Searches for stochastic gravitational-wave backgrounds

Lecture 2 Les Houches Summer School 20 July 2018

Joe Romano University of Texas Rio Grande Valley **Texas Tech University**

Plan for lectures

Yesterday: Overview / Basics

- 1. Motivatio / context
- 2. Different types of stochastic backgrounds
- 3. Characterizing a stochastic GW background
- 4. Correlation methods
- 5. Some simple examples

Today: Details / Example

- 1. Non-trivial response functions
- 2. Non-trivial overlap functions
- 3. What to do in the absence of correlations (e.g., for LISA)?
- 4. Frequentist and Bayesian methods
- 5. Example: searching for the background from BBH mergers

1. Non-trivial response functions

(use electromagnetic radiation to monitor the separation of two or more test masses)

GW perturbs the photon propagation time between the test masses

Beam detectors

laser interferometers

(1-arm, 1-way)

(1-arm, 2-way)

Different types of response

All these responses are derivable from the change in light travel time $\Delta T(t)$

Detector response

GWs are weak => detector is a linear system which converts metric perturbations to detector output

detector

$$R^{ab}(\tau, \overrightarrow{y}) \longrightarrow h(t)$$

$$\sum_{-\infty}^{\infty} d\tau \int d^3 y \, R^{ab}(\tau, \vec{y}) h_{ab}(t - \tau, \vec{x} - \vec{y})$$

impulse response

$$R^{A}(f,\hat{n}) \equiv R^{ab}(f,\hat{n})e^{A}_{ab}(\hat{n})$$
$$R^{ab}(f,\hat{n}) \equiv e^{i2\pi f\hat{n}\cdot\vec{x}/c} \int_{-\infty}^{\infty} d\tau \int d^{3}y R^{ab}(\tau,\vec{y}) e^{-i2\pi f(\tau+\hat{n})}$$

'/û, L

where

Exercise 6: Derive this expression for the response function

 $\vec{r_2}$

GW

^ k

Example: 1-arm, 1-way timing response function (e.g., pulsar timing)

$$f(t) = \frac{1}{2c} u^a u^b \int_0^L \mathrm{d}s \ h_{ab}(t(s), \ \overrightarrow{x}(s))$$

 $t(s) = (t - L/c) + s/c, \qquad \overrightarrow{x}(s) = \overrightarrow{r}_1 + s\widehat{u}$

8

x, *y*

Example: LIGO response (equal-arm, short-antenna limit)

$$h(t) = \frac{1}{2} \left(\frac{\Delta T_{\overrightarrow{u}, \text{roundtrip}}(t)}{T} - \frac{\Delta T_{\overrightarrow{v}, \text{roundtrip}}(t)}{T} \right)$$
$$R^{A}(f, \widehat{n}) \simeq \frac{1}{2} \left(u^{a}u^{b} - v^{a}v^{b} \right) e^{A}_{ab}(\widehat{n})$$
$$\text{detector tensor}$$

Beam pattern functions

(f < a few kHz)

2. Non-trivial overlap functions

Overlap function (correlation coefficient)

- Detectors in different locations and with different orientations respond differently to a passing GW.
- Overlap function encodes reduction in sensitivity of a crosscorrelation analysis due to separation and misalignment of the detectors

Expected correlation:

$$\langle h_I(t)h_J(t')\rangle = \frac{1}{2} \int_{-\infty}^{\infty} \mathrm{d}f \, e^{i2\pi f(t-t')} \Gamma_{IJ}(f) S_h(f)$$

$$\Gamma_{IJ}(f) = \frac{1}{8\pi} \int d^2 \Omega_{\hat{n}} \sum_{A} \sum_{A} d^2 \Omega_{\hat{n}} \sum_{A} \partial_{\hat{n}} \sum_{A} \partial_{\hat{$$

 $\Gamma_{IJ}(f)$ is the transfer function between GW power and detector cross-power; integrand of $\Gamma_{IJ}(f)$ is important for anisotropic stochastic backgrounds

$$\iff \langle \tilde{h}_{I}(f)\tilde{h}_{J}^{*}(f')\rangle = \frac{1}{2}\delta(f-f')\Gamma_{IJ}(f)S_{h}(f)$$

 $\sum R_I^A(f,\hat{n})R_J^{A*}(f,\hat{n})$

(unpolarized, stationary, isotropic background)

LIGO Hanford-LIGO Livingston overlap function (small-antenna approximation)

LIGO Hanford-Virgo overlap function (small-antenna approximation)

[normalized]

Pulsar timing correlations (Hellings & Downs curve) (correlation for an isotropic, unpolarized GW background in GR)

dipole antennae pointing in direction u_1 and u_2 is given by

for an unpolarized, isotropic electromagnetic field.

Exercise 7: Show that the overlap function for a pair of short, colocated electric

 $\Gamma_{12} \propto \hat{u}_1 \cdot \hat{u}_2 \equiv \cos \zeta$

Jenet and Romano, AJP 83 (7), 2015

$$\begin{split} r_{I}(t) &= \hat{u}_{I} \cdot \overrightarrow{E}(t, \overrightarrow{x}_{0}) \\ \overrightarrow{E}(t, \overrightarrow{x}) &= \int_{-\infty}^{\infty} df \int d^{2} \Omega_{\hat{n}} \sum_{\alpha=1}^{2} \widetilde{E}_{\alpha}(f, \hat{n}) \hat{\epsilon}_{\alpha}(\hat{n}) e^{i2\pi f(t+\hat{n}\cdot \overrightarrow{x}/c)} \\ \hat{\epsilon}_{1}(\hat{n}) &= \hat{\theta}, \quad \hat{\epsilon}_{2}(\hat{n}) = \hat{\phi} \end{split}$$

etc. . . .

3. What to do in the absence of correlations (e.g., for LISA)?

LISA (Laser Interferometer Space Antenna)

NE

Cross-correlation is not an option for LISA (at least for low frequencies)

- Although there are 3 Michelson combinations (X,Y,Z), they have common noise (since they share arms)
- Can diagonalize the noise covariance matrix to obtain noise-orthogonal combinations (A,E,T), which also turn out to be signal orthogonal
 - A, E: two Michelsons rotated by 45 degrees
 - T: relatively insensitive to GW (null channel)
- Nonetheless, proper modeling of instrumental noise, astrophysical foregrounds (galactic WD binaries), and GWB allows you to discriminate all three components (Adams & Cornish, 2010, 2014)

Detailed questions? Ask Neil when he arrives!

$$A \equiv \frac{1}{3}(2X - Y - Z),$$
$$E \equiv \frac{1}{\sqrt{3}}(Z - Y),$$
$$T \equiv \frac{1}{3}(X + Y + Z).$$

Different spectra => differentiate different noise components

4. Frequentist and Bayesian methods

	Bayesian infererence
nes es	Probabilities are degree of belief —> can be assigned to hypotheses
	Same as frequentist
sis	Specify priors for parameters and hypotheses
	Use Bayes' theorem to update degree of belief
	Construct posteriors and odds ratios (Bayes factors)

Likelihood function

Starting point for both frequentist & Bayesian analyses: likelihood = p(data | parameters, model)

Gaussian detector noise and GWB:

$$p(d \mid C_n, \mathcal{M}_0) = \frac{1}{\sqrt{\det(2\pi C_n)}} \text{ ex}$$

$$p(d \mid C_n, S_h, \mathcal{M}_1) = \frac{1}{\sqrt{\det(2\pi C)}} \text{ ex}$$

N samples of white noise, white GWB, in two colocated and coaligned detectors:

$$C_n = \begin{bmatrix} S_{n_1} \mathbf{1}_{N \times N} & \mathbf{0}_{N \times N} \\ \mathbf{0}_{N \times N} & S_{n_2} \mathbf{1}_{N \times N} \end{bmatrix} \qquad \& \qquad C = \begin{bmatrix} (S_{n_1} + S_h) \mathbf{1}_{N \times N} & S_h \mathbf{1}_{N \times N} \\ S_h \mathbf{1}_{N \times N} & (S_{n_2} + S_h) \mathbf{1}_{N \times N} \end{bmatrix}$$

Frequentist analysis

Use maximum-likelihood (ML) ratio for detection, and maximum-likelihood parameter values as estimators

Maximum-likelihood detection statistic:

$$\Lambda_{\mathrm{ML}}(d) \equiv \frac{\max_{S_{n_1}, S_{n_2}, S_h} p(d \mid S_{n_1}, S_{n_2}, S_h, \mathcal{M}_1)}{\max_{S_{n_1}, S_{n_2}} p(d \mid S_{n_1}, S_{n_2}, \mathcal{M}_0)}$$
$$\Lambda(d) \equiv 2\ln(\Lambda_{\mathrm{ML}}(d)) \simeq \frac{\hat{S}_h^2}{\hat{S}_{n_1}\hat{S}_{n_2}/N} \longleftarrow \mathrm{SNR}^2$$

Maximum-likelihood estimators:

$$\hat{S}_{h} \equiv \frac{1}{N} \sum_{i=1}^{N} d_{1i} d_{2i}$$
$$\hat{S}_{n_{1}} \equiv \frac{1}{N} \sum_{i=1}^{N} d_{1i}^{2} - \hat{S}_{h}$$
$$\hat{S}_{n_{2}} \equiv \frac{1}{N} \sum_{i=1}^{N} d_{2i}^{2} - \hat{S}_{h}$$

 d_{2i} cross-correlation statistic

> **Exercise 8: Verify the expressions** for the ML estimators.

 $\hat{S}_{2i}^2 - \hat{S}_h$

Exercise 9: Verify the expression for the detection statistic $2\ln(\Lambda_{ML}(d))$

Bayesian analysis

Use Bayes' theorem to calculate posterior distributions for parameter estimation and odds ratios (Bayes factors) for model selection likelihoou $p(H|d) = \frac{p(d|H)p(H)}{p(d)}$ normalization factor likelihood Bayes' theorem: Posteriors: $p(S_{n_1}, S_{n_2}, S_h | d, \mathcal{M}_1) = \frac{p(d | S_{n_1}, S_{n_2}, S_h, \mathcal{M}_1) p(S_{n_1}, S_{n_2}, S_h | \mathcal{M}_1)}{p(d | \mathcal{M}_1)}$ $p(S_h | d, \mathcal{M}_1) = \int dS_{n_1} \int dS_{n_2} p(S_{n_1}, S_{n_2}, S_h | d, \mathcal{M}_1)$ Bayes factor $\mathcal{B}_{10}(d)$ $\frac{p(\mathcal{M}_1 \mid d)}{p(\mathcal{M}_0 \mid d)} = \frac{p(d \mid \mathcal{M}_1) p(\mathcal{M}_1)}{p(d \mid \mathcal{M}_0) p(\mathcal{M}_0)}$ $p(d|\theta_{ML})$ V-I Relationship to frequentist approach: $\frac{|S_{n_1}, S_{n_2}, S_h, \mathcal{M}_1)p(S_{n_1}, S_{n_2}, S_h|\mathcal{M}_1)}{|S_{n_1}, S_{n_2}, \mathcal{M}_0)p(S_{n_1}, S_{n_2}|\mathcal{M}_0)} \simeq \Lambda_{\mathrm{ML}}(d) \frac{\Delta V_1/V_1}{\Delta V_0/V_0}$

Model selection:

$$\mathscr{B}_{10}(d) \equiv \frac{p(d \mid \mathscr{M}_1)}{p(d \mid \mathscr{M}_0)} = \frac{\int dS_{n_1} \int dS_{n_2} \int dS_h p(d \mid \mathcal{M}_1)}{\int dS_{n_1} \int dS_{n_2} p(d \mid \mathcal{M}_1)}$$

Generic likelih <u>ـ ا</u>ـ

$$p(d | C_n, h) \equiv p_n(d - h | C_n) = \frac{1}{\sqrt{\det(2\pi C_n)}} \exp\left[-\frac{1}{2}(d - h)^T C_n^{-1}(d - h)\right]$$

$$\int dt(2\pi C_n) = \frac{1}{\sqrt{\det(2\pi C_n)}} \exp\left[-\frac{1}{2}(d - h)^T C_n^{-1}(d - h)\right]$$

$$\int dt(2\pi C_n) = \frac{1}{\sqrt{2\pi S_h}} \exp\left[-\frac{1}{2}\frac{h^2}{S_h}\right]$$

$$p(h | S_h) = \frac{1}{\sqrt{2\pi S_h}} \exp\left[-\frac{1}{2}\frac{h^2}{S_h}\right]$$

$$\int dh p_n(d - h | C_n)p(h | S_h) = \frac{1}{\sqrt{\det(2\pi C)}} \exp\left[-\frac{1}{2}d^T C^{-1}d\right]$$

$$\frac{dt(2\pi C)}{dt(2\pi C)} \exp\left[-\frac{1}{2}d^T C^{-1}d\right]$$

$$\frac{dt(2\pi C)}{dt(2\pi C)} = \left[\frac{S_{n_1} + S_h}{S_h} + \frac{S_h}{S_h}\right]$$

$$\frac{Exercise 10: Do the marginalization of h to obtain this final result.}$$

stocha

Margi

$$p(d | C_n, h) \equiv p_n(d - h | C_n) = \frac{1}{\sqrt{\det(2\pi C_n)}} \exp\left[-\frac{1}{2}(d - h)^T C_n^{-1}(d - h)\right]$$
signal model
model:

$$p(h | S_h) = \frac{1}{\sqrt{2\pi S_h}} \exp\left[-\frac{1}{2}\frac{h^2}{S_h}\right]$$

$$p(d | C_n, S_h) = \int dh \, p_n(d - h | C_n)p(h | S_h) = \frac{1}{\sqrt{\det(2\pi C)}} \exp\left[-\frac{1}{2}d^T C^{-1}d\right]$$
matrix

$$p(d | C_n, S_h) = \int S_{n_1} + S_h + S_{n_2} + S_h$$

$$\frac{Exercise 10: \text{ Do the marginalization } h \text{ to obtain this final result.}}{P(d | C_n, S_h) = 1}$$

The likelihood:

$$p(d | C_n, h) \equiv p_n(d - h | C_n) = \frac{1}{\sqrt{\det(2\pi C_n)}} \exp\left[-\frac{1}{2}(d - h)^T C_n^{-1}(d - h)\right]$$
signal model
astic signal model:

$$p(h | S_h) = \frac{1}{\sqrt{2\pi S_h}} \exp\left[-\frac{1}{2}\frac{h^2}{S_h}\right]$$

$$p(h | S_h) = \frac{1}{\sqrt{2\pi S_h}} \exp\left[-\frac{1}{2}\frac{h^2}{S_h}\right]$$

$$p(d | C_n, S_h) = \int dh \ p_n(d - h | C_n)p(h | S_h) = \frac{1}{\sqrt{\det(2\pi C)}} \exp\left[-\frac{1}{2}d^T C^{-1}d\right]$$
covariance matrix

$$p(d | C_n, S_h) = \int dh \ p_n(d - h | C_n)p(h | S_h) = \frac{1}{\sqrt{\det(2\pi C)}} \exp\left[-\frac{1}{2}d^T C^{-1}d\right]$$

$$\frac{1}{\sqrt{\det(2\pi C)}} \exp\left[-\frac{1}{2}d^T C^{-1}d\right]$$

$$\frac{1}{\ln(2\pi C)} \exp\left[-\frac{1}{2}d^T C^{-1}d\right]$$

$$\frac{1}{\ln(2\pi C)} \exp\left[-\frac{1}{2}d^T C^{-1}d\right]$$

Example: Derivation of standard stochastic likelihood by marginalizing over a stochastic signal prior

Signal priors define the signal model...

stochastic:

deterministic:

 $p(h \mid A, t_0, f_0) = \delta(h)$

hybrid:

 $p(h | \xi, A, t_0, f_0) = \xi \delta (h - \xi)$

$$\exp\left[-\frac{1}{2}\frac{h^2}{S_h}\right]$$

$$h - A\sin[2\pi f_0(t - t_0)]\big)$$

$$-A \sin[2\pi f_0(t-t_0)]) + (1-\xi) \delta(h)$$

$$h$$

$$h$$

$$+ \frac{h}{1-\xi} t$$

$$\xi \text{ percent or } (1-\xi) \text{ percent}$$

5. Example: searching for the background from BBH mergers

Recall: Non-stationary background from BBH mergers is a potential signal for advanced LIGO, Virgo

- Recent detections of BBH and BNS mergers by advanced LIGO, VIrgo imply the existence of a stochastic background of weaker events
- Smith & Thrane (PRX 8, 021019,2018) have proposed an alternative method to search for the BBH component, optimally suited for the non-stationarity
- Describe BBH background with a hybrid signal model
- Average over chirp parameters to infer only rate of mergers
- Use two detectors to discriminate against glitches

Mathematical details

Split data in short (e.g., 4 sec) segments, which should contain at most 1 BBH merger. For each segment we have:

 $p(d \mid C_n, h) \equiv p_n(d - h \mid C_n)$ Likelihood: Hybrid signal model:

$$p(h | \xi, \overrightarrow{\lambda}) = \xi \delta \left(h - \text{chirp} \right)$$

Marginalized likelihoods:

$$p(d \mid \xi, \vec{\lambda}) = \int dh \, p(d \mid C_n, h) p(h \mid \xi, \xi)$$
$$p(d \mid \xi) = \left[d \vec{\lambda} \, p(d \mid \xi, \vec{\lambda}) \, p(\vec{\lambda}) \right] = 0$$

Posterior:
$$p(\xi | d) = \frac{p(d | \xi)p(\xi)}{p(d)}$$

Combine segments by multiplying likelihoods, ...

Example: Simulated BBH background in white detector noise and confusion-limited BNS background

The optimal analysis reduces time to detection because...

- BBH chirp signal is deterministic and not stochastic

~40 months of observation reduces to ~1 day!!

So stay tuned!!

All segments contribute to estimating probability parameter ξ

haven't been able to rigorously prove the N_{cylces} part!!

extra slides

Pulsar timing correlations (Hellings & Downs curve) (correlation for an isotropic, unpolarized GW background in GR)

Beyond the short-antenna limit

LISA, spacecraft Doppler tracking and pulsar timing all operate outside of the short-antenna limit

$$\frac{1}{1+\hat{n}\cdot\hat{u}} \left[1-e^{-\frac{i2\pi fL}{c}(1+\hat{n}\cdot\hat{u})}\right] e^{i2\pi f\hat{n}\cdot\vec{r}_2/c}$$

$$\frac{fL}{c}(1+\hat{n}\cdot\hat{u}) = \frac{L}{c}e^{-\frac{i\pi fL}{c}(1+\hat{n}\cdot\hat{u})}\operatorname{sinc}\left(\frac{\pi fL}{c}[1+\hat{n}\cdot\hat{u}]\right)$$

Beam detector	$L~(\mathrm{km})$	f_* (Hz)	f (Hz)	f/f_*	Relatio
Ground-based	~ 1	$\sim 10^5$	$10 - 10^4$	$10^{-4} - 10^{-1}$	$f \ll f$
Space-based	$\sim 10^{6}$	$\sim 10^{-1}$	$10^{-4} - 10^{-1}$	$10^{-3} - 1$	$f \lesssim f$
Spacecraft Doppler	$\sim 10^9$	$\sim 10^{-4}$	$10^{-6} - 10^{-3}$	$10^{-2} - 10$	$f \sim f$
Pulsar timing	$\sim 10^{17}$	$\sim 10^{-12}$	$10^{-9} - 10^{-7}$	$10^3 - 10^5$	$f \gg j$

zeroes in the timing transfer function at multiples of $f_* \equiv c/L$

Beam pattern functions

X-axis

 $|R^{+}(f, \hat{n})|$

 $|R^{\times}(f,\hat{n})|$

 $\left(|R^+(f,\hat{n})|^2 + |R^\times(f,\hat{n})|^2\right)^{1/2}$

(f = c/(2L) = 37.5 kHz)

Beam detector	$L \ (\mathrm{km})$	f_* (Hz)	f (Hz)	f/f_*	Re
Ground-based	~ 1	$\sim 10^5$	$10 - 10^4$	$10^{-4} - 10^{-1}$	f
interferometer Space-based interferometer	$\sim 10^6$	$\sim 10^{-1}$	$10^{-4} - 10^{-1}$	$10^{-3} - 1$	f
Spacecraft Doppler tracking	$\sim 10^9$	$\sim 10^{-4}$	$10^{-6} - 10^{-3}$	$10^{-2} - 10$	f
Pulsar timing	$\sim 10^{17}$	$\sim 10^{-12}$	$10^{-9} - 10^{-7}$	$10^3 - 10^5$	f

10⁵

$\mathcal{B}_{\alpha\beta}(d)$	$2\ln \mathcal{B}_{\alpha\beta}(d)$
<1	<0
1–3	0–2
3–20	2-6
20–150	6–10
>150	>10

Adapted from Kass and Raftery (1995)

Evidence for model \mathcal{M}_{α} relative to \mathcal{M}_{β}

Negative (supports model \mathcal{M}_{β}) Not worth more than a bare mention Positive Strong Very strong

Matched-filtering determination of measured TOAs

