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Connection to other lectures

Astrophysical sources - |. Mandel (last week)

Cosmological sources - V. Mandic (starting tomorrow)

e Data analysis - A. Weinstein (last week), J. Veitch (this week)

® Pulsar timing - N. Cornish (next week)

® | |SA detector / science - M. Hewitson, A. Sesana (next week)



Some references (not complete)

B. Allen - “The stochastic gravitational-wave background: sources and detection,” from Les Houches School in
Oct 1995

e M. Maggiore - “Gravitational-wave experiments and early universe cosmology” (2000)
e (. Caprini, D. Figueroa - “Cosmological backgrounds of gravitational waves” (2018)
e [. Regimbau - “The astrophysical stochastic gravitational-wave backgrounds” (2011)

e J. Romano, N. Cornish - “Detection methods for stochastic gravitational-wave backgrounds: a unified
treatment” (2017)

® R.Smith, E. Thrane - “Optimal search for an astrophysical gravitational-wave background” (2018)

® Plus recent observational papers from LIGO, Virgo, pulsar timing arrays, etc., quoting upper limits on the strength
of stochastic gravitational-wave backgrounds



Resources

https://github.com/josephromano/leshouches

® Slides
® [Xxercises (suggested)
® Solutions

® Code examples (ipython notebooks)
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Plan for lectures

Today: Overview / Basics

Motivation / context

Different types of stochastic backgrounds
Characterizing a stochastic GW background
Correlation methods

Some simple examples



1. Motivation



Ultimate goal: produce analogue o B sky map




But th ) | d ahead A MEASUREMENT OF EXCESS ANTENNA TEMPERATURE
U eres a long roaad aneaa... AT 4080 Mc/s (4080 Mc/s <-> 7.35 o)

Measurements of the effective zenith noise temperature of the 20-foot horn-reflector
— . : : antenna (Crawford, Hogg, and Hunt 1961) at the Crawford Hill Laboratory, Holmdel

1965: Penzias & Wilson New Jersey, at 4080 Mc/s have yielded a value about 3.5° K higher than expected. This
excess temperature 1s, within the limits of our observations, isotropic, unpolarized, and

free from seasonal variations (July, 1964-April, 1965). A possible explanation for the
observed excess noise temperature is the one given by Dicke, Peebles, Roll, and Wilkinson
(1965) in a companion letter in this issue.

Wavelength [mm]

2 1 0.67 0.5
T T T T

400 FIRAS data with 400G errorbars -

2.725 K Blackbody

| | 2.725K
£ blackbody
— 1992: COBE = eer :
% : T TS 20
V [/em]
Multipole moment, ¢
- 2 10 50 500 10‘I30 1500 QOQO 2500
“% 6C00 ﬁ -
é 3000 | f i\ Angular
— 2013: WMAP, Planck 2 000 | i\ power spectrum
, S 3000} y’ "
— 2018: And we haven’t detected the e | ] VAV
. . = oo )
isotropic component of the 3 1000 “"H‘w"’ b
= o Bl &G “oa.
GW background yet! 5 [ wsailil N
(ang resolution: ~10 arcmin) WA 2 o R ot

Angular scale

8



At least we've detected other GW signals...

Observation of Gravitational Waves from a Binary Black Hole Merger

B.P. Abbott et al.”

o 5 (OI’ 6) b|nary blaCk hOle (BB ) mergers aﬂd (LIGO Scientific Collaboration and Virgo Collaboration)

(Received 21 January 2016; published 11 February 2016)

1 b N a ry N e Ut rO N St a r (B N S) m e rg e r On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave

Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 1072!. It matches the waveform

o W|'th S| M | |ar deteC'UOn S expeCted |n OS v predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the

resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a

false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater
(160 9+0.03

than 5.1¢. The source lies at a luminosity distance of 410", o« Mpc corresponding to a redshift z = 0.097 ..
® very strong events!! y 15 Mpe corresponding

In the source frame, the initial black hole masses are 36“_? M and 291L2M o and the final black hole mass 1s

62jM o, With 3.0f8_'55 M ¢? radiated in gravitational waves. All uncertainties define 90% credible intervals.
These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct
detection of gravitational waves and the first observation of a binary black hole merger.
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...and we expect many more weaker signals

® ndividually undetectable (subthreshold)

® put detectable as a collectivity via their
common influence on multiple detectors

® combined signal described statistically —
stochastic gravitational-wave background

Exercise 1: Verify that the expected total rate of

stellar-mass BBH mergers is between ~1 per minute
and a few per hour.
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Potentially detectable with advanced LIGO/Virgo

(PRL |

20,091101,2018)
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Based on standard search, but there exists a better method!
(Smith & Thrane, PRX 8, 021019, 2018)
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Bigger picture of GWs — sources & detectors

phase
transitions,
cosmic strings

merging binary
neutron stars

SMBH binaries
iN galaxy mergers

galactic
WD binaries

relic gravitational waves
(quantum fluctuations
amplified by inflation)
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2. Different types of stochastic
GW backgrounds



() Stochastic backgrounds can differ in spatial distribution

(statistically) isotropic

Injected power

(like cosmic microwave background)
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data 1

(i) They can also differ in temporal distribution and amplitude

Stationary Gaussian
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white noise
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1) They can also differ in power spectra depending on source

power spectra
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data

data

200

—200

' 200 ‘ J

Example: Rate estimates and signal durations imply BNS “confusion”

& BBH “popcorn” for LIGO / Virgo
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data

Combined BBH / BNS background signal
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3. Characterizing a stochastic
GW background



Definition of a stochastic backgrounao

4 _
Superposition of signals too weak or too numerous to ) -
iIndividually detect
H
Looks like noise in a single detector s U
©
Characterized statistically in terms of moments o
(ensemble averages) of the metric perturbations —2
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Plane wave expansion of metric perturbations

h,(t, xX) = j df jdzﬂﬁ Z h(f. ﬁ)eﬁb(ﬁ) o 127f(t+A- T /)

A=+,X

Polarization tensors:

Statistical properties encoded in:

(L)« Ly (o)« Dy P (P

in terms of quadratic expectation values

(if Gaussian)

(no loss of generality)

21
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Quadratic expectation values specify different types
of Gaussian stochastic backgrounds

Unpolarized, stationary N pr o A =L . N
sotropic. (a s ISP ) = = —Si(FS(f = F)Ban 8, 7)

. . 1
Unpolarized, stationary, (o (f DR, AD) = =P DS(f — FSau 52(, A")
anisotropic: 4

where S, (f) = szﬂﬁ P(f, 1)

power spectral density (Hz!) energy density spectrum characteristic strain
(dimensionless) (dimensionless)
3Hg $244(f)
) = o 2o _ 1 W _ f P h () = VIS = A, | L
" 271'2 f3 ng(f) — — ¢ o f
p.dInf  p. df ref

p)
Exercise 2: Derive the above 3H§c2 C : .

= = h . (t, 8Y/% t, ’
relationship. Pe="¢ = Pow 327rG< bl X, X))
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‘Phinney formula”: Calculating Qgw(f) for an astrophysical background

astro-ph/0108028
Recall:

Q. (f) =

A practical theorem on gravitational wave backgrounds

dpgw  f dpgy,
Pc Clnf P, df E.S. Phinney”

Theoretical Astrophysics, 130-33 Caltech, Pasadena, CA 91125, USA

ABSTRACT

For a collection of sources: There is an extremely simple relationship between the spectrum of the gravitational
wave background produced by a cosmological distribution of discrete gravitational
wave sources, the total time-integrated energy spectrum of an individual source, and
1 ( o0 1 dEgW the present-day comoving number density of remnants. Stated in this way, the back-

(@) ( f ) — dZ n(Z) f ground is entirely independent of the cosmology, and only weakly dependent on the
gW 1 7 S df evolutionary history of the sources. This relationship allows one easily to compute the
Pec 0 5 f=f(1+z) amplitude and spectrum of cosmic gravitational wave backgrounds from a broad range

/ > of astrophysical sources, and to evaluate the uncertainties therein.

fi=f1+2)

INn terms of event rate:

dr 1

n(z)dz = R(z) | dt|, dz| (0 + 20HER)

E(z) = \/ Q (1+2°+Q, <«— cosmology

Exercise 3: Verify the above o0 dE
. f | ow
expression for |dt/dz| as well as Q. (f) = dz R(2)
the “Phinney formula” in terms W pHy )y (1 +2)E(z) df,
of the rate R(z). Js=11+2)
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Simple example: circular binaries

Units: G=c=1

Kepler'slaw: w?r’=GM — 7~ M1/3a)_2/3, F~—rwlw

dE
Energy balance: W _ dLy,
dt dt
a’EgW
— ~ _M//H’/l"z ~ ﬂ5/3a)—1/3a')
dt ¢

dE dt dEgW 1 dEgW

gW 5/3 p—1/3
== = ~ ~ M
df df dt @ dt -t my TN M=m; +m,
mym,
2/3 2/3 h= m; +m
= | Q) « /P, h(f) < f 1+ m:
W = (m1m2)3/5 _ /43/5M2/5

—(my + my)s
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LIGO

(GW170817 stochastic implications paper)
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4. Correlation methods



Siﬂgle VS. mU|J[|p|e deteCtQ S A MEASUREMENT OF EXCESS ANTENNA TEMPERATURE

AT 4080 Mc/s

Measurements of the effective zenith noise temperature of the 20-foot horn-reflector

antenna (Crawford, Hogg, and Hunt 1961) at the Crawford Hill Laboratory, Holmdel,
New Jersey, at 4080 Mc/s have yielded a value about 3.5° K higher than expected. This

e |[nitial discovery of the CMB was in a single excess temperature 1s, within the limits of our observations, isotropic, unpolarized, and

detector (eXCGSS nOISe tha't Could not be free from seasonal variations (Jllly, 1964—Apl’ll, 1965) A pOSSiblC explanation.fo.r the

, , observed excess noise temperature i1s the one given by Dicke, Peebles, Roll, and Wilkinson
attributed to any known noise source) (1965) in a companion letter in this issue.

(Penzias & Wilson, 1965)
® (Ground-based detectors currently aren’t _
sensitive enough for expected GW "W"%
backgrounds to stand out above instrumental / e 1

noise (LISA is another story!)

® |nstead, look for evidence of a common
disturbance in multiple detectors -> cross-
correlation

® Signal might be weak, but you can build up
SNR by correlating for long periods of time

27



Cross-correlation: basic idea

Data from two detectors:

d2:h+n2
/

common GW signal component

—Xpected value of cross-correlation:
. 0 0
(C12) = (dids) = (h*) + (ning) +M+M: (R*) + (ning)

Assuming detector noise is uncorrelated:

<012> — <h2> — Sh

28



Worked example: N samples, white GWB in white detector noise

Expected value:

Variance:

SNR:

.. 1] & |
— —_ A — h . — . (common GW signal,
Sh =Ch N — dhdzl dl’ hl LRUTE dZ’ hl Ty, uncorrelated detector noise)
. ] < ] <
pu=(Cp =— Z (dyidy) =— Z <hi2> =5

=1 N =1

2 N N
o> = <CA%2> — <612>2 - <% 2 Z <<dlidedlja”2j> B <d1id2i><dljd2j>)

: i;l Jj=1 l (abcd) = (ab){cd) + (ac){bd) + (ad){bc)
1
= (N) ((dlid1j><d2id2j> T <d1id2j><d2idlj>)
i=1 j=1
2 N N =
| Sl — Op T Sh
} (N) le ]=Z1 <Sléij 2204 210 910y ) where 5 =3, + 5,
(1)2i(55 +S7) 1(55 S7) 1SS
— — — + =
Y, & 1°2 h N 122 h N 12
_H O il here /5,5, ® =
= c \/S1Sz/N — = NS_ T 2192 % \/SnlSnz =

29



Cross-correlation estimators / optimal filtering

A 172 172 _— If stationary
More generally Sy = J d J dr’ d\()dy(1)Q(1, 1) 0(t,1) = Qi = 1)
~T/2 —T72

S, zj de df' 5,(f = A (NHdE)O*(f)

— QOO0

Choose Q to maximize SNR for fixed spectral shape:

T (£ l . expected
Q( f) ~ F12(f)H (f ) signal spectrum
/ Pi(f)Py(f)
correlation coeff (overlap) \ de-weight correlation
between two detectors when noise is large or

~ - 1 .
(hi(HRE()) = 50U =Ia()34() overlap is small

30



5. Some simple examples

(code to simulate data and do the analyses are on github repository)

31



data

() White GWB Iin white detector noise

H(f) =1

data

expected and estimated values of
power agree to 3.5%, within 1 sigma

optimally filtered CC SNR = 2.9
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(i) Confusion-limited BNS GWB in white detector noise

ol [l 5.0
—— signa J.\
_ —7/3
9 - H(f) — (f/fref) hE
(O (0
o O & 0.0
o e
—2 7 —2.0
| —0.0 1
0 1 2 3 4
time (s)

expected and estimated values of
power agree to 2.7%, within 1 sigma

optimally filtered CC SNR =12

33



data

(i) Two-component GWB in white detector noise
(GWB = white GWB + confusion-limited BNS GWB)

data
= signal 1

4 = signal 2

0 1 > 3 4
time (s)

optimal-filtering for each component separately:
white GWB: 48% overestimate, > 1 sigma
BNS GWB: 6.9% overestimate, within 1 sigma

separate analyses overestimate strength of each GWB

component and underestimate error bars

H(f)=1

Hy(f) = (flfiep)™ "

34

5.0 -
2.0
0.0 -
_25
data
signal 1
o E; () - signal 2
() ] 2 3 4
time (s)

joint multi-component analysis:
white GWB: agreement to 7.3%, SNR=1.4
BNS GWB: agreement to 3.8%, SNR=6.0

joint analysis properly takes into account the
covariance between the component spectral shapes

Parida et al, JCAP 024, 2106



Joint multi-component analysis

- ' ' i g = — l N*
Data are cross-correlation estimates: Clz(f ) = le(f )d2 (f) / spectral shapes
Expectation value: (Ca() = Y A T(NHL) = Y. M)A,
amplitudes
Noise covariance matrix: Np(f f) = (Co(f )éi’}(f'» —(Co(f )><@]‘<2(f’)>
~ 0 P1(f)P(f)

. R . '
Likelihood function: p(C|A,N) x exp —5(C - MA)'N~(C — MA)
Maximum-likelihood estimators: A= F-ly

F=MN"M, X=MNIC

» 00 2
F = d H“(f )F12(f )Hﬂ(f ) (noise-weighted inner product of spectral shapes;
i J_o P()P,(f) inverse covariance matrix for A)

Fisher matrix
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end lecture 1



extra slides



What are the prospects for detection”

No detections yet; only upper limits on strength of background in different freq bands.
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What are the prospects for detection®

No detections yet; only upper limits on strength of background in different freq bands.

100 (PRL 118, 121101,2017)
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Cosmological model

Friedmann-Robertson-Walker line element:

ds* = — c*dr* + a*(t) (dr* + r* d0* + r* sin* 0 d¢p*)

Redshifted frequencies and time-intervals:

a(ty) 1
1 — —_— — —
+ z ) 1 +z2 o) a(ty) =1
fi=0+2f
Aty = (1 + 7) At
a
dt| 1 — = H(t) = Hy E(2)
dz| (1 +2)H.E(z
( } E() EQ) =\ [0n(1+ 2 + 0,
Friedmann equation I
cosmology
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