillation frequency + = √

g/L ≈ 0.57 rad/s, which corresponds to an oscillation
period of 2π/+ ≈ 11 s. For these figures, we have oscillation periods of roughly
2200 s ≈ 36 min, so only ∼ 50 back-and-forth motions of the pendulum bob would
be needed for a complete 360◦ precession at the latitude of Paris.
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00.5

1
2
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Fig. 1.11 Motion of the pendulum bob as seen in the non-inertial reference frame. Note that
the plane of oscillation of the pendulum precesses. (The numbers correspond to back-and-forth
oscillations of the pendulum bob.) As described in the text, the angular frequency of oscillation +
has been reduced considerably for this figure so as to easily visualize the precession of the plane of
oscillation in just two oscillation periods

Fig. 1.12 Motion of the pendulum bob as seen in a “corotating frame”, which rotates relative to
the non-inertial frame with the precession frequency ωz of the plane of oscillation of the pendulum.
As described in the text, the angular frequency of oscillation + has been reduced considerably for
this figure so as to easily visualize the elliptical nature of the motion in this reference frame

1.6 Constrained Systems

For some systems, the motion of a particle (or particles) is restricted to a prescribed
surface or path. The constraints on the motion are often the result of additional forces
acting on the particle (such as normal forces or tension forces) that adjust their values
in order to maintain the motion on the prescribed surface or path. These forces then
become additional unknowns that must be solved for while obtaining the equations
of motion for the system.

There are a variety of techniques for dealing with these forces of constraint. We
will look at a few examples in order to see how the constraints are imposed on
solutions obtained through Newton’s laws. In many cases, this involves reducing
the number of degrees of freedom in the system by finding an equation relating
the coordinates to one another and using it to solve for one or more of the degrees
of freedom in terms of the remaining variables. In Chap. 2, we will examine more
powerful mathematical tools for handling constrained systems.

Example 1.6 A spherical pendulum consists of a mass m at the end of a massless
rigid rod of length ,. The rod is free to pivot around the other end, so the particle
is constrained to move under the influence of gravity on the surface of a sphere of
radius ,. Spherical coordinates allow us to easily impose the constraint and reduce
the number of degrees of freedom from three to two by requiring that r = ,. In order
to allow our solution to be easily compared with the well-known results of the simple
pendulum, we orient our coordinates with the z-axis is pointing downward, so that
the polar angle θ is measured as a displacement angle from the equilibrium position
of the pendulum hanging vertically. The orientation of the coordinates and system
are shown in Fig. 1.13
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x

y

z

m

mg
fc

φ

Fig. 1.13 The spherical pendulumwith a massm on the end of a massless rigid rod of length ,. The
force of gravity points down in the positive z direction, and the force of constraint fc points along
the rod in the direction of r̂. If the constraint force is a tension force, it will point radially inward; if
it is a normal force, it will point radially outward. The relevant polar and azimuthal angles are the
usual spherical coordinates θ and φ

In these coordinates, the forces are fc = fcr̂ and mg = mg cos θ r̂ − mg sin θ θ̂ ,
so the net force acting on the particle is

∑
F = ( fc + mg cos θ) r̂ − mg sin θ θ̂ . (1.103)

The position of the particle is simply r = ,r̂, but since r̂ points in different directions
as the particle moves, we must also include the time dependence of the spherical
basis vectors when finding the acceleration. Referring to the definitions in (A.46)
and taking the time derivatives explicitly, we find

dr̂
dt

=φ̇ sin θ
(
− sin φx̂ + cosφŷ

)

+ θ̇
(
cosφ cos θ x̂ + sin φ cos θ ŷ − sin θ ẑ

)
,

(1.104)

which can be written in terms of the spherical basis vectors as

dr̂
dt

= φ̇ sin θ φ̂ + θ̇ θ̂ . (1.105)

When we take the second time derivative, we will also need the time derivatives of
θ̂ and φ̂, which can be found using the same procedure. Thus, we additionally have

dθ̂
dt

= −θ̇ r̂ + φ̇ cos θ φ̂ ,

dφ̂
dt

= −φ̇ sin θ r̂ − φ̇ cos θ θ̂ .

(1.106)
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Exercise 1.17 We can also obtain the above expressions for the time derivatives
of r̂, θ̂ , φ̂ using directional derivatives, which are discussed in Appendix A.4.2.
Note that for any basis vector êi , its time derivative is given by

dêi
dt

= ∂ êi
∂r

ṙ + ∂ êi
∂θ

θ̇ + ∂ êi
∂φ

φ̇ , (1.107)

where

∂ êi
∂r

= ∇r̂ êi ,
∂ êi
∂θ

= r∇θ̂ êi ,
∂ êi
∂φ

= r sin θ∇φ̂ êi . (1.108)

Use (A.49) from Example A.2 to recover (1.105) and (1.106).

Taking two time derivatives of r = ,r̂, we find that the acceleration is

a = − ,
(
θ̇2 + φ̇2 sin2 θ

)
r̂ + ,

(
θ̈ − φ̇2 sin θ cos θ

)
θ̂

+ ,
(
φ̈ sin θ + 2θ̇ φ̇ cos θ

)
φ̂ .

(1.109)

Newton’s 2nd law then gives the three equations of motion

fc + mg cos θ = −m,
(
θ̇2 + φ̇2 sin2 θ

)
, (1.110a)

−mg sin θ = m,
(
θ̈ − φ̇2 sin θ cos θ

)
, (1.110b)

0 = m,
(
φ̈ sin θ + 2θ̇ φ̇ cos θ

)
. (1.110c)

The first equation, (1.110a), gives us the constraint force

fc = −mg cos θ − m,
(
θ̇2 + φ̇2 sin2 θ

)
, (1.111)

and can easily be seen to be the tension (or normal) force needed to counteract the
weight plus the centripetal force needed to keep the particle moving in a circle with
speed v, where v2 = ,2

(
θ̇2 + φ̇2 sin2 θ

)
. The second equation, (1.110b), gives us the

2nd-order differential equation governing θ ,

m,θ̈ = m,φ̇2 sin θ cos θ − mg sin θ . (1.112)

The third equation, (1.110c), can be shown to be related to the conserved component
of the angular momentum. First, note that we can multiply (1.110c) by , sin θ , for
which the right-hand side becomes a total time derivative ofm,2φ̇ sin2 θ , which then
must be a conserved quantity. However, the net torque on this system is not zero,
so we cannot say that the full angular momentum vector is conserved. The angular
momentum is L = r × p, which can be expanded as
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L = m,2
[
−

(
θ̇ sin φ + φ̇ cosφ sin θ cos θ

)
x̂

+
(
θ̇ cosφ − φ̇ sin φ sin θ cos θ

)
ŷ+ φ̇ sin2 θ ẑ

]
.

(1.113)

Since the net torque is τ = r × mgẑ, the ẑ component of the torque is zero. This
means that Lz = m,2φ̇ sin2 θ is a conserved quantity, as demonstrated by (1.110c).
We can use this expression for Lz to eliminate φ̇ from (1.112), leaving a 2nd-order
differential equation for θ alone. Unfortunately, (1.112) is non-linear, so it can be
solved exactly only for special cases. %&

In the spherical pendulum example, the constraints were expressed as an equation
relating the three degrees of freedom to the restriction that r = ,. In spherical
coordinates, this constraining equation is so simple that it is hard to see it as a non-
trivial equation. In Cartesian coordinates, it is more obvious as ,2 = x2 + y2 + z2.
When combined with Newton’s laws, the constraint equations give the unknown
forces of constraint. In some situations, the constraints are valid only when the forces
of constraint lie within a restricted range. Using similar techniques to determine the
forces of constraint, we can then determine under which conditions the constraints
hold and when the system is no longer constrained.

Example 1.7 Consider a skier going down a hemispherical hill. At first the skier is
constrained to follow the surface of the hill. As the skier descends and speeds up, she
will eventually leave the surface and begin to follow a ballistic trajectory. We want
to determine at what angle the skier leaves the slope.

This problem is effectively two-dimensional and cylindrical coordinates are the
most appropriate. We will measure the angle φ off of the (vertical) y-axis instead of
the x-axis, but otherwise these are the standard cylindrical coordinates. The radius
of the hill is R, so the constraint equation is R2 = x2+ y2. The forces and coordinate
choices are shown in Fig. 1.14. The constraint force is the normal force that the hill
exerts on the skier. When the combined radial force on the skier drops to zero, then
there is no centripetal force left to constrain the skier to the surface of the hill. In the
cylindrical basis, the forces acting on the body are

Fn = Fn ρ̂ ,

mg = −mg cosφρ̂ + mg sin φφ̂ .
(1.114)

Remembering that it is easiest to use the Cartesian basis when computing the accel-
eration, we find

a = −Rφ̇2ρ̂ + Rφ̈φ̂. (1.115)

Thus, the equations of motion are obtained from Newton’s 2nd law, giving

Fn − mg cosφ = −mRφ̇2 (1.116a)

mg sin φ = mRφ̈ . (1.116b)
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Fig. 1.14 A skier going
down a spherical hill feels a
weight force pointing
downward (−ŷ direction)
and a normal force pointing
along the ρ̂ direction. The
motion is constrained to the
surface of the hill

R

mg

Fn

φ

Now, the skier leaves the surface when Fn = 0. If we knew φ̇, then we could solve
(1.116a) for the value of φ at which the skier leaves the surface.

Equation (1.116b) provides the differential equation to solve for φ. There is a nice
trick for solving this differential equation that involves converting it to a 1st-order
differential equation. First, we multiply both sides by φ̇, to find

φ̇φ̈ = g
R

φ̇ sin φ . (1.117)

The left-hand side is the total time derivative of 1
2 φ̇

2, while the right-hand side is the
total time derivative of −(g/R) cosφ. We can then integrate both sides to find

1
2
φ̇2 = − g

R
cosφ + C , (1.118)

where C is an arbitrary constant that is fixed by the initial conditions. The skier
starts from rest at φ = 0, so φ̇ = 0 when cosφ = 1. Thus, the arbitrary constant is
C = g/R. We now have the solution for φ̇2 that we need for (1.116a),

φ̇2 = 2g
R

(1 − cosφ) . (1.119)

Substituting this expression into (1.116a) and setting Fn = 0 gives the solution for
the angle at which the skier leaves the surface,

cosφ = 2
3
. (1.120)

%&

In the previous example, the equation for the angular velocity (1.119) could also
be obtained using conservation of mechanical energy, and that is frequently how
this problem is solved in introductory physics courses. This should be somewhat
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surprising, however, since the force of constraint is not conservative and one of the
requirements for conservation ofmechanical energy is that all forces be conservative.
This requirement allows the work done by the forces to be expressed as the difference
between the values of the potential at the initial and final states. In this example,
the constraint force is the normal force, and so it is always perpendicular to the
constrained motion. Thus, the constraint force does no work on the system and does
not contribute a change inmechanical energy of the system. Therefore, we can equate
the initial mechanical energy to the final mechanical energy,

Ei = mgR = mgR cosφ + 1
2
mR2φ̇2 = Ef . (1.121)

Solving for φ̇2, we recover (1.119).
Once we have the equation for φ̇2, we can also integrate it to find the time-

dependent solution φ(t):

∫ φ

0

dφ
A
√
1 − cosφ

=
∫ t

0
dt , (1.122)

where A ≡ √
2g/R. Although it is not trivial, this integral can be done (or looked

up in a handbook of integrals), and we get

√
R
g

[
ln

(
tan

(
φ

4

))
− ln (tan (0))

]
= t . (1.123)

This all looks fine until we try to solve this equation for φ(t) and notice that
ln (tan (0)) → −∞. What does this mean? A direct interpretation is that it will
take an infinite amount of time for the skier to reach any angle φ. Upon further re-
flection, we see that the math is telling us something that we have been overlooking.
Namely, the skier starts with an initial velocity of v = Rφ̇ = 0 at the top of the hill
where the forces are in equilibrium, so the acceleration is zero. The skier isn’t going
anywhere until someone pushes her!

Exercise 1.18 Redo the problem for the skier in Example 1.7, but allowing for
a non-zero initial velocity v0, and determine how the angle at which the skier
leaves the slope depends on the initial velocity. What is the maximum value of
v0 allowed for the skier to be on the ground at the top of the hill?

You may have noticed that direct application of Newton’s laws to constrained
systems frequently involves a lot of algebra and the careful solution of multiple
equationswithmultiple unknowns to obtain the equations ofmotion and the equations
for the constraint forces. A great deal of mathematical machinery has been developed
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to streamline and simplify the analysis of constrained systemswith general coordinate
systems. We will explore these in the next chapter.

Suggested References

Full references are given in the bibliography at the end of the book.

Fetter and Walecka (1980): Although more advanced, the first two chapters provide
a thorough review of mechanics and non-inertial reference frames.

Marion and Thornton (1995): An excellent introductory text on classical mechanics,
particularly suited for undergraduates.

Additional Problems

Problem 1.1 Extend the calculation of Exercise 1.17 to obtain the acceleration vec-
tor in spherical coordinates (r, θ,φ) for unconstrainedmotion in three dimensions—
that is, allowing the radial coordinate r to also change with time.

Problem 1.2 Calculate the acceleration vector for unconstrained motion in three
dimensions in cylindrical coordinates (ρ,φ, z).

Problem 1.3 Consider a simple planar pendulum consisting of a massm suspended
from a (massless) string of length , in a uniform gravitational field g. (See Fig. 1.15.)
LetT denote the tension in the string and v0 denote the initial velocity of the pendulum
bob—i.e., the tangential velocity at its lowest point θ = 0.

Fig. 1.15 A pendulum bob
of mass m is suspended from
a (massless) string of length
, in a uniform gravitational
field g. The gravitational
force mg and the tension T
exerted by the string are
shown in the figure

z

x

mg

T

m
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(a) Obtain an equation for the tension T as a function of θ and θ̇ .
(b) Integrate the θ̈ equation to obtain an equation relating θ to θ̇ . This equation

involves an integration constant that can solved for in terms of the initial velocity
v0. Interpret the equation in terms of the total energy of the pendulum.

(c) Determine the maximum value of θ having θ̇ = 0 and T ≥ 0.
(d) Determine the minimum initial velocity v0 needed for the pendulum bob to make

a complete loop-the-loop—i.e., to reach the top of the circle (θ = π ) with T ≥ 0.
What does θ̇ equal at the top of the circle for this minimum-initial-velocity case?

Problem 1.4 The planar double pendulum consists of two point masses (m1 and
m2) at the end of two massless rigid rods of lengths ,1 and ,2 as shown in Fig. 1.16.
If we choose Cartesian coordinates with the x-axis pointing down and the y-axis
pointing to the right, then the constraints can be incorporated into the positions of
the particles with

r1 = ,1 cosφ1x̂ + ,1 sin φ1ŷ ,
r2 = (,1 cosφ1 + ,2 cosφ2) x̂ + (,1 sin φ1 + ,2 sin φ2) ŷ ,

(1.124)

which reduces the number of degrees of freedom from four (x1, y1, x2, y2) to two
(φ1, φ2).

(a) Apply Newton’s 2nd law to each mass and show that the magnitudes of the
constraint forces T1 and T2 obey

T1 sin φ1 = −(m1 + m2),1
(
φ̈1 cosφ1 − φ̇2

1 sin φ1
)
− m2,2

(
φ̈2 cosφ2 − φ̇2

2 sin φ2
)
,

T2 sin φ2 = −m2,1
(
φ̈1 cosφ1 − φ̇2

1 sin φ1
)
− m2,2

(
φ̈2 cosφ2 − φ̇2

2 sin φ2
)
.

(1.125)

(b) Use the result from part (a) to obtain the following equations of motion

g sin φ1 = −,1φ̈1 − m2

m1 + m2
,2

(
φ̈2 cos(φ1 − φ2)+ φ̇2

2 sin(φ1 − φ2)
)
,

g sin φ2 = −,1φ̈1 cos(φ1 − φ2)+ ,1φ̇
2
1 sin(φ1 − φ2) − ,2φ̈2 .

(1.126)

Note that the equations for φ1(t), φ2(t) must be solved numerically.

Problem 1.5 (Adapted fromKuchǎr (1995).) Consider a cylindrical bucket of radius
R, with water filled to height h (significantly less than the height of the bucket). The
bucket is then rotated uniformly around its axis with angular velocity ω. Determine
the shape z = f (r) of the surface of water in the rotating bucket, as a function of the
perpendicular distance r from the axis. You should find

z = h + ω2

2g

(
r2 − R2

2

)
. (1.127)
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Fig. 1.16 The double pendulum. Panel (a): The two masses,m1 andm2, are constrained by the two
massless rigid rods. The four degrees of freedom can be reduced to two (φ1 and φ2) due to these
constraints. Panel (b) shows the two constraint forces T1 and T2, and the gravitational forces m1g
and m2g

Hint: Minimize the sum of the gravitational and centrifugal potential energies of a
cylindrical shell of water of mass dm = ρ2πr z(r)dr in the non-inertial reference
frame rotating with the water, subject to the constraint

∫ R

0
2πr z(r)dr = πR2h . (1.128)

See Appendix C.8 if you need a refresher on variational problems subject to con-
straints.

Problem 1.6 A projectile is launched vertically from the equator with an initial
speed v0. We want to find out where it will land, assuming that we can approximate
the gravitational force as uniform, with F = mg0.

(a) Startingwith (1.80) and using the coordinates shown in Fig.1.10 (with θ = π/2),
show that the equations of motion for the projectile are

ẍ = 0 ,

ÿ = ω2y − 2ωż ,

z̈ =
(
ω2R − g0

)
+ ω2z + 2ω ẏ .

(1.129)

(b) In the absence of the Earth’s rotation, ω = 0 and the unperturbed trajectory
follows ÿ0 = 0 and z̈0 = −g0, so y0(t) = 0 and z0(t) = v0t − 1

2g0t
2. Write the

perturbed trajectory as
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y(t) = ψ(t) , z(t) = z0(t)+ ζ(t) , (1.130)

where the perturbations ψ(t) and ζ(t) are kept only to 1st-order in ω. Show that
to 1st-order in ω, the perturbations obey

ψ̈ = −2ωż0 , ζ̈ = 0 . (1.131)

(c) Show that

ψ(t) = 1
3
ωg0t3 − ωv0t2 . (1.132)

(d) If the projectile is launched to the edge of space (an altitude of 100 km), how far
away from the launch site does it land? Does it land to the east or to the west?

Problem 1.7 An object is dropped from a point above the equator at an altitude
of 100 km. Following the procedure outlined in Problem 1.6, determine where the
object lands relative to the point directly below the release point.

Problem 1.8 Generalize the procedure outlined in Problem 1.6 for arbitrary co-
latitude θ . In so doing, define

g ≡ g0 − ω × (ω × R) , (1.133)

which points in the direction of a plumb line located at the origin of the non-inertial
reference frame, and which defines the direction of the local vertical, i.e., ẑ ∝ −g.
For a particle launched in the ẑ direction to an altitude of h, show that:

(a) to 1st-order in ω, the displacement of the projectile in the y-direction is

"y = −8
3

√
2h3

g
ω sin θ , (1.134)

with the minus sign indicating that the projectile lands west of the launch site.
(b) to 2nd-order in ω, the displacment of the projectile in the x-direction is

"x = −8h2

g
ω2 sin θ cos θ , (1.135)

with the minus sign indicating that the projectile lands north of the launch site in
the Northern hemisphere and south of launch site in the Southern hemisphere.

(c) Calculate the displacements"x and"y for a projectile launched from 26◦ north
latitude and that reaches an altitude of 100 km.
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