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1. Non-trivial response functions
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Beam detectors
laser interferometers

spacecraft Doppler trackingpulsar timing
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(use electromagnetic radiation to monitor the separation of two or more test masses)

GW perturbs the photon propagation time between the test masses
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Fig. 22 A spacetime diagram
representation of ∆T (t) for a
(one-way) pulsar timing residual
measurement. Time increases
vertically upward. The vertical
arrows are spacetime worldlines
for a pulsar and a detector on
Earth. The measurement is made
at time t . The blue dotted line
shows the trajectory of the radio
pulse in the absence of a
gravitational wave; the red solid
line shows the trajectory in the
presence of a gravitational wave

the phase difference can be calculated in terms of the change in the round-trip travel
time of the laser light from one test mass (e.g., the beam splitter) to another (e.g., one
of the end test masses). If we consider an equal-arm Michelson interferometer with
unit vectors û and v̂ pointing from the beam splitter to the end masses in each of the
arms, then

h phase(t) ≡ ∆!(t) = 2πν0∆T (t), (5.3)

where ∆T (t) ≡ Tû,rt(t) − Tv̂,rt(t) is the difference of the round-trip travel times, and
ν0 is the frequency of the laser light. (See Fig. 23). Alternatively, one often writes the
interferometer response as a strain measurement in the two arms

h strain(t) ≡ ∆L(t)
L

= ∆T (t)
2L/c

, (5.4)

where ∆L(t) ≡ Lû(t)− L v̂(t) is the difference of the proper lengths of the two arms
(having unperturbed length L), and ∆T (t) is the difference in round-trip travel times
as before. Thus, interferometer phase and strain response are simply related to one
another.

Calculation of ∆T (t) for beam detectors is most simply carried out in the transverse-
traceless gauge9 (Misner et al. 1973; Schutz 1985; Hartle 2003) since the unperturbed
separation L of the two test masses can be larger than or comparable to the wavelength
λ ≡ c/ f of an incident gravitational wave having frequency f . This is definitely the
case for pulsar timing where L is of order a few kpc, and for spacecraft Doppler
tracking where L is of order tens of AU. It is also the case for space-based detectors
like LISA (L = 5 × 106 km) for gravitational waves with frequencies around a tenth
of a Hz. On the other hand, for Earth-based detectors like LIGO (L = 4 km), L ≪ λ

is a good approximation below a few kHz. Thus, the approach that we will take in the
following subsections is to calculate the detector response in general, not making any
approximation a priori regarding the relative sizes of λ = c/ f and L . To recover the
standard expressions (i.e., in the long-wavelength or small-antenna limit) for Earth-

9 See Creighton et al. (2009) and Koop and Finn (2014) for an alternative derivation of the response
of a detector to gravitational waves, which is done in terms of the curvature tensor and not the metric
perturbations.
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(1-arm, 1-way)

Living Rev Relativ  (2017) 20:2 Page 59 of 223  2 

Fig. 21 A spacetime diagram
representation of ∆T (t) for a
two-way spacecraft Doppler
tracking measurement. Time
increases vertically upward. The
vertical arrows are spacetime
worldlines for the Earth and a
spacecraft. The measurement is
made at time t . The blue dotted
line shows the trajectory of a
pulse of electromagnetic
radiation in the absence of a
gravitational wave; the red solid
line shows the trajectory in the
presence of a gravitational wave

first. From the arrival times of the returning pulses, one can calculate the fractional
change in the frequency of the emitted pulses induced by a gravitational wave. The
detector response for such a measurement is thus

hdoppler(t) ≡ ∆ν(t)
ν0

= d∆T (t)
dt

, (5.1)

where ∆T (t) is the deviation of the round-trip travel time of a pulse away from the
value it would have had at time t in the absence of the gravitational wave. A schematic
representation of ∆T (t) for spacecraft Doppler tracking is given in Fig. 21.

5.1.2 Pulsar timing

Pulsar timing is even simpler in the sense that we only have one-way transmission of
electromagnetic radiation (i.e., radio pulses are emitted by a pulsar and received by a
radio antenna on Earth). The response for such a system is simply the timing residual

htiming(t) = ∆T (t), (5.2)

which is the difference between the measured time of arrival of a radio pulse and the
expected time of arrival of the pulse (as determined from a detailed timing model for
the pulsar) due to the presence of a gravitational wave. A schematic representation of
∆T (t) for a pulsar timing measurement is given in Fig. 22.

5.1.3 Laser interferometers

For laser interferometers like LIGO or LISA, the detector response is the phase differ-
ence in the laser light sent down and back the two arms of the interferometer. Again,

123

(1-arm, 2-way)
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Fig. 23 A spacetime diagram
representation of ∆T (t) for an
equal-arm Michelson
interferometer. Time increases
vertically upward. The vertical
arrows are spacetime worldlines
for the beam splitter and two end
mirrors. The blue dotted lines
show the trajectory of the laser
light in the two arms of the
interferometer in the absence of
a gravitational wave; the red
solid lines show the trajectory in
the presence of a gravitational
wave. The black dotted arrows,
labeled û and v̂, show the
orientation of the two arms,
from beam splitter to end
mirrors, at t = 0, assuming an
opening angle of 90◦

Table 5 Characteristic properties of different beam detectors: column 2 is the arm length or characteristic
size of the detector (tens of AU for spacecraft Doppler tracking; a few kpc for pulsar timing); column 3 is
the frequency corresponding to the characteristic size of the detector, f∗ ≡ c/L; columns 4 and 5 are the
frequencies at which the detector is sensitive in units of Hz and units of f∗, respectively; and column 6 is
the relationship between f and f∗

Beam detector L (km) f∗ (Hz) f (Hz) f/ f∗ Relation

Ground-based interferometer ∼ 1 ∼ 105 10 to 104 10−4 to 10−1 f ≪ f∗
Space-based interferometer ∼ 106 ∼ 10−1 10−4 to 10−1 10−3 to 1 f ! f∗
Spacecraft Doppler tracking ∼ 109 ∼ 10−4 10−6 to 10−3 10−2 to 10 f ∼ f∗
Pulsar timing ∼ 1017 ∼ 10−12 10−9 to 10−7 103 to 105 f ≫ f∗

based detectors like LIGO will be a simple matter of taking the limit f L/c to zero. For
reference, Table 5 summarizes the characteristic properties (i.e., size, characteristic
frequency, sensitivity band, etc.) of different beam detectors.

5.2 Calculation of response functions and antenna patterns

Gravitational waves are weak. Thus, the detector response is linear in the metric
perturbations hab(t, x⃗) describing the wave, and can be written as the convolution of
the metric perturbations hab(t, x⃗) with the impulse response Rab(t, x⃗) of the detector:

h(t) = (R ∗ h)(t, x⃗) ≡
∫ ∞

−∞
dτ

∫
d3y Rab(τ, y⃗)hab(t − τ, x⃗ − y⃗), (5.5)

123

(2-arm, 2-way)
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Different types of response

All these responses are derivable from the change in light travel time ΔT(t)

h(t) ≡ ΔT(t)timing: (pulsar timing)

h(t) ≡
Δν(t)

ν0
=

dΔT(t)
dtDoppler frequency: (pulsar timing, spacecraft Doppler tracking)

h(t) ≡ ΔΦ(t) = 2πν0 ΔT(t)phase: (LISA)

h(t) ≡
ΔL(t)

L
=

ΔT(t)
T

strain: (LIGO, Virgo, …)
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Detector response

 7

detector output impulse responsedetector  
location

convolution
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Fig. 23 A spacetime diagram
representation of ∆T (t) for an
equal-arm Michelson
interferometer. Time increases
vertically upward. The vertical
arrows are spacetime worldlines
for the beam splitter and two end
mirrors. The blue dotted lines
show the trajectory of the laser
light in the two arms of the
interferometer in the absence of
a gravitational wave; the red
solid lines show the trajectory in
the presence of a gravitational
wave. The black dotted arrows,
labeled û and v̂, show the
orientation of the two arms,
from beam splitter to end
mirrors, at t = 0, assuming an
opening angle of 90◦

Table 5 Characteristic properties of different beam detectors: column 2 is the arm length or characteristic
size of the detector (tens of AU for spacecraft Doppler tracking; a few kpc for pulsar timing); column 3 is
the frequency corresponding to the characteristic size of the detector, f∗ ≡ c/L; columns 4 and 5 are the
frequencies at which the detector is sensitive in units of Hz and units of f∗, respectively; and column 6 is
the relationship between f and f∗

Beam detector L (km) f∗ (Hz) f (Hz) f/ f∗ Relation

Ground-based interferometer ∼ 1 ∼ 105 10 to 104 10−4 to 10−1 f ≪ f∗
Space-based interferometer ∼ 106 ∼ 10−1 10−4 to 10−1 10−3 to 1 f ! f∗
Spacecraft Doppler tracking ∼ 109 ∼ 10−4 10−6 to 10−3 10−2 to 10 f ∼ f∗
Pulsar timing ∼ 1017 ∼ 10−12 10−9 to 10−7 103 to 105 f ≫ f∗

based detectors like LIGO will be a simple matter of taking the limit f L/c to zero. For
reference, Table 5 summarizes the characteristic properties (i.e., size, characteristic
frequency, sensitivity band, etc.) of different beam detectors.

5.2 Calculation of response functions and antenna patterns

Gravitational waves are weak. Thus, the detector response is linear in the metric
perturbations hab(t, x⃗) describing the wave, and can be written as the convolution of
the metric perturbations hab(t, x⃗) with the impulse response Rab(t, x⃗) of the detector:

h(t) = (R ∗ h)(t, x⃗) ≡
∫ ∞

−∞
dτ

∫
d3y Rab(τ, y⃗)hab(t − τ, x⃗ − y⃗), (5.5)

123

GWs are weak => detector is a linear system which converts metric perturbations to detector output
detector

hab(t, ⃗x ) h(t)Rab(τ, ⃗y )

detector response for a plane-wave 
with frequency f, direction n, polarization A

⟹ h̃( f ) = ∫ d2Ω ̂n ∑
A

RA( f, ̂n) hA( f, ̂n)
RA( f, ̂n) ≡ Rab( f, ̂n)eA

ab( ̂n)

Rab( f, ̂n) ≡ ei2πf ̂n⋅ ⃗x /c ∫
∞

−∞
dτ∫ d3y Rab(τ, ⃗y ) e−i2πf(τ+ ̂n⋅ ⃗y /c)



Example: 1-arm, 1-way timing response function (e.g., pulsar timing)
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Fig. 24 Geometry for
calculating the change in the
photon propagation time from r⃗1
to r⃗2 = r1 + Lû in the presence
of a plane gravitational wave
propagating in direction k̂

having polarization A = +,×. Plots of |RA( f, n̂)| for fixed frequency f are antenna
beam patterns for gravitational waves with polarization A. A plot of

R( f, n̂) ≡
(
|R+( f, n̂)|2 + |R×( f, n̂)|2

)1/2
(5.13)

for fixed frequency f is the beam pattern for an unpolarized gravitational wave—i.e.,
a wave having statistically equivalent + and × polarization components.

Since the previous subsection showed that the response of all beam detectors can
be written rather simply in terms of the change in the light-travel time of an elec-
tromagnetic wave propagating between two test masses, we now calculate ∆T (t) in
various scenarios and use the resulting expressions to read-off the response functions
Rab( f, n̂) for the different detectors. We also make plots of various antenna patterns.

5.2.1 One-way tracking

Consider two test masses located at position vectors r⃗1 and r⃗2 = r⃗1+Lû, respectively,
in the presence of a plane gravitational wave propagating in direction k̂ = −n̂, as
shown in Fig. 24. Then the change in the light-travel time for a photon emitted at r⃗1
and received at r⃗2 at time t is given by Estabrook and Wahlquist (1975):

∆T (t) = 1
2c

uaub
∫ L

s=0
ds h ab(t (s), x⃗(s)), (5.14)

where the 0th-order expression for the photon trajectory can be used in h ab:

t (s) = (t − L/c)+ s/c, x⃗(s) = r⃗1 + sû. (5.15)

123

where

h(t) ≡ ΔT(t) =
1
2c

uaub ∫
L

0
ds hab(t(s), ⃗x (s))

t(s) = (t − L/c) + s/c , ⃗x (s) = ⃗r1 + s ̂u

RA(f, k̂) =
1

i2⇥f

1

2
uaubeAab(k̂)

1

1� k̂ · û

⇤
1� e�i 2�fL

c (1�k̂·û)
⌅

RA(f, k̂) =
1

2
uaubeAab(k̂)

L

c
e�

i�fL
c (1�k̂·û)sinc

�
⇥fL

c
(1� k̂ · û)

⇥

FA(k̂, û) ⌅ 1

2
uaubeAab(k̂)

• Example: Equal-arm laser interferometer in long-wavelength limit:

h(t) ⌅ 1

2

�
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⇧
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• Isotropic, unpolarized, Gaussian, stationary background:
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RA( f, ̂n) =
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ab( ̂n)

1
1 + ̂n ⋅ ̂u [1 − e− i2πfL
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Exercise 6: Derive this expression  
for the response function
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Example: LIGO response 
(equal-arm, short-antenna limit)

RA(f, k̂) =
1
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Fig. 30 Antenna pattern for Michelson interferometer strain response to unpolarized gravitational waves
evaluated in the small-antenna limit, f = 0 (left plot) and at the free-spectral range frequency, f = c/(2L)
(right plot). The interferometer arms point in the x̂ and ŷ directions. Note the change in the scale of the
axes between the two plots

arms. Similar to (5.23) for pulsar timing, the curl response is again identically zero.
We will discuss the consequences of this result in more detail in Sect. 7.5.7, in the
context of phase-coherent mapping of anisotropic gravitational-wave backgrounds.

5.3 Overlap functions

As mentioned in Sect. 4, a stochastic gravitational-wave background manifests itself
as a non-vanishing correlation between the data taken by two or more detectors. This
correlation differs, in general, from that due to instrumental noise, allowing us to dis-
tinguish between a stochastic gravitational-wave signal and other noise sources. In this
section, we calculate the expected correlation due to a gravitational-wave background,
allowing for non-trivial detector response functions and non-trivial detector geometry.
Interested readers can find more details in Hellings and Downs (1983), Christensen
(1990, 1992), Flanagan (1993), and Finn et al. (2009).

5.3.1 Definition

Let d I and d J denote the data taken by two detectors labeled by I and J . In the presence
of a gravitational wave, these data will have the form

d I = hI + nI ,

d J = hJ + nJ ,
(5.34)

where hI,J denote the response of detectors I , J to the gravitational wave, and nI,J
denote the contribution from instrumental noise. If the instrumental noise in the two
detectors are uncorrelated with one another, it follows that the expected correlation of

123

u, L^

v, L^

GW
k̂

LIGO-Hanford

detector tensor

h(t) =
1
2 (

ΔT ⃗u , roundtrip(t)
T

−
ΔT ⃗v , roundtrip(t)

T )
RA( f, ̂n) ≃

1
2 (uaub − vavb) eA

ab( ̂n)
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Beam pattern functions

where10

R
ab(f, n̂) = e

i2⇡fn̂·~x/c
Z 1

�1
d⌧

Z
d3

y R
ab(⌧, ~y) e

�i2⇡f(⌧+n̂·~y/c)
. (5.8)

Further specification of the response function depends on the choice of gravitational-wave
detector as well as on the basis tensors used to expand hab(f, n̂), as we shall see below and
in the following subsections.

For example, if we work in the polarization basis, with expansion coe�cients hA(f, n̂),
where A = {+, ⇥}, then

h̃(f) =

Z
d
2⌦n̂

X

A

R
A(f, n̂)hA(f, n̂) , (5.9)

with
R

A(f, n̂) = R
ab(f, n̂)eA
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(n̂) . (5.10)

If we work instead in the tensor spherical harmonic basis, with expansion coe�cients
a
P

(lm)
(f), where P = {G, C}, then

h̃(f) =
X

(lm)

X

P

R
P
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(f)aP

(lm)
(f) , (5.11)

with

R
P
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Z
d
2⌦n̂ R

ab(f, n̂)Y P

(lm)ab
(n̂) . (5.12)

Note that in the polarization basis the response function R
A(f, n̂) is the detector response

to a sinusoidal plane-wave with frequency f , coming from direction n̂, and having polar-
ization A = +, ⇥. Plots of |R

A(f, n̂)| for fixed frequency f are antenna beam patterns for
gravitational waves with polarization A. A plot of

R(f, n̂) ⌘
�
|R

+(f, n̂)|2 + |R
⇥(f, n̂)|2

�1/2
(5.13)

for fixed frequency f is the beam pattern for an unpolarized gravitational wave—i.e., a
wave having statistically equivalent + and ⇥ polarization components.

Since the previous subsection showed that the response of all beam detectors can be
written rather simply in terms of the change in the light-travel time of an electromagnetic
wave propagating between two test masses, we now calculate �T (t) in various scenar-
ios and use the resulting expressions to read-o↵ the response functions R

ab(f, n̂) for the
di↵erent detectors. We also make plots of various antenna patterns.

5.2.1 One-way tracking

Consider two test masses located at position vectors ~r1 and ~r2 = ~r1 + Lû, respectively,
in the presence of a plane gravitational wave propagating in direction k̂ = �n̂, as shown
in Figure 24. Then the change in the light-travel time for a photon emitted at ~r1 and

10Some authors [49, 50, 75, 30, 53, 74], including us in the past, have defined the response function
Rab(f, n̂) without the factor of ei2⇡fn̂·~x/c. If one chooses coordinates so that the measurement is made
at ~x = ~0, then these two definitions agree. Just be aware of this possible di↵erence when reading the
literature. To distinguish the two definitions, we will use the symbol R̄ab(f, n̂) to denote the expression
without the exponential term, i.e., Rab(f, n̂) = ei2⇡fn̂·~x/cR̄ab(f, n̂).
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for fixed frequency f is the beam pattern for an unpolarized gravitational wave—i.e., a
wave having statistically equivalent + and ⇥ polarization components.

Since the previous subsection showed that the response of all beam detectors can be
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detector as well as on the basis tensors used to expand hab(f, n̂), as we shall see below and
in the following subsections.

For example, if we work in the polarization basis, with expansion coe�cients hA(f, n̂),
where A = {+, ⇥}, then

h̃(f) =

Z
d
2⌦n̂

X

A

R
A(f, n̂)hA(f, n̂) , (5.9)

with
R

A(f, n̂) = R
ab(f, n̂)eA

ab
(n̂) . (5.10)

If we work instead in the tensor spherical harmonic basis, with expansion coe�cients
a
P

(lm)
(f), where P = {G, C}, then

h̃(f) =
X

(lm)

X

P

R
P

(lm)
(f)aP

(lm)
(f) , (5.11)

with

R
P

(lm)
(f) =

Z
d
2⌦n̂ R

ab(f, n̂)Y P

(lm)ab
(n̂) . (5.12)

Note that in the polarization basis the response function R
A(f, n̂) is the detector response

to a sinusoidal plane-wave with frequency f , coming from direction n̂, and having polar-
ization A = +, ⇥. Plots of |R

A(f, n̂)| for fixed frequency f are antenna beam patterns for
gravitational waves with polarization A. A plot of

R(f, n̂) ⌘
�
|R

+(f, n̂)|2 + |R
⇥(f, n̂)|2

�1/2
(5.13)

for fixed frequency f is the beam pattern for an unpolarized gravitational wave—i.e., a
wave having statistically equivalent + and ⇥ polarization components.

Since the previous subsection showed that the response of all beam detectors can be
written rather simply in terms of the change in the light-travel time of an electromagnetic
wave propagating between two test masses, we now calculate �T (t) in various scenar-
ios and use the resulting expressions to read-o↵ the response functions R

ab(f, n̂) for the
di↵erent detectors. We also make plots of various antenna patterns.

5.2.1 One-way tracking

Consider two test masses located at position vectors ~r1 and ~r2 = ~r1 + Lû, respectively,
in the presence of a plane gravitational wave propagating in direction k̂ = �n̂, as shown
in Figure 24. Then the change in the light-travel time for a photon emitted at ~r1 and

10Some authors [49, 50, 75, 30, 53, 74], including us in the past, have defined the response function
Rab(f, n̂) without the factor of ei2⇡fn̂·~x/c. If one chooses coordinates so that the measurement is made
at ~x = ~0, then these two definitions agree. Just be aware of this possible di↵erence when reading the
literature. To distinguish the two definitions, we will use the symbol R̄ab(f, n̂) to denote the expression
without the exponential term, i.e., Rab(f, n̂) = ei2⇡fn̂·~x/cR̄ab(f, n̂).
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(f < a few kHz)
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Fig. 29 Antenna patterns for Michelson interferometer strain response |R+
strain| and |R×

strain| evaluated in
the small-antenna limit, f = 0 (top two plots) and at the free-spectral range frequency, f = c/(2L) (bottom
two plots). The interferometer arms point in the x̂ and ŷ directions. Note the change in the scale of the axes
between the top and bottom two plots

Similar plots of the antenna patterns for unpolarized gravitational waves are given in
Fig. 30. In Fig. 31 we show colorbar plots of the antenna patterns for the strain response
to unpolarized gravitational waves for the LIGO Hanford and Virgo interferometers
(located in Hanford, WA and Cascina, Italy, respectively), again evaluated in the small-
antenna limit.

We can also calculate the strain response of an interferometer to the gradient and
curl tensor spherical harmonic components {aG(lm)( f ),a

C
(lm)( f )} by performing the

integration in (5.12). As shown in Appendix E of Gair et al. (2014), this leads to

RG
(lm)( f ) = δl2

4π

5

√
1
3

[
Y2m(û ) − Y2m(v̂)

]
, RC

(lm)( f ) = 0, (5.33)

for an interferometer in the small-antenna limit, where the vertex is at the origin of
coordinates, and û , v̂ are unit vectors pointing in the direction of the interferometer
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Fig. 30 Antenna pattern for Michelson interferometer strain response to unpolarized gravitational waves
evaluated in the small-antenna limit, f = 0 (left plot) and at the free-spectral range frequency, f = c/(2L)
(right plot). The interferometer arms point in the x̂ and ŷ directions. Note the change in the scale of the
axes between the two plots

arms. Similar to (5.23) for pulsar timing, the curl response is again identically zero.
We will discuss the consequences of this result in more detail in Sect. 7.5.7, in the
context of phase-coherent mapping of anisotropic gravitational-wave backgrounds.

5.3 Overlap functions

As mentioned in Sect. 4, a stochastic gravitational-wave background manifests itself
as a non-vanishing correlation between the data taken by two or more detectors. This
correlation differs, in general, from that due to instrumental noise, allowing us to dis-
tinguish between a stochastic gravitational-wave signal and other noise sources. In this
section, we calculate the expected correlation due to a gravitational-wave background,
allowing for non-trivial detector response functions and non-trivial detector geometry.
Interested readers can find more details in Hellings and Downs (1983), Christensen
(1990, 1992), Flanagan (1993), and Finn et al. (2009).

5.3.1 Definition

Let d I and d J denote the data taken by two detectors labeled by I and J . In the presence
of a gravitational wave, these data will have the form

d I = hI + nI ,

d J = hJ + nJ ,
(5.34)

where hI,J denote the response of detectors I , J to the gravitational wave, and nI,J
denote the contribution from instrumental noise. If the instrumental noise in the two
detectors are uncorrelated with one another, it follows that the expected correlation of
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2. Non-trivial overlap functions
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Overlap function (correlation coefficient)
• Detectors in different locations and with different orientations 

respond differently to a passing GW. 

• Overlap function encodes reduction in sensitivity of a cross-
correlation analysis due to separation and misalignment of the 
detectors

ΓIJ(f) is the transfer function between GW power and detector cross-power; integrand of ΓIJ(f) is important for 
anisotropic stochastic backgrounds

Min Zero Max

L1

L2

V

G

3001 km

FIG. 3. The surface of the earth (15◦ < latitude < 75◦, −130◦ < longitude < 20◦) including

the LIGO detectors in Hanford, WA (L1) and Livingston, LA (L2), the VIRGO detector (V) in
Pisa, Italy, and the GEO-600 (G) detector in Hanover, Germany. The perpendicular arms of the
LIGO detectors are also illustrated (though not to scale). A plane gravitational wave passing by

the earth is indicated by successive minimum, zero, and maximum of the wave. As this wave
passes by the pair of LIGO detectors, it excites the two in coincidence at the moment shown, since

both detectors are driven negative by the wave. During the time when the zero is between L1 and
L2, the two detectors respond in anti-coincidence. Provided that the wavelength of the incident
gravitational wave is larger than twice the separation (d = 3001 km) between the detectors, the

two detectors are driven in coincidence more of the time than in anti-coincidence.

are separated by 94.33◦. Below we give a more detailed version of the derivation that appears
in Ref. [7], and correct a typographical error that appears in Eq. (B6) of that paper.

We take, as our starting point for the derivation, the integral expression (3.30) for γ(f).
To simplify the notation in what follows, we also define

∆x⃗ := d ŝ and α :=
2πfd

c
, (3.32)

where ŝ is a unit vector that points in the direction connecting the two detectors, and d is
the distance between the two detectors. In terms of these quantities, we can write

γ(f) = dab
1 dcd

2 Γabcd(α, ŝ) , (3.33)

where

Γabcd(α, ŝ) :=
5

8π

∑

A

∫

S2
dΩ̂ eiαΩ̂·ŝ eA

ab(Ω̂)eA
cd(Ω̂) . (3.34)

16

ΓIJ( f ) =
1

8π ∫ d2Ω ̂n ∑
A

RA
I ( f, ̂n)RA

J *( f, ̂n) (unpolarized, stationary,  
isotropic background)

Expected correlation:

⟺ ⟨h̃I( f )h̃*J ( f′�)⟩ =
1
2

δ( f − f′ �)ΓIJ( f )Sh( f )⟨hI(t)hJ(t′�)⟩ =
1
2 ∫

∞

−∞
df ei2πf(t−t′�)ΓIJ( f )Sh( f )
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(B. Allen, Les Houches 1995)



LIGO Hanford-LIGO Livingston overlap function  
(small-antenna approximation)
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LIGO Hanford-Virgo overlap function  
(small-antenna approximation)
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Predicted correlation induced by GWs 
(isotropic, unpolarized stochastic background)
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Exercise 7: Show that the overlap function for a pair of short, colocated electric  
dipole antennae pointing in direction u1 and u2 is given by    
               

for an unpolarized, isotropic electromagnetic field.

Γ12 ∝ ̂u1 ⋅ ̂u2 ≡ cos ζ

Jenet and Romano, AJP 83 (7), 2015

ζ ̂u1

̂u2 ⃗E (t, ⃗x ) = ∫
∞

−∞
df ∫ d2Ω ̂n

2

∑
α=1

Ẽα( f, ̂n) ̂ϵα( ̂n)ei2πf(t+ ̂n⋅ ⃗x /c)

Hint:

etc.     …

rI(t) = ̂uI ⋅ ⃗E (t, ⃗x 0)

̂ϵ1( ̂n) = ̂θ , ̂ϵ2( ̂n) = ̂ϕ

!22



3. What to do in the absence of 
correlations (e.g., for LISA)?
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LISA (Laser Interferometer Space Antenna)

!24



Cross-correlation is not an option for LISA  
(at least for low frequencies)

• Although there are 3 Michelson combinations (X,Y,Z), they have 
common noise (since they share arms) 

• Can diagonalize the noise covariance matrix to obtain noise-orthogonal 
combinations (A,E,T), which also turn out to be signal orthogonal 

• A, E: two Michelsons rotated by 45 degrees 

• T: relatively insensitive to GW (null channel) 

• Nonetheless, proper modeling of instrumental noise, astrophysical 
foregrounds (galactic WD binaries), and GWB allows you to 
discriminate all three components (Adams & Cornish, 2010, 2014)  

Detailed questions?  Ask Neil when he arrives!
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Fig. 78 Panel a shows the geometry of a LISA-like space interferometer and the laser paths for the synthetic
Michelson interferometers X, Y, Z . Panelb shows sensitivity curves for the A, E, T interferometry variables
compared to a scale-invariant background, Ωgw( f ) = Ω0 = const, with Ω0 = 10−10. The Sagnac-like
T channel is far less sensitive than the Michelson-like A, E channels, and can be used to measure the
instrumental noise levels. (Panel b is adapted from Adams and Cornish (2010))

X (t) = M1(t) − M1(t − 2L), (9.10)

where
M1(t) = !12(t − L)+ !21(t) − !13(t − L) − !31(t), (9.11)

and !i j (t) is the readout from the phasemeter on spacecraft j that receives light from
spacecraft i . Permuting the spacecraft labels {1, 2, 3} yields equivalent expressions for
the Michelson observables Y and Z , as shown in panel (a) of Fig. 78. The phasemeter
readouts !i j (t) are impacted by acceleration noise Sai j and position noise Sp

i j . When
the noise levels in each spacecraft are equal, there exist noise-orthogonal combinations
(Prince et al. 2002; Adams and Cornish 2010):

A ≡ 1
3
(2X − Y − Z),

E ≡ 1√
3
(Z − Y ),

T ≡ 1
3
(X + Y + Z).

(9.12)

Note that these variables are only noise-orthogonal in the symmetric noise limit. For
example, the position noise contribution to the cross-spectra ⟨AE⟩ is given by

⟨AE⟩ = − 4

3
√

3
sin2

(
f
f∗

)(
2 cos

(
f
f∗

)
+ 1

)(
Sp

13 − Sp
12 + Sp

31 − Sp
21

)
, (9.13)

which vanishes when {Sp
13,S

p
12,S

p
31,S

p
21} are equal, but not otherwise (Adams and Cor-

nish 2010). The synthetic interferometers A, E are rotated by 45 degrees with respect
to each other, and provide instantaneous measurements of the + and × polarization
states. The Sagnac-like T channel is relatively insensitive to gravitational waves for
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Different spectra => differentiate different noise components
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4. Frequentist and Bayesian 
methods

!28



Frequentist statistics Bayesian infererence

Probabilities are long-run relative occurrences of outcomes 
of repeatable expts —> can’t be assigned to hypotheses 

Probabilities are degree of belief —> can be assigned to 
hypotheses

Usually start with a likelihood function p(d|H) Same as frequentist

Construct  statistics for parameter estimation / hypothesis 
testing Specify priors for parameters and hypotheses

Calculate probability distribution of the statistics 

(e.g., using time slide) Use Bayes’ theorem to update degree of belief

Calculates confidence intervals and p-values Construct posteriors and odds ratios (Bayes factors)

!29



Likelihood function

 30

Starting point for both frequentist & Bayesian analyses:

likelihood = p(data |parameters, model)

Gaussian detector noise and GWB:

p(d |Cn, ℳ0) =
1

det(2πCn)
exp [−

1
2

dTC−1
n d] (noise-only model)

p(d |Cn, Sh, ℳ1) =
1

det(2πC)
exp [−

1
2

dTC−1d] (signal+noise model)

N samples of white noise, white GWB, in two colocated and coaligned detectors:

Cn = [
Sn1

𝟣N×N 𝟢N×N

𝟢N×N Sn2
𝟣N×N] & C = [

(Sn1
+ Sh) 𝟣N×N Sh 𝟣N×N

Sh 𝟣N×N (Sn2
+ Sh) 𝟣N×N]



Frequentist analysis

Maximum-likelihood estimators: 

cross-correlation statistiĉSh ≡
1
N

N

∑
i=1

d1id2i

̂Sn1
≡

1
N

N

∑
i=1

d2
1i − ̂Sh

̂Sn2
≡

1
N

N

∑
i=1

d2
2i − ̂Sh

Use maximum-likelihood (ML) ratio for detection, and maximum-likelihood parameter values as estimators 

Exercise 9: Verify the expression for  
the detection statistic 2 ln(ΛML(d))

Maximum-likelihood detection statistic: 

Λ(d) ≡ 2 ln(ΛML(d)) ≃
̂S2
h

̂Sn1
̂Sn2

/N

ΛML(d) ≡
maxSn1,Sn2,Sh

p(d |Sn1
Sn2

, Sh, ℳ1)

maxSn1,Sn2
p(d |Sn1

, Sn2
, ℳ0)

SNR2

Exercise 8: Verify the expressions 
for the ML estimators.
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Bayesian analysis 
Use Bayes’ theorem to calculate posterior distributions for parameter estimation and odds ratios (Bayes factors) 
for model selection

Bayes’ theorem:

prior

normalization factor

likelihood

p(H |d) =
p(d |H)p(H)

p(d)

Posteriors:
p(Sn1

, Sn2
, Sh |d, ℳ1) =

p(d |Sn1
, Sn2

, Sh, ℳ1)p(Sn1
, Sn2

, Sh |ℳ1)
p(d |ℳ1)

p(Sh |d, ℳ1) = ∫ dSn1 ∫ dSn2
p(Sn1

, Sn2
, Sh |d, ℳ1)

Model selection: Bayes factor B10(d)

p(ℳ1 |d)
p(ℳ0 |d)

=
p(d |ℳ1) p(ℳ1)
p(d |ℳ0) p(ℳ0)

Relationship to frequentist approach:

p(d|θML)

V

V-1

ΔV

θ

ℬ10(d) ≡
p(d |ℳ1)
p(d |ℳ0)

=
∫ dSn1

∫ dSn2
∫ dSh p(d |Sn1

, Sn2
, Sh, ℳ1)p(Sn1

, Sn2
, Sh |ℳ1)

∫ dSn1
∫ dSn2

p(d |Sn1
, Sn2

, ℳ0)p(Sn1
, Sn2

|ℳ0)
≃ ΛML(d)

ΔV1/V1

ΔV0/V0
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Example: Derivation of standard stochastic likelihood by marginalizing over a 
stochastic signal prior

Marginalized likelihood:

p(d |Cn, Sh) = ∫ dh pn(d − h |Cn)p(h |Sh)

Generic likelihood:

signal model

p(d |Cn, h) ≡ pn(d − h |Cn) =
1

det(2πCn)
exp [−

1
2

(d − h)TC−1
n (d − h)]

covariance matrix for noise, e.g., Cn = [
Sn1

0
0 Sn2]

stochastic signal model:
p(h |Sh) =

1
2πSh

exp [−
1
2

h2

Sh ]
�4 �2 0 2 4

data

0.0

0.1

0.2

0.3

0.4

Sh

h

covariance matrix  
for signal + noise

=
1

det(2πC)
exp [−

1
2

dTC−1d]
C = [

Sn1
+ Sh Sh

Sh Sn2
+ Sh] Exercise 10: Do the marginalization over 

h to obtain this final result.
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Signal priors define the signal model…

stochastic: p(h |Sh) =
1

2πSh
exp [−

1
2

h2

Sh ]
�4 �2 0 2 4

data

0.0

0.1

0.2

0.3

0.4

Sh

h

deterministic: p(h |A, t0, f0) = δ (h − A sin[2πf0(t − t0)])
0.00 0.02 0.04

time (s)

�1.0

�0.5

0.0

0.5

1.0

data t
h

hybrid: p(h |ξ, A, t0, f0) = ξ δ (h − A sin[2πf0(t − t0)]) + (1 − ξ) δ(h)
h

ξ percent (1-ξ) percentor
0.00 0.02 0.04

time (s)

�1.0

�0.5

0.0

0.5

1.0

data t

h

t
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5. Example: searching for the 
background from BBH mergers
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Recall: Non-stationary background from BBH mergers 
is a potential signal for advanced LIGO, Virgo

• Recent detections of BBH and BNS mergers by 
advanced LIGO, VIrgo imply the existence of a 
stochastic background of weaker events 

• Smith & Thrane (PRX 8, 021019,2018) have proposed 
an alternative method to search for the BBH 
component, optimally suited for the non-stationarity 

• Describe BBH background with a hybrid signal model  

• Average over chirp parameters to infer only rate of 
mergers 

• Use two detectors to discriminate against glitches 
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5

FIG. 2. We present a simulated time series of duration 104

seconds illustrating the character of the BBH and BNS signals
in the time domain. In red we show a simulated BNS back-
ground corresponding to the median rate as shown in Figure 1,
and in green we display the median BBH background. We do
not show any detector noise, and do not remove some loud
and close events that would be detected individually. The re-
gion in the black box, from 1800 – 2600 seconds, is shown in
greater detail in the inset. The BNS time series is continuous
as it consists of a superposition of overlapping signals. On the
other hand the BBH background (in green) is popcorn-like,
and the signals do not overlap. Remarkably, even though the
backgrounds have very di↵erent structure in the time domain,
the energy in both backgrounds are comparable below 100 Hz,
as seen in Figure 1.
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versitat del Govern de les Illes Balears, the Conselleria366
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Mathematical details
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Combine segments by 

multiplying likelihoods, …

Hybrid signal model:

t

1.96 1.98 2.00
time (s)

�200

0

200

da
ta

h

or

ξ percent

(1-ξ) percent

t
hp(h |ξ, ⃗λ ) = ξ δ (h − chirp( ⃗λ )) + (1 − ξ) δ(h)

“mixture” gaussian

= ξ pn(d − chirp( ⃗λ ) |Cn) + (1 − ξ) pn(d |Cn)

Marginalized likelihoods:

p(d |ξ, ⃗λ ) = ∫ dh p(d |Cn, h)p(h |ξ, ⃗λ )

= (S − N)ξ + Np(d |ξ) = ∫ d ⃗λ p(d |ξ, ⃗λ ) p( ⃗λ )

p(d |Cn, h) ≡ pn(d − h |Cn)Likelihood:

Posterior: p(ξ |d) =
p(d |ξ)p(ξ)

p(d)

Split data in short (e.g., 4 sec) segments, which should contain at most 1 BBH merger.    
For each segment we have:



Example: Simulated BBH background in white detector noise and 
confusion-limited BNS background
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Posteriors p(ξ|d) for individual segments
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Combining segment posteriors
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Combining segment posteriors
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Combining segment posteriors
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Combining segment posteriors
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Combining segment posteriors
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Combining segment posteriors
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Combining segment posteriors
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Combining segment posteriors
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Combining segment posteriors

0.00 0.25 0.50 0.75 1.00
⇠

0

2

4

po
st

er
io

r

combining 40 segments



The optimal analysis reduces time to detection because…

• All segments contribute to estimating probability parameter ξ 

• BBH chirp signal is deterministic and not stochastic 

~40 months of observation reduces to ~1 day!!

SNRnon−stationary

SNRstationary
∼

Ncycles

ξ

haven’t been able to rigorously 
prove the Ncylces part!!

So stay tuned!!
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Predicted correlation induced by GWs 
(isotropic, unpolarized stochastic background)

13
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Γ(ζ) =
1
2

−
1
4

sin2(ζ/2) +
3
2

sin2(ζ/2)ln [sin2(ζ/2)]

(similar to cos(2ζ))



Beyond the short-antenna limit

L is of order a kpc, and for spacecraft Doppler tracking where L is of order tens of AU.
It is also the case for space-based detectors like LISA (L = 5⇥ 106 km) for gravitational
waves with frequencies around a tenth of a Hz. On the other hand, for Earth-based
detectors like LIGO (L = 4 km), L ⌧ � is a good approximation below a few kHz. Thus,
the approach that we will take in the following subsections is to calculate the detector
response in general, not making any approximation a priori regarding the relative sizes
of � = c/f and L. To recover the standard expressions (i.e., in the long-wavelength or
small-antenna limit) for Earth-based detectors like LIGO will be a simple matter of taking
the limit fL/c to zero. For reference, Table 1 summarizes the characteristic properties
(i.e., size, characteristic frequency, sensitivity band, etc.) of di↵erent beam detectors.

Beam detector L (km) f⇤ (Hz) f (Hz) f/f⇤ Relation

Ground-based ⇠ 1 ⇠ 105 10� 104 10�4 � 10�1
f ⌧ f⇤

interferometer
Space-based ⇠ 106 ⇠ 10�1 10�4 � 10�1 10�3 � 1 f . f⇤
interferometer
Spacecraft Doppler ⇠ 109 ⇠ 10�4 10�6 � 10�3 10�2 � 10 f ⇠ f⇤
tracking
Pulsar timing ⇠ 1017 ⇠ 10�12 10�9 � 10�7 103 � 105 f � f⇤

Table 1: Characteristic properties of di↵erent beam detectors: column 2 is the arm length
or characteristic size of the detector (tens of AU for spacecraft Doppler tracking; a few
kpc for pulsar timing); column 3 is the frequency corresponding to the characteristic size
of the detector, f⇤ ⌘ c/L; columns 4 and 5 are the frequencies at which the detector is
sensitive in units of Hz and units of f⇤, respectively; and column 6 is the relationship
between f and f⇤.

5.2 Calculation of response functions and antenna patterns

Gravitational waves are weak. Thus, the detector response is linear in the metric pertur-
bations h = hab(t, ~x) describing the wave, and can be written as the convolution of h with
the impulse response R = R

ab(t, ~x) of the detector. Schematically:

r(t) = (R ⇤ h)(t, ~x) (28)

where ~x is the location of the measurement at time t. More explicitly:

r(t) =

Z 1

�1
d⌧

Z
d
3
y R

ab(⌧, ~y)hab(t� ⌧, ~x� ~y) (29)

=

Z 1

�1
df

Z
d
2⌦

k̂

X

A

R
A(f, k̂)hA(f, k̂)e

i2⇡f(t�k̂·~x/c) (30)

where we have written hab as a superposition of plane waves from di↵erent directions on
the sky (cf. Equation 7) to get the last line. Note that RA(f, k̂) is the detector response
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Fig. 25 Magnitude of the
one-way tracking timing transfer
function |Tu⃗ ( f, 0)| for normal
incidence of the gravitational
wave, plotted on a logarithmic
frequency scale. Nulls in the
transfer function occur at
frequencies equal to integer
multiples of c/L

Fig. 26 Antenna pattern for
unpolarized gravitational waves
for a one-way tracking Doppler
frequency measurement with
û = − ẑ. The gravitational waves
propagate toward the origin. The
3-d antenna pattern is axially
symmetric around û

with û = − ẑ. For this calculation, we chose r⃗2 = 0 and ignored the exponential (i.e.,
‘pulsar’) term in the timing transfer function, which yields

RA
doppler( f, n̂ ) =

1
2

u au b

1 + û · n̂ e
A
ab(n̂ ) (Earth term only), (5.21)

for the A = +,× polarization modes. Setting û = − ẑ and taking the gravitational
waves to propagate inward (toward the origin), we find

Rdoppler(n̂ ) =
1
2
(1 + cos θ), (5.22)

which is axially symmetric around û . The response is maximum when the photon and
the gravitational wave both propagate in the same direction.

Figure 27 shows plots of the real parts of the individual polarization basis response
functions (5.21), represented as color bar plots on a Mollweide projection of the sky.
For this plot we chose the pulsar to be located in the direction (θ,φ) = (50◦, 60◦).
(The direction p̂ to the pulsar is given by p̂ = − û ). The imaginary parts of both
response functions are identically zero, so are not shown in the figure.

123

LIGO LISA

Spacecraft

tracking

pulsar

timing

f* ≡ c/Lzeroes in the timing transfer function at multiples of 

RA( f, ̂n) =
1
2

uaubeA
ab( ̂n)

1
i2πf

1
1 + ̂n ⋅ ̂u [1 − e− i2πfL

c (1+ ̂n⋅ ̂u)] ei2πf ̂n⋅ ⃗r2/cRecall response function: 
(one-arm, one-way)
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Since hab(t, x⃗) = hab(t + n̂ · x⃗/c) for a plane wave, it is relatively easy to do the
integral. The result is

∆T (t) =
∫ ∞

−∞
d f

1
2
uaubhab( f, n̂)

× 1
i2π f

1
1 + n̂ · û

[
ei2π f (t2+n̂·r⃗2/c) − ei2π f (t1+n̂·r⃗1/c)

]
(5.16)

=
∫ ∞

−∞
d f

1
2
uaubhab( f, n̂) ei2π f (t+n̂·r⃗2/c)

× 1
i2π f

1
1 + n̂ · û

[
1 − e− i2π f L

c (1+n̂·û)
]
, (5.17)

where we factored out ei2π f (t+n̂·r⃗2/c), corresponding to the time and location of the
measurement, to get the last line. Note that the two terms in square brackets in (5.16)
correspond to sampling the gravitational-wave phase at photon reception (location r⃗2
at time t2 ≡ t) and photon emission (location r⃗1 at time t1 ≡ t − L/c), respectively.
In the context of pulsar timing, these two terms are called the Earth term and pulsar
term, respectively.

From Eq. (5.17), we can read-off the response function for a timing residual mea-
surement, htiming(t) ≡ ∆T (t). It is

Rab
timing( f, n̂) =

1
2
uaub Tu⃗( f, n̂ · û)ei2π f n̂·r⃗2/c, (5.18)

where
Tu⃗( f, n̂ · û) ≡ 1

i2π f
1

1 + n̂ · û
[
1 − e− i2π f L

c (1+n̂·û)
]

= L
c
e− iπ f L

c (1+n̂·û) sinc
(

π f L
c

[1 + n̂ · û]
) (5.19)

is the timing transfer function for one-way photon propagation along u⃗ = Lû. (Here
sinc x ≡ sin x/x). If we choose r⃗2 to be the origin of coordinates, then Tu⃗( f, n̂ · û)
contains all the frequency-dependence of the timing response. For example, for normal
incidence of the gravitational wave (n̂ · û = 0), |Tu⃗( f, 0)| = (L/c) |sinc(π f L/c)|.
Figure 25 is a plot of |Tu⃗( f, 0)| versus frequency on a logarithmic frequency scale.

If we choose instead to measure the fractional Doppler frequency shift of the incom-
ing photons, then we need to differentiate the timing response with respect to t as
indicated in (5.1). This simply pulls-down a factor of i2π f from the exponential in
∆T (t), leading to

Rab
doppler( f, n̂) = i2π f Rab

timing( f, n̂). (5.20)

Thus, the frequency-dependence of the Doppler frequency response is i2π f times the
timing transfer function Tu⃗( f, n̂ · û). All of the above remarks are relevant for pulsar
timing and one-way spacecraft Doppler tracking.

In Fig. 26 we plot the antenna beam pattern (5.13) for unpolarized gravitational
waves for a one-way tracking Doppler frequency measurement (e.g., pulsar timing)

123

=
L
c

e− iπfL
c (1+ ̂n⋅ ̂u) sinc ( πfL

c
[1 + ̂n ⋅ ̂u])

LISA, spacecraft Doppler tracking and pulsar timing all operate outside of the short-antenna limit
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Beam pattern functions

where10

R
ab(f, n̂) = e

i2⇡fn̂·~x/c
Z 1

�1
d⌧

Z
d3

y R
ab(⌧, ~y) e

�i2⇡f(⌧+n̂·~y/c)
. (5.8)

Further specification of the response function depends on the choice of gravitational-wave
detector as well as on the basis tensors used to expand hab(f, n̂), as we shall see below and
in the following subsections.

For example, if we work in the polarization basis, with expansion coe�cients hA(f, n̂),
where A = {+, ⇥}, then

h̃(f) =

Z
d
2⌦n̂

X

A

R
A(f, n̂)hA(f, n̂) , (5.9)

with
R

A(f, n̂) = R
ab(f, n̂)eA

ab
(n̂) . (5.10)

If we work instead in the tensor spherical harmonic basis, with expansion coe�cients
a
P

(lm)
(f), where P = {G, C}, then

h̃(f) =
X

(lm)

X

P

R
P

(lm)
(f)aP

(lm)
(f) , (5.11)

with

R
P

(lm)
(f) =

Z
d
2⌦n̂ R

ab(f, n̂)Y P

(lm)ab
(n̂) . (5.12)

Note that in the polarization basis the response function R
A(f, n̂) is the detector response

to a sinusoidal plane-wave with frequency f , coming from direction n̂, and having polar-
ization A = +, ⇥. Plots of |R

A(f, n̂)| for fixed frequency f are antenna beam patterns for
gravitational waves with polarization A. A plot of

R(f, n̂) ⌘
�
|R

+(f, n̂)|2 + |R
⇥(f, n̂)|2

�1/2
(5.13)

for fixed frequency f is the beam pattern for an unpolarized gravitational wave—i.e., a
wave having statistically equivalent + and ⇥ polarization components.

Since the previous subsection showed that the response of all beam detectors can be
written rather simply in terms of the change in the light-travel time of an electromagnetic
wave propagating between two test masses, we now calculate �T (t) in various scenar-
ios and use the resulting expressions to read-o↵ the response functions R

ab(f, n̂) for the
di↵erent detectors. We also make plots of various antenna patterns.

5.2.1 One-way tracking

Consider two test masses located at position vectors ~r1 and ~r2 = ~r1 + Lû, respectively,
in the presence of a plane gravitational wave propagating in direction k̂ = �n̂, as shown
in Figure 24. Then the change in the light-travel time for a photon emitted at ~r1 and

10Some authors [49, 50, 75, 30, 53, 74], including us in the past, have defined the response function
Rab(f, n̂) without the factor of ei2⇡fn̂·~x/c. If one chooses coordinates so that the measurement is made
at ~x = ~0, then these two definitions agree. Just be aware of this possible di↵erence when reading the
literature. To distinguish the two definitions, we will use the symbol R̄ab(f, n̂) to denote the expression
without the exponential term, i.e., Rab(f, n̂) = ei2⇡fn̂·~x/cR̄ab(f, n̂).
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where10

R
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y R
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�i2⇡f(⌧+n̂·~y/c)
. (5.8)

Further specification of the response function depends on the choice of gravitational-wave
detector as well as on the basis tensors used to expand hab(f, n̂), as we shall see below and
in the following subsections.

For example, if we work in the polarization basis, with expansion coe�cients hA(f, n̂),
where A = {+, ⇥}, then

h̃(f) =
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with
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If we work instead in the tensor spherical harmonic basis, with expansion coe�cients
a
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(lm)
(f), where P = {G, C}, then

h̃(f) =
X
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X
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R
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(f) , (5.11)

with

R
P
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(f) =
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d
2⌦n̂ R

ab(f, n̂)Y P

(lm)ab
(n̂) . (5.12)
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for fixed frequency f is the beam pattern for an unpolarized gravitational wave—i.e., a
wave having statistically equivalent + and ⇥ polarization components.

Since the previous subsection showed that the response of all beam detectors can be
written rather simply in terms of the change in the light-travel time of an electromagnetic
wave propagating between two test masses, we now calculate �T (t) in various scenar-
ios and use the resulting expressions to read-o↵ the response functions R

ab(f, n̂) for the
di↵erent detectors. We also make plots of various antenna patterns.

5.2.1 One-way tracking

Consider two test masses located at position vectors ~r1 and ~r2 = ~r1 + Lû, respectively,
in the presence of a plane gravitational wave propagating in direction k̂ = �n̂, as shown
in Figure 24. Then the change in the light-travel time for a photon emitted at ~r1 and

10Some authors [49, 50, 75, 30, 53, 74], including us in the past, have defined the response function
Rab(f, n̂) without the factor of ei2⇡fn̂·~x/c. If one chooses coordinates so that the measurement is made
at ~x = ~0, then these two definitions agree. Just be aware of this possible di↵erence when reading the
literature. To distinguish the two definitions, we will use the symbol R̄ab(f, n̂) to denote the expression
without the exponential term, i.e., Rab(f, n̂) = ei2⇡fn̂·~x/cR̄ab(f, n̂).
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(f = c/(2L) = 37.5 kHz)
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Fig. 29 Antenna patterns for Michelson interferometer strain response |R+
strain| and |R×

strain| evaluated in
the small-antenna limit, f = 0 (top two plots) and at the free-spectral range frequency, f = c/(2L) (bottom
two plots). The interferometer arms point in the x̂ and ŷ directions. Note the change in the scale of the axes
between the top and bottom two plots

Similar plots of the antenna patterns for unpolarized gravitational waves are given in
Fig. 30. In Fig. 31 we show colorbar plots of the antenna patterns for the strain response
to unpolarized gravitational waves for the LIGO Hanford and Virgo interferometers
(located in Hanford, WA and Cascina, Italy, respectively), again evaluated in the small-
antenna limit.

We can also calculate the strain response of an interferometer to the gradient and
curl tensor spherical harmonic components {aG(lm)( f ),a

C
(lm)( f )} by performing the

integration in (5.12). As shown in Appendix E of Gair et al. (2014), this leads to

RG
(lm)( f ) = δl2

4π

5

√
1
3

[
Y2m(û ) − Y2m(v̂)

]
, RC

(lm)( f ) = 0, (5.33)

for an interferometer in the small-antenna limit, where the vertex is at the origin of
coordinates, and û , v̂ are unit vectors pointing in the direction of the interferometer
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Fig. 30 Antenna pattern for Michelson interferometer strain response to unpolarized gravitational waves
evaluated in the small-antenna limit, f = 0 (left plot) and at the free-spectral range frequency, f = c/(2L)
(right plot). The interferometer arms point in the x̂ and ŷ directions. Note the change in the scale of the
axes between the two plots

arms. Similar to (5.23) for pulsar timing, the curl response is again identically zero.
We will discuss the consequences of this result in more detail in Sect. 7.5.7, in the
context of phase-coherent mapping of anisotropic gravitational-wave backgrounds.

5.3 Overlap functions

As mentioned in Sect. 4, a stochastic gravitational-wave background manifests itself
as a non-vanishing correlation between the data taken by two or more detectors. This
correlation differs, in general, from that due to instrumental noise, allowing us to dis-
tinguish between a stochastic gravitational-wave signal and other noise sources. In this
section, we calculate the expected correlation due to a gravitational-wave background,
allowing for non-trivial detector response functions and non-trivial detector geometry.
Interested readers can find more details in Hellings and Downs (1983), Christensen
(1990, 1992), Flanagan (1993), and Finn et al. (2009).

5.3.1 Definition

Let d I and d J denote the data taken by two detectors labeled by I and J . In the presence
of a gravitational wave, these data will have the form

d I = hI + nI ,

d J = hJ + nJ ,
(5.34)

where hI,J denote the response of detectors I , J to the gravitational wave, and nI,J
denote the contribution from instrumental noise. If the instrumental noise in the two
detectors are uncorrelated with one another, it follows that the expected correlation of
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L is of order a kpc, and for spacecraft Doppler tracking where L is of order tens of AU.
It is also the case for space-based detectors like LISA (L = 5⇥ 106 km) for gravitational
waves with frequencies around a tenth of a Hz. On the other hand, for Earth-based
detectors like LIGO (L = 4 km), L ⌧ � is a good approximation below a few kHz. Thus,
the approach that we will take in the following subsections is to calculate the detector
response in general, not making any approximation a priori regarding the relative sizes
of � = c/f and L. To recover the standard expressions (i.e., in the long-wavelength or
small-antenna limit) for Earth-based detectors like LIGO will be a simple matter of taking
the limit fL/c to zero. For reference, Table 1 summarizes the characteristic properties
(i.e., size, characteristic frequency, sensitivity band, etc.) of di↵erent beam detectors.

Beam detector L (km) f⇤ (Hz) f (Hz) f/f⇤ Relation

Ground-based ⇠ 1 ⇠ 105 10� 104 10�4 � 10�1
f ⌧ f⇤

interferometer
Space-based ⇠ 106 ⇠ 10�1 10�4 � 10�1 10�3 � 1 f . f⇤
interferometer
Spacecraft Doppler ⇠ 109 ⇠ 10�4 10�6 � 10�3 10�2 � 10 f ⇠ f⇤
tracking
Pulsar timing ⇠ 1017 ⇠ 10�12 10�9 � 10�7 103 � 105 f � f⇤

Table 1: Characteristic properties of di↵erent beam detectors: column 2 is the arm length
or characteristic size of the detector (tens of AU for spacecraft Doppler tracking; a few
kpc for pulsar timing); column 3 is the frequency corresponding to the characteristic size
of the detector, f⇤ ⌘ c/L; columns 4 and 5 are the frequencies at which the detector is
sensitive in units of Hz and units of f⇤, respectively; and column 6 is the relationship
between f and f⇤.

5.2 Calculation of response functions and antenna patterns

Gravitational waves are weak. Thus, the detector response is linear in the metric pertur-
bations h = hab(t, ~x) describing the wave, and can be written as the convolution of h with
the impulse response R = R

ab(t, ~x) of the detector. Schematically:

r(t) = (R ⇤ h)(t, ~x) (28)

where ~x is the location of the measurement at time t. More explicitly:

r(t) =

Z 1

�1
d⌧

Z
d
3
y R

ab(⌧, ~y)hab(t� ⌧, ~x� ~y) (29)

=

Z 1

�1
df

Z
d
2⌦

k̂

X

A

R
A(f, k̂)hA(f, k̂)e

i2⇡f(t�k̂·~x/c) (30)

where we have written hab as a superposition of plane waves from di↵erent directions on
the sky (cf. Equation 7) to get the last line. Note that RA(f, k̂) is the detector response
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Figure 12: A plot of the normalized transfer function �II(f) for the strain response of
an equal-arm Michelson interferometer. The dips in the transfer function occur around
integer multiples of c/(2L).
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Figure 13: An extension of Figure 12 to lower and higher frequencies, and plotted on a
log-log scale. The position of the labels show the relative location of the frequency bands
for gravitational-wave searches using ground-based interferometers like LIGO, space-based
interferometers like LISA, spacecraft Doppler tracking and pulsar timing arrays, expressed
in units of c/(2L). See also Table 1 for more details.
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Table 3 Bayes factors and their interpretation in terms of the strength of the evidence in favor of one model
relative to the other

Bαβ (d) 2 lnBαβ (d) Evidence for model Mα relative to Mβ

< 1 < 0 Negative (supports model Mβ )

1–3 0–2 Not worth more than a bare mention

3–20 2–6 Positive

20–150 6–10 Strong

> 150 > 10 Very strong

Adapted from Kass and Raftery (1995)

signal-to-noise ratio of the data, assuming an additive signal in Gaussian-stationary
noise, and it can be used as an alternative frequentist detection statistic in place of
ΛML.

Table 3 from Kass and Raftery (1995) gives a range of Bayes factors and their
interpretation in terms of the strength of the evidence in favor of one model relative to
another. The precise levels at which one considers the evidence to be “strong” or “very
strong” is rather subjective. But recent studies (Cornish and Sampson 2016; Taylor
et al. 2016a) in the context of pulsar timing have been trying to make this correspon-
dence a bit firmer, using sky and phase scrambles to effectively destroy signal-induced
spatial correlations between pulsars while retaining the statistical properties of each
individual dataset. This is similar to doing time-slides for LIGO analyses, which are
used to assess the significance of a detection.

Taylor et al. (2016a) even go so far as to perform a hybrid frequentist-Bayesian
analysis, doing Monte Carlo simulations: (i) over different noise-only realizations,
and (ii) over different sky and phase scrambles, which null the correlated signal.
These simulations produce different null distributions for the Bayes factor, similar
to a null-hypothesis distribution for a frequentist detection statistic (in this case, the
log of the Bayes factor). The significance of the measured Bayes factor is then its
corresponding p-value with respect to one of these null distributions. The utility of
such a hybrid analysis is its ability to better assess the significance of a detection claim,
especially when there might be questions about the suitability of one of the models
(e.g., the noise model) used in the construction of a likelihood function.

3.5 Simple example comparing Bayesian and frequentist analyses

To further illustrate the relationship between Bayesian and frequentist analyses, we
consider in this section a very simple example—a constant signal with amplitude
a > 0 in white, Gaussian noise (zero mean, variance σ ):

di = a + ni , i = 1, 2, . . . , N , (3.29)

where the index i labels the individual samples of the data. The likelihood functions for
the noise-only and signal-plus-noise models M0 and M1 are thus simple Gaussians:
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Matched-filtering determination of measured TOAs
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