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Abstract We review detection methods that are currently in use or have been pro-
posed to search for a stochastic background of gravitational radiation. We consider
both Bayesian and frequentist searches using ground-based and space-based laser
interferometers, spacecraft Doppler tracking, and pulsar timing arrays; and we allow
for anisotropy, non-Gaussianity, and non-standard polarization states. Our focus is on
relevant data analysis issues, and not on the particular astrophysical or early Universe
sources that might give rise to such backgrounds. We provide a unified treatment of
these searches at the level of detector response functions, detection sensitivity curves,
and, more generally, at the level of the likelihood function, since the choice of sig-
nal and noise models and prior probability distributions are actually what define the
search. Pedagogical examples are given whenever possible to compare and contrast
different approaches. We have tried to make the article as self-contained and compre-
hensive as possible, targeting graduate students and new researchers looking to enter
this field.
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1 Introduction

The real voyage of discovery consists not in seeking new landscapes, but in
having new eyes. Marcel Proust

It is an exciting time for the field of gravitational-wave astronomy. The observation,
on September 14th, 2015, of gravitational waves from the inspiral and merger of a pair
of black holes (Abbott et al. 2016e) has opened a radically new way of observing the
Universe. The event, denoted GW150914, was observed simultaneously by the two
detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) (Aasi
et al. 2015). [LIGO consists of two 4 km-long laser interferometers, one located in
Hanford, Washington, the other in Livingston, LA.] The merger event that produced
the gravitational waves occured in a distant galaxy roughly 1.3 billion light years from
Earth. The initial masses of the two black holes were estimated to be 36+5

−4 M� and

29+4
−4 M�, and that of the post-merger black hole as 62+4

−4 M� (Abbott et al. 2016f). The

difference between the initial and final masses corresponds to 3.0+0.5
−0.5 M�c2 of energy

radiated in gravitational waves, with a peak luminosity of more than ten times the
combined luminosity of all the stars in all the galaxies in the visible universe! The fact
that this event was observed only in gravitational waves—and not in electromagnetic
waves—illustrates the complementarity and potential for new discoveries that comes
with the opening of the gravitational-wave window onto the universe.

GW150914 is just the first of many gravitational-wave signals that we expect to
observe over the next several years. Indeed, roughly 3 months after the detection of
GW150914, a second event, GW151226, was observed by the two LIGO detectors
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(Abbott et al. 2016d). This event also involved the inspiral and merger of a pair of
stellar mass black holes, with initial component masses 14.2+8.3

−3.7 M� and 7.5+2.3
−2.3 M�,

and a final black hole mass of 20.8+6.1
−1.7 M�. The source was at a distance of roughly

1.4 billion light-years from Earth, comparable to that of GW150914. Advanced LIGO
will continue interleaving observation runs and commissioning activities to reach
design sensivity around 2020 (Aasi et al. 2015), which will allow detections of signals
like GW150914 and GW151226 with more than three times the signal-to-noise ratio
than was observed for GW150914 (which was 24). In addition, the Advanced Virgo
detector (Acernese et al. 2015) (a 3 km-long laser interferometer in Cascina, Italy) and
KAGRA (Aso et al. 2013) (a 3 km-long cryogenic laser interferometer in Kamioka
mine in Japan) should both be taking data by the end of 2016. There are also plans for
a third LIGO detector in India (Iyer et al. 2011). A global network of detectors such as
this will allow for much improved position reconstruction and parameter estimation
of the sources (Abbott et al. 2016i).

1.1 Motivation and context

GW150914 and GW151226 were single events—binary black hole mergers that were
observed with both template-based searches for compact binary inspirals and searches
for generic gravitational-wave transients in the two LIGO detectors (Abbott et al.
2016e, d). The network matched-filter signal-to-noise ratio (Owen and Sathyaprakash
1999) for these two events, using relativitistic waveform models for binary black holes,
was 24 and 13, respectively. The probability that these detections were due to noise
alone is <2 × 10−7, corresponding to a significance greater than 5σ—the standard
for so-called “gold-plated” detections. But for every loud event like GW150914 or
GW151226, we expect many more quiet events that are too distant to be individually
detected, since the associated signal-to-noise ratios are too low.

The total rate of merger events from the population of stellar-mass binary black holes
of which GW150914 and GW151226 are members can be estimated1 by multiplying
the local rate estimate of 9–240 Gpc−3 year−1 (Abbott et al. 2016g) by the comoving
volume out to some large redshift, e.g., z ∼ 6. This yields a total rate of binary
black hole mergers between ∼1 per minute and a few per hour. Since the duration
of each merger signal in the sensitive band of a LIGO-like detector is of order a few
tenths of a second to ∼1 s, the duty cycle (the fraction of time that the signal is “on”
in the data) is �1. This means that the combined signal from such a population of
binary black holes will be “popcorn-like”, with the majority of the individual signals
being too weak to individually detect. Since the arrival times of the merger signals
are randomly-distributed, the combined signal from the population of binary black
holes is itself random—it is an example of a stochastic background of gravitational
radiation.

More generally, a stochastic background of gravitational radiation is any random
gravitational-wave signal produced by a large number of weak, independent, and

1 The coalescence rate is expected to vary significantly with redshift z, so this simple calculation, which
assumes a constant coalescence rate, provides only a rough estimate.
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unresolved sources. The background doesn’t have to be popcorn-like, like the expected
signal from the population of binary black holes which gave rise to GW150914 and
GW151226. It can be composed of individual deterministic signals that overlap in
time (or in frequency) producing a “confusion” noise analogous to conversations at
a cocktail party. Such a confusion noise is produced by the galactic population of
compact white dwarf binaries. (For this case, the stochastic signal is so strong that it
becomes a foreground, acting as an additional source of noise when trying to detect
other weak gravitational-wave signals in the same frequency band). Alternatively, the
signal can be intrinsically random, associated with stochastic processes in the early
Universe or with unmodeled sources, like supernovae, which produce signals that are
not described by deterministic waveforms.

The focus of this review article is on data analysis strategies (i.e., detection methods)
that can be used to detect and ultimately characterize a stochastic gravitational-wave
background. To introduce this topic and to set the stage for the more detailed discus-
sions to follow in later sections, we ask (and start to answer) the following questions:

1.1.1 Why do we care about detecting a stochastic background?

Detecting a stochastic background of gravitational radiation can provide information
about astrophysical source populations and processes in the very early Universe, which
are inaccessible by any other means. For example, electromagnetic radiation cannot
provide a picture of the Universe any earlier than the time of last of scattering (roughly
400,000 years after the Big Bang). Gravitational waves, on the other hand, can give
us information all the way back to the onset of inflation, a mere ∼10−32 s after the
Big Bang. (See Maggiore 2000 for a detailed discussion of both cosmological and
astrophysical sources of a stochastic gravitational-wave background).

1.1.2 Why is detection challenging?

Stochastic signals are effectively another source of noise in a single detector. So the
fundamental problem is how to distinguish between gravitational-wave “noise” and
instrumental noise. It turns out that there are several ways to do this, as we will discuss
in the later sections of this article.

1.1.3 What detection methods can one use?

Cross-correlation methods can be used whenever one has multiple detectors that
respond to the common gravitational-wave background. For single detector analyses
e.g., for the Laser Space Interferometer Antenna (LISA), one needs to take advan-
tage of null combinations of the data (which act as instrument noise monitors) or use
instrument noise modeling to try to distinguish the gravitational-wave signal from
instrumental noise. Over the past 15 years or so, the number of detection methods for
stochastic backgrounds has increased considerably. So now, in addition to the standard
cross-correlation search for a “vanilla” (Gaussian-stationary, unpolarized, isotropic)
background, one can search for non-Gaussian backgrounds, anisotropic backgrounds,
circularly-polarized backgrounds, and backgrounds with polarization components pre-
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Table 1 Overview of analysis methods for stochastic gravitational-wave backgrounds

Early analyses (before 2000) More recent analyses

Used frequentist statistics Use both frequentist and Bayesian inference

Used cross-correlation methods Use cross-correlation methods and stochastic templates;
use null channels or knowledge about instrumental
noise when cross-correlation is not available

Assumed Gaussian noise Have allowed non-Gaussian noise

Assumed stationary, Gaussian,
unpolarized, and isotropic
gravitational-wave backgrounds

Have allowed non-Gaussian, polarized, and anisotropic
gravitational-wave backgrounds

Were done primarily in the context of
ground-based detectors (e.g.,
resonant bars and LIGO-like
interferometers) where the
small-antenna (i.e.,
long-wavelength) approximation
was valid

Have been done in the context of space-based detectors
(e.g., spacecraft tracking, LISA) and pulsar timing
arrays for which the small-antenna approximation is
not valid

The number and flexibility of the methods have increased considerably since the year 2000

dicted by alternative (non-general-relativity) theories of gravity. These searches are
discussed in Sects. 7 and 8.

Table 1 summarizes the basic properties of various analysis methods that have been
used (or proposed) for stochastic background searches. Despite apparent differences,
all analyses use a likelihood function, e.g., for defining frequentist statistics or for
calculating posterior distributions for Bayesian inference (as will be described in more
detail in Sect. 3), and take advantage of cross-correlations if multiple detectors are
available (as will be described in more detail in Sect. 4).

1.1.4 What are the prospects for detection?

The prospects for detection depend on the source of the background (i.e., astrophysical
or cosmological) and the type of detector being used. For example, a space-based inter-
ferometer like LISA is guaranteed to detect the gravitational-wave confusion noise
produced by the galactic population of compact white dwarf binaries. Pulsar timing
arrays, on the other hand, should be able to detect the confusion noise from supermas-
sive black hole binaries (SMBHBs) at the centers of merging galaxies, provided the
binaries are not affected by their environments in a way that severely diminishes the
strength of the background (Shannon et al. 2015). Detection sensitivity curves are a
very convenient way of comparing theoretical predictions of source strengths to the
sensivity levels of the various detectors (as we will discuss in Sect. 10).

1.2 Searches across the gravitational-wave spectrum

The frequency band of ground-based laser interferometers like LIGO, Virgo, and
KAGRA is between ∼10 Hz and a few kHz (gravity gradient and seismic noise are the

123



Living Rev Relativ  (2017) 20:2 Page 9 of 223  2 

Fig. 1 Gravitational-wave spectrum, together with potential sources and relevant detectors. Image credit
Institute of Gravitational Research/University of Glasgow

limiting2 noise sources below 10 Hz, and photon shot noise above a couple of kHz).
Outside this band there are several other experiments—both currently operating and
planned—that should also be able to detect gravitational waves. An illustration of the
gravitational-wave spectrum, together with potential sources and relevant detectors,
is shown in Fig. 1. We highlight a few of these experiments below.

1.2.1 Cosmic microwave background experiments

At the extreme low-frequency end of the spectrum, corresponding to gravitational-
wave periods of order the age of the Universe, the Planck satellite (ESA 2016c)
and other cosmic microwave background (CMB) experiments, e.g., BICEP and Keck
(BICEP/Keck 2016) are looking for evidence of relic gravitational waves from the
Big Bang in the B-mode component of CMB polarization maps (Kamionkowski et al.
1997; Hu and White 1997; Ade et al. 2015a). In 2014, BICEP2 announced the detec-
tion of relic gravitational waves (Ade et al. 2014), but it was later shown that the
observed B-mode signal was due to contamination by intervening dust in the galaxy
(Flauger et al. 2014; Mortonson and Seljak 2014). So at present, these experiments
have been able to only constrain (i.e., set upper limits on) the amount of gravitational

2 Actually, even if the gravity-gradient and seismic noise were zero, one couldn’t go below ∼1 Hz with the
current generation of ground-based laser interferometers, since the suspended mirrors (i.e., the test masses)
are no longer freely floating when you go below their resonant frequencies: ∼1 Hz.
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waves in the very early Universe (Ade et al. 2015a). But these constraints severely
limit the possibility of detecting the relic gravitational-wave background with any of
the higher-frequency detection methods, unless its spectrum increases with frequency.
[Note that standard models of inflation predict a relic background whose energy den-
sity is almost constant in frequency, leading to a strain spectral density that decreases
with frequency.] Needless to say, the detection of a primordial gravitational-wave
background is a “holy grail” of gravitational-wave astronomy.

1.2.2 Pulsar timing arrays

At frequencies between ∼10−9 Hz and 10−7 Hz, corresponding to gravitational-wave
periods of order decades to years, pulsar timing arrays (PTAs) can be used to search
for gravitational waves. This is done by carefully monitoring the arrival times of radio
pulses from an array of galactic millisecond pulsars, looking for correlated modula-
tions in the arrival times induced by a passing gravitational wave (Detweiler 1979;
Hellings and Downs 1983). The most-likely gravitational-wave source for PTAs is a
gravitational-wave background formed from the incoherent superposition of signals
produced by the inspirals and mergers of SMBHBs in the centers of distant galax-
ies (Jaffe and Backer 2003). These searches continue to improve their sensitivity by
upgrading instrument back-ends and discovering more millisecond pulsars that can be
added to the array. These improvements have led to more constraining upper limits on
the amplitude of the gravitational-wave background (Shannon et al. 2015; Arzouma-
nian et al. 2016), with a detection being likely before the end of this decade (Siemens
et al. 2013; Taylor et al. 2016b).

1.2.3 Space-based interferometers

At frequencies between ∼10−4 Hz and 10−1 Hz, corresponding to gravitational-wave
periods of order hours to minutes, proposed space-based interferometers like LISA
can search for gravitational waves from a wide variety of sources (Gair et al. 2013).
These include: (i) inspirals and mergers of SMBHBs with masses of order 106 M�,
(ii) captures of compact stellar-mass objects around supermassive black holes, and
(iii) the stochastic confusion noise produced by compact white-dwarf binaries in our
galaxy. In fact, hundreds of binary black holes that are individually resolvable by LISA
will coalesce in the aLIGO band within a 10 year period, opening up the possibility
of doing multi-band gravitational-wave astronomy (Sesana 2016).

The basic space-based interferometer configuration consists of three satellites (each
housing two lasers, two telescopes, and two test masses) that fly in an equilateral-
triangle formation, with arm lengths of order several million km. A variant of the
original LISA design was selected in February 2017 by the European Space Agency
(ESA) as the 3rd large mission in its Cosmic Vision Program (ESA 2016a). The earliest
launch date for LISA would be around 2030. A technology-demonstration mission,
called LISA Pathfinder (ESA 2016b), was launched in December 2015, meeting or
exceeding all of the requirements for an important subset of the LISA technologies
(Armano et al. 2016).

123



Living Rev Relativ  (2017) 20:2 Page 11 of 223  2 

1.2.4 Other detectors

Finally, in the frequency band between ∼0.1 Hz and 10 Hz, there are proposals for
both Earth-based detectors (Harms et al. 2013) and also second-generation space-based
interferometers—the Big-Bang Observer (BBO) (Phinney et al. 2004) and the DECI-
hertz interferometer Gravitational-wave Observatory (DECIGO) (Ando et al. 2010).
Such detectors would be sensitive to gravitational waves with periods between ∼10 s
and 0.1 s. The primary sources in this band are intermediate-mass (103–104 M�) binary
black holes, galactic and extra-galactic neutron star binaries, and a cosmologically-
generated stochastic background.

1.3 Goal of this article

Starting with the pioneering work of Grishchuk (1976), Detweiler (1979), Hellings
and Downs (1983), and Michelson (1987), detection methods for gravitational-wave
backgrounds have increased in scope and sophistication over the years, with several
new developments occuring rather recently. As mentioned above, we have search
methods now that target different properties of the background (e.g., isotropic or
anisotropic, Gaussian or non-Gaussian, polarized or unpolarized, etc.). These searches
are necessarily implemented differently for different detectors, since, for example,
ground-based detectors like LIGO and Virgo operate in the small-antenna (or long-
wavelength) limit, while pulsar timing arrays operate in the short-wavelength limit.
Moreover, each of these searches can be formulated in terms of either Bayesian or fre-
quentist statistics. The goal of this review article is to discuss these different detection
methods from a perspective that attempts to unify the different treatments, emphasizing
the similarities that exist when viewed from this broader perspective.

1.4 Unification

The extensive literature describing stochastic background analyses leaves the reader
with the impression that highly specialized techniques are needed for ground-based,
space-based, and pulsar timing observations. Moreover, reviews of gravitational-wave
data analysis leave the impression that the analysis of stochastic signals is somehow
fundamentally different from that of any other signal type. Both of these impressions
are misleading. The apparent differences are due to differences in terminology and
perspective. By adopting a common analysis framework and notation, we are able to
present a unified treatment of gravitational-wave data analysis across source classes
and observation techniques.

We will provide a unified treatment of the various methods at the level of detector
response functions, detection sensitivity curves, and, more generally, at the level of
the likelihood function, since the choice of signal and noise models and prior proba-
bility distributions are actually what define the search. The same photon time-of-flight
calculation underpins the detector response functions, and the choice of prior for the
gravitational-wave template defines the search. A matched-filter search for binary
mergers and a cross-correlation search for stochastic signals are both derived from
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the same likelihood function, the difference being that the former uses a parameter-
ized, deterministic template, while the latter uses a stochastic template. Hopefully, by
the end of this article, the reader will see that the plethora of searches for different
types of backgrounds, using different types of detectors, and using different statistical
inference frameworks are not all that different after all.

1.5 Outline

The rest of the article is organized as follows: We begin in Sect. 2 by specifying the
quantities that one uses to characterize a stochastic gravitational-wave background. In
Sect. 3, we give an overview of statistical inference by comparing and contrasting how
the Bayesian and frequentist formalisms address issues related to hypothesis testing,
model selection, setting upper limits, parameter estimation, etc. We then illustrate
these concepts in the context of a very simple toy problem. In Sect. 4, we introduce
the key concept of correlation, which forms the basis for the majority of detection
methods used for gravitational-wave backgrounds, and show how these techniques
arise naturally from the standard template-based approach. We derive the frequentist
cross-correlation statistic for a simple example. We also describe how a null channel
is useful when correlation methods are not possible.

In Sect. 5, we go into more detail regarding the different types of detectors. In
particular, we calculate single-detector response functions and the associated antenna
patterns for ground-based and space-based laser interferometers, spacecraft Doppler
tracking, and pulsar timing measurements. (We do not discuss resonant bar detec-
tors or CMB-based detection methods in this review article. However, current bounds
from CMB observations will be reviewed in Sect. 10). By correlating the outputs of
two such detectors, we obtain expressions for the correlation coefficient (or overlap
reduction function) for a Gaussian-stationary, unpolarized, isotropic background as a
function of the separation and orientation of the two detectors. In Sect. 6, we discuss
optimal filtering. Section 7 extends the analysis of the previous sections to anisotropic
backgrounds. Here we describe several different analyses that produce maps of the
gravitational-wave sky: (i) a frequentist gravitational-wave radiometer search, which
is optimal for point sources, (ii) searches that decompose the gravitational-wave power
on the sky in terms of spherical harmonics, and (iii) a phase-coherent search that can
map both the amplitude and phase of a gravitational-wave background at each loca-
tion on the sky. In Sect. 8, we discuss searches for: (i) non-Gaussian backgrounds,
(ii) circularly-polarized backgrounds, and (iii) backgrounds having non-standard
(i.e., non-general-relativity) polarization modes. We also briefly describe extensions
of the cross-correlation search method to look for non-stochastic-background-type
signals—in particular, long-duration unmodelled transients and continuous (nearly-
monochromatic) gravitational-wave signals from sources like Sco X-1.

In Sect. 9, we discuss real-world complications introduced by irregular sampling,
non-stationary and non-Gaussian detector noise, and correlated environmental noise
(e.g., Schumann resonances). We also describe what one can do if one has only a
single detector, as is the case for LISA. Finally, we conclude in Sect. 10 by discussing
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prospects for detection, including detection sensitivity curves and current observa-
tional results.

We also include several appendices: In Appendix A we discuss different polariza-
tion basis tensors, and a Stokes’ parameter characterization of gravitational-waves.
In Appendices B and C, we summarize some standard statistical results for a Gaus-
sian random variable, and then discuss how to define and test for non-stationarity
and non-Gaussianity. In Appendix D we describe the relationship between continuous
functions of time and frequency and their discretely-sampled counterparts. Appen-
dices E, F, G are adapted from Gair et al. (2015), with details regarding spin-weighted
scalar, vector, and tensor spherical harmonics. Finally, Appendix H gives a “Rosetta
stone” for translating back and forth between different response function conventions
for gravitational-wave backgrounds.

2 Characterizing a stochastic gravitational-wave background

When you can measure what you are speaking about, and express it in numbers,
you know something about it, when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind; it may be the beginning of
knowledge, but you have scarely, in your thoughts, advanced to the stage of
science. William Thomson, Baron Kelvin of Largs

In this section, we define several key quantities (e.g., fractional energy density spec-
trum, characteristic strain, distribution of gravitational-wave power on the sky), which
are used to characterize a stochastic background of gravitational radiation. The defi-
nitions are appropriate for both isotropic and anisotropic backgrounds. Our approach
is similar to that found in Allen and Romano (1999) for isotropic backgrounds and for
the standard polarization basis. For the plane-wave decomposition in terms of tensor
spherical harmonics, we follow Gair et al. (2014, 2015). Detailed derivations can be
found in those papers.

2.1 When is a gravitational-wave signal stochastic?

The standard “textbook” definition of a stochastic background of gravitational radi-
ation is a random gravitational-wave signal produced by a large number of weak,
independent, and unresolved sources. To say that it is random means that it can be
characterized only statistically, in terms of expectation values of the field variables
or, equivalently, in terms of the Fourier components of a plane-wave expansion of the
metric perturbations (Sect. 2.3.1). If the number of independent sources is sufficiently
large, the background will be Gaussian by the central limit theorem. Knowledge of
the first two moments of the distribution will then suffice to determine all higher-order
moments (Appendix B). For non-Gaussian backgrounds, third and/or higher-order
moments will also be needed.

Although there is general agreement with the above definition, there has been some
confusion and disagreement in the literature (Rosado 2011; Regimbau and Mandic
2008; Regimbau and Hughes 2009; Regimbau 2011) regarding some of the defining
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properties of a stochastic background. This is because terms like weak and unresolved
depend on details of the observation (e.g., the sensitivity of the detector, the total
observation time, etc.), which are not intrinsic properties of the background. So the
answer to the question “When is a gravitational-wave signal stochastic?” is not as
simple or obvious as it might initially seem.

In Cornish and Romano (2015), we addressed this question in the context of searches
for gravitational-wave backgrounds produced by a population of astrophysical sources.
We found that it is best to give operational definitions for these properties, framed in
the context of Bayesian inference. We will discuss Bayesian inference in more detail
in Sect. 3, but for now the most important thing to know is that by using Bayesian
inference we can calculate the probabilities of different signal-plus-noise models,
given the observed data. The signal-plus-noise model with the largest probability is
the preferred model, i.e., the one that is most consistent with the data. This is the
essence of Bayesian model selection.

So we define a signal to be stochastic if a Bayesian model selection calculation
prefers a stochastic signal model over any deterministic signal model. We also define
a signal to be resolvable if it can be decomposed into separate (e.g., non-overlapping in
either time or frequency) and individually detectable signals, again in a Bayesian model
selection sense.3 If the background is associated with the superposition of signals
from many astrophysical sources—as we expect for the population of binary black
holes which gave rise to GW150914 and GW151226—then we should subtract out
any bright deterministic signals that standout above the lower-amplitude background,
leaving behind a residual non-deterministic signal whose statistical properties we
would like to determine. In the context of Bayesian inference, this ‘subtraction’ is done
by allowing hybrid signal models, which consist of both parametrized deterministic
signals and non-deterministic backgrounds. By using such hybrid models we can
investigate the statistical properties of the residual background without the influence
of the resolvable signals.

We will return to these ideas in Sect. 8.1, when we discuss searches for non-Gaussian
backgrounds in more detail.

2.2 Plane-wave expansions

Gravitational waves are time-varying perturbations to the spacetime metric, which
propagate at the speed of light. In transverse-traceless coordinates, the metric pertur-
bations hab(t, �x) corresponding to a gravitational-wave background can be written
as a superposition of sinusoidal plane waves having frequency f , and coming from
different directions n̂ on the sky:4

hab(t, �x) =
∫ ∞

−∞
d f

∫
d2Ωn̂ hab( f, n̂)ei2π f (t+n̂·�x/c). (2.1)

3 Signals may be separable even when overlapping in time and frequency if the detector has good sky reso-
lution, or if the signals have additional complexities due to effects such as orbital evolution and precession.
4 The gravitational-wave propagation direction, which we will denote by k̂, is given by k̂ = −n̂.
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For a stochastic background, the metric perturbations hab(t, �x) and hence the Fourier
coefficients hab( f, n̂) are random variables, whose probability distributions define the
statistical properties of the background.

2.2.1 Polarization basis

Typically, one expands the Fourier coefficients hab( f, n̂) in terms of the standard +
and × polarization tensors:

hab( f, n̂) = h+( f, n̂)e+
ab(n̂) + h×( f, n̂)e×

ab(n̂), (2.2)

where
e+
ab(n̂) = l̂a l̂b − m̂am̂b,

e×
ab(n̂) = l̂am̂b + m̂al̂b,

(2.3)

and l̂, m̂ are the standard angular unit vectors tangent to the sphere:

n̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ ≡ r̂ ,

l̂ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ ≡ θ̂ ,

m̂ = − sin φ x̂ + cos φ ŷ ≡ φ̂.

(2.4)

(See Fig. 2). Searches for stochastic backgrounds having alternative polarization
modes, as predicted by modified (metric) theories of gravity, will be discussed in
Sect. 8.3.

2.2.2 Tensor spherical harmonic basis

It is also possible to expand the Fourier coefficients hab( f, n̂) in terms of the gradient
and curl tensor spherical harmonics (Gair et al. 2014):

hab( f, n̂) =
∞∑
l=2

l∑
m=−l

[
aG(lm)( f )Y

G
(lm)ab(n̂) + aC(lm)( f )Y

C
(lm)ab(n̂)

]
, (2.5)

where

YG
(lm)ab = (2)Nl

(
Y(lm);ab − 1

2
gabY(lm);cc

)
,

YC
(lm)ab =

(2)Nl

2

(
Y(lm);acεcb + Y(lm);bcεca

)
.

(2.6)

In the above expressions, a semi-colon denotes covariant differentiation, gab is the met-
ric tensor on the sphere, and εab is the Levi-Civita anti-symmetric tensor. In standard
spherical coordinates (θ, φ),

gab =
(

1 0
0 sin2 θ

)
, εab = √

g

(
0 1

−1 0

)
,

√
g = sin θ. (2.7)
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Fig. 2 Our convention for the unit vectors {n̂, l̂, m̂} in terms of which the polarization basis tensors e+ab(n̂)

and e×ab(n̂) are defined. The unit vector n̂ points in the direction of the gravitational-wave source (the

gravitational wave propagates in direction k̂ = −n̂); l̂ = θ̂ and m̂ = φ̂ are two unit vectors that lie in the
plane perpendicular to n̂. Another choice for the polarization basis tensors, defined in terms of the ‘rotated’
unit vectors p̂ and q̂, is given in Appendix A

The normalization constant

(2)Nl =
√

2(l − 2)!
(l + 2)! , (2.8)

was chosen so that {YG
(lm)ab(n̂),YC

(lm)ab(n̂)} is a set of orthonormal functions (with
respect to the multipole indices l and m) on the 2-sphere. Appendix G contains addi-
tional details regarding gradient and curl spherical harmonics.

Note that we have adopted the notational convention used in the CMB literature,
e.g., Kamionkowski et al. (1997), by putting parentheses around the lm indices to
distinguish them from the spatial tensor indices a, b, etc. In addition, summations
over l and m start at l = 2, and not l = 0 as would be the case for the expansion
of a scalar field on the 2-sphere in terms of ordinary (i.e., undifferentiated) spherical
harmonics. In what follows, we will use

∑
(lm) as shorthand notation for

∑∞
l=2

∑l
m=−l

unless indicated otherwise.
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2.2.3 Relating the two expansions

The gradient and curl spherical harmonics have been used extensively in the CMB
community for decomposing CMB-polarization maps in terms of E-modes and B-
modes (corresponding to the gradient and curl spherical harmonics). The most relevant
property of the gradient and curl spherical harmonics is that they transform like com-
binations of spin-weight ±2 fields with respect to rotations of an orthonormal basis at
points on the 2-sphere. Explicitly,

YG
(lm)ab(n̂) ± iYC

(lm)ab(n̂) = 1√
2

(
e+
ab(n̂) ± ie×

ab(n̂)
)

∓2Ylm(n̂), (2.9)

where ±2Ylm(n̂) are the spin-weight ±2 spherical harmonics (Appendix E). Using this
relationship between the tensor spherical harmonic and (+,×) polarization bases, one
can show (Gair et al. 2014):

h+( f, n̂) ± ih×( f, n̂) = 1√
2

∑
(lm)

(
aG(lm)( f ) ± iaC(lm)( f )

)
±2Ylm(n̂), (2.10)

or, equivalently,

aG(lm)( f ) ± iaC(lm)( f ) = √
2
∫

d2Ωn̂
(
h+( f, n̂) ± ih×( f, n̂)

)
±2Y

∗
lm(n̂). (2.11)

These two expressions allow us to go back and forth between the expansion coefficients
for the two different bases.

2.3 Statistical properties

The statistical properties of a stochastic gravitational-wave background are specified
in terms of the probability distribution or moments (Appendix B) of the metric pertur-
bations:

〈hab(t, �x)〉, 〈hab(t, �x)hcd(t ′, �x ′)〉, 〈hab(t, �x)hcd(t ′, �x ′)hef (t ′′, �x ′′)〉, . . .
(2.12)

or similar expressions in terms of the Fourier coefficients hA( f, n̂), where A ≡ {+,×}
labels the standard polarization modes of general relativity, or aP

(lm)( f ), where P ≡
{G,C} and (lm) label the multipole components for the gradient and curl tensor
spherical harmonic decomposition. Without loss of generality we can assume that the
background has zero mean:

〈hab(t, �x)〉 = 0 ⇔ 〈hA( f, n̂)〉 = 0 ⇔ 〈aP
(lm)( f )〉 = 0. (2.13)

We will also assume that the background is stationary (Appendix C). This means that
all statistical quantities constructed from the metric perturbations at times t , t ′, etc.,
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depend only on the difference between times, e.g., t − t ′, and not on the choice of time
origin. We expect this to be true given that the age of the universe is roughly 9 orders
of magnitude larger than realistic observation times, ∼10 year. It is thus unlikely that
a stochastic gravitational-wave background has statistical properties that vary over the
time scale of the observation.

For Gaussian backgrounds we need only consider quadratic expectation values,
since all higher-order moments are either zero or can be written in terms of the quadratic
moments (Appendix B). For non-Gaussian backgrounds (Sect. 8.1), third and/or higher
order moments will also be needed.

Beyond our assumption of stationarity, the specific form of the expectation values
will depend, in general, on the source of the background. For example, a cosmo-
logical background produced by the superposition of a large number of independent
gravitational-wave signals from the early Universe is expected to be Gaussian (via
the central limit theorem), as well as isotropically-distributed on the sky. Contrast
this with the superposition of gravitational waves produced by unresolved Galactic
white-dwarf binaries radiating in the LISA band (10−4 Hz to 10−1 Hz). Although
this confusion-limited astrophysical foreground is also expected to be Gaussian and
stationary, it will have an anisotropic distribution, following the spatial distribution of
the Milky Way. The anistropy will be encoded as a modulation in the LISA output, due
to the changing antenna pattern of the LISA constellation in its yearly orbit around the
Sun. Hence, different sources will give rise to different statistical distributions, which
we will need to consider when formulating our data analysis strategies.

2.3.1 Quadratic expectation values for Gaussian-stationary backgrounds

The simplest type of stochastic background will be Gaussian-stationary, unpolarized,
and spatially homogenous and isotropic. The quadratic expectation values for such a
background are then

〈
hA( f, n̂)h∗

A′( f ′, n̂′)
〉 = 1

16π
Sh( f )δ( f − f ′)δAA′δ2(n̂, n̂′), (2.14)

or, equivalently,

〈
aP
(lm)( f )a

P ′∗
(l ′m′)( f

′)
〉
= 1

8π
Sh( f )δ( f − f ′)δPP ′

δll ′δmm′ . (2.15)

The numerical factors out front have been included so that Sh( f ) has the interpretation
of being the one-sided gravitational-wave strain power spectral density function (units
of strain2/Hz), summed over both polarizations and integrated over the sky. The factor
of δ( f − f ′) arises due to our assumption of stationarity; the factor of δAA′ (or δPP ′

)
is due to our assumption that the polarization modes are statistically independent of
one another and have no preferred component; and the factor of δ2(n̂, n̂′) (or δll ′δmm′ )
is due to our assumption of spatial homogeneity and isotropy.

Anisotropic, unpolarized, Gaussian-stationary backgrounds, whose radiation from
different directions on the sky are uncorrelated with one another, are also simply
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represented in terms of the quadratic expectation values:

〈
hA( f, n̂)h∗

A′( f ′, n̂′)
〉 = 1

4
P( f, n̂)δ( f − f ′)δAA′δ2(n̂, n̂′). (2.16)

The function P( f, n̂) describes the spatial distribution of gravitational-wave power on
the sky at frequency f . It is related to Sh( f ) via

Sh( f ) =
∫

d2Ωn̂ P( f, n̂). (2.17)

The corresponding expectation values in terms of the tensor spherical harmonic expan-
sion coefficients aP

(lm)( f ) are more complicated, since an individual mode in this basis
corresponds to a gravitational-wave background whose radiation is correlated between
different angular directions on the sky. (See Gair et al. (2014) for a discussion of
backgrounds that have such correlations). We will discuss searches for anisotropic
backgrounds in more detail in Sect. 7.

More general Gaussian-stationary backgrounds (e.g., polarized, statistically
isotropic but with correlated radiation, etc.) can be represented by appropriately chang-
ing the right-hand-side of the quadratic expectation values. However, for the remainder
of this section and for most of the article, we will consider “vanilla” isotropic back-
grounds, whose quadratic expectation values (2.14) or (2.15) are completely specified
by the power spectral density Sh( f ).

2.4 Fractional energy density spectrum

The gravitational-wave strain power spectral density Sh( f ) is simply related to the
fractional energy density spectrum in gravitational waves Ωgw( f ), see e.g., Allen and
Romano (1999):

Sh( f ) = 3H2
0

2π2

Ωgw( f )

f 3 , (2.18)

where

Ωgw( f ) = 1

ρc

dρgw

d ln f
. (2.19)

Here dρgw is the energy density in gravitational waves contained in the frequency
interval f to f + d f , and ρc ≡ 3c2H2

0 /8πG is the critical energy density need to
close the universe. The total energy density in gravitational waves normalized by the
critical energy density is thus

Ωgw =
∫ fmax

f =0
d(ln f ) Ωgw( f ), (2.20)

where fmax is some maximum cutoff frequency (e.g., associated with the Planck
scale), beyond which our current understanding of gravity breaks down. Ωgw can be
compared, for example, to the total fractional energy density Ωb, ΩΛ, in baryons,
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dark energy, etc. Since ρc involves the Hubble constant, one sometimes writes
H0 = h0 100 km s−1 Mpc−1, and then absorbs a factor of h2

0 in Ωgw( f ). The quan-
tity h2

0 Ωgw( f ) is then independent of the value of the Hubble constant. However,
since recent measurements by Planck (Ade et al. 2015b; ESA 2016c) have shown that
h0 = 0.68 to a high degree of precision, we have assumed this value in this review
article and quote limits directly on Ωgw( f ) (Sect. 10). The specific functional form
for Ωgw( f ) depends on the source of the background, as we shall see explicitly below.

2.5 Characteristic strain

Although the fractional energy density spectrum Ωgw( f ) completely characterizes
the statistical properties of a Gaussian-stationary isotropic background, it is often
convenient to work with the (dimensionless) characteristic strain amplitude hc( f )
defined by

hc( f ) ≡ √
f Sh( f ). (2.21)

It is related to Ωgw( f ) via:

Ωgw( f ) = 2π2

3H2
0

f 2h2
c( f ). (2.22)

Several theoretical models of gravitational-wave backgrounds predict characteristic
strains that have a power-law form

hc( f ) = Aα

(
f

fref

)α

, (2.23)

where α is spectral index and fref is typically set to 1/year. (There is no sum over
α in the above expression, and no sum over β in the following expression). Using
Eqs. (2.22) and (2.23) it follows that

Ωgw( f ) = Ωβ

(
f

fref

)β

, (2.24)

where

Ωβ = 2π2

3H2
0

f 2
ref A

2
α, β = 2α + 2. (2.25)

For inflationary backgrounds relevant for cosmology, it is often assumed that
Ωgw( f ) = const, for which β = 0 and α = −1. For a background arising from binary
coalescence, Ωgw( f ) ∝ f 2/3, for which β = 2/3 and α = −2/3. This power-law
dependence is applicable to super-massive black-hole binary (SMBHB) coalescences
targeted by pulsar timing observations as well as to compact binary coalescences
relevant for ground-based and space-based detectors.
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3 Statistical inference

If your experiment needs statistics, you ought to have done a better experiment.
Ernest Rutherford

In this section, we review statistical inference from both the Bayesian and frequentist
perspectives. Our discussion of frequentist and Bayesian upper limits, and the example
given in Sect. 3.5 comparing Bayesian and frequentist analyses is modelled in part
after Röver et al. (2011). Readers interested in more details about Bayesian statistical
inference should see, e.g., Howson and Urbach (1991), Howson and Urbach (2006),
Jaynes (2003), Gregory (2005) and Sivia and Skilling (2006). For a description of
frequentist statistics, we recommend Helstrom (1968), Wainstein and Zubakov (1971)
and Feldman and Cousins (1998).

3.1 Introduction to Bayesian and frequentist inference

Statistical inference can be used to answer questions such as “Is a gravitational-wave
signal present in the data?” and, if so, “What are the physical characteristics of the
source?” These questions are addressed using the techniques of classical (also known
as frequentist) inference and Bayesian inference. Many of the early theoretical studies
and observational papers in gravitational-wave astronomy followed the frequentist
approach, but the use of Bayesian inference is growing in popularity. Moreover, many
contemporary analyses cannot be classified as purely frequentist or Bayesian.

The textbook definition states that the difference between the two approaches comes
down to their different interpretations of probability: for frequentists, probabilities are
fundamentally related to frequencies of events, while for Bayesians, probabilities
are fundamentally related to our own knowledge about an event. For example, when
inferring the mass of a star, the frequentist interpretation is that the star has a true, fixed
(albeit unknown) mass, so it is meaningless to talk about a probability distribution for
it. Rather, the uncertainty is in the data, and the relevant probability is that of observing
the data d, given that the star has massm. This probability distribution is the likelihood,
denoted p(d|m). In contrast, in the Bayesian interpretation the data are known (after
all, it is what is measured!), and the mass of the star is what we are uncertain about,5

so the relevant probability is that the mass has a certain value, given the data. This
probability distribution is the posterior, p(m|d). The likelihood and posterior are
related via Bayes’ theorem:

p(m|d) = p(d|m)p(m)

p(d)
, (3.1)

5 In some treatments, the Bayesian interpretation is equated to philosophical schools such as Berkeley’s
empiricist idealism, or subjectivism, which holds that things only exist to the extent that they are perceived,
while the frequentist interpretation is equated to Platonic realism, or metaphysical objectivism, holding that
things exist objectively and independently of observation. These equivalences are false. A physical object
can have a definite, Platonic existence, and Bayesians can still assign probabilities to its attributes since our
ability to measure is limited by imperfect equipment.
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where p(m) is the prior probability distribution for m, and the normalization constant,

p(d) =
∫

p(d|m)p(m) dm, (3.2)

is the marginalized likelihood, or evidence. For uniform (flat) priors the frequentist
confidence intervals for the parameters will coincide with the Bayesian credible inter-
vals, but the interpretation remains quiet distinct.

The choice of prior probability distributions is a source of much consternation and
debate, and is often cited as a weakness of the Bayesian approach. But the choice of
probability distribution for the likelihood (which is also important for the frequentist
approach) is often no less fraught. The prior quantifies what we know about the range
and distribution of the parameters in our model, while the likelihood quantifies what
we know about our measurement apparatus, and, in particular, the nature of the mea-
surement noise. The choice of prior is especially problematic in a new field where there
is little to guide the choice. For example, electromagnetic observations and population
synthesis models give some guidance about black hole masses, but the mass range and
distribution is currently not well constrained. The choice of likelihood can also be
challenging when the measurement noise deviates from the stationary, Gaussian ideal.
More details related to the choice of likelihood and choice of prior will be given in
Sect. 3.6.

In addition to parameter estimation, statistical inference is used to select between
competing models, or hypotheses, such as, “is there a gravitational-wave signal in
the data or not?” Thanks to GW150914 and GW151226, we know that gravitational-
wave signals are already present in existing data sets, but most are at levels where
we are unable to distinguish them from noise processes. For detection we demand
that a model for the data that includes a gravitational-wave signal be favored over a
model having no gravitational-wave signal. In Bayesian inference a detection might
be announced when the odds ratio between models with and without gravitational-
wave signals gets sufficiently large, while in frequentist inference a detection might
be announced when the p-value for some test statistic is less than some prescribed
threshold. These different approaches to deciding whether or not to claim a detection
(e.g., Bayesian model selection or frequentist hypothesis testing), as well as differences
in regard to parameter estimation, are described in the following subsections. Table 2
provides an overview of the key similarities and differences between frequentist and
Bayesian inference, to be described in detail below.

3.2 Frequentist statistics

As mentioned above, classical or frequentist statistics is a branch of statistical inference
that interprets probability as the “long-run relative occurrence of an event in a set of
identical experiments.” Thus, for a frequentist, probabilities can only be assigned
to propositions about outcomes of (in principle) repeated experiments (i.e., random
variables) and not to hypotheses or parameters describing the state of nature, which
have fixed but unknown values. In this interpretation, the measured data are drawn
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Table 2 Comparison of frequentist and Bayesian approaches to statistical inference

Frequentist Bayesian

Probabilities assigned only to
propositions about outcomes of
repeatable experiments (i.e.,
random variables), not to
hypotheses or parameters which
have fixed but unknown values

Probabilities can be assigned to hypotheses and
parameters since probability is degree of belief (or
confidence, plausibility) in any proposition

Assumes measured data are drawn
from an underlying probability
distribution, which assumes the
truth of a particular hypothesis or
model (likelihood function)

Same

Constructs a statistic to estimate a
parameter or to decide whether or
not to claim a detection

Needs to specify prior degree of belief in a particular
hypothesis or parameter

Calculates the probability
distribution of the statistic
(sampling distribution)

Uses Bayes’ theorem to update the prior degree of belief
in light of new data (i.e., likelihood “plus” prior yields
posterior)

Constructs confidence intervals and
p-values for parameter estimation
and hypothesis testing

Constructs posteriors and odds ratios for parameter
estimation and hypothesis testing/model comparison

See Sects. 3.2 and 3.3 for details

from an underlying probability distribution, which assumes the truth of a particular
hypothesis or model. The probability distribution for the data is just the likelihood
function, which we can write as p(d|H), where d denotes the data and H denotes an
hypothesis.

Statistics play an important role in the frequentist framework. These are random
variables constructed from the data, which typically estimate a signal parameter or
indicate how well the data fit a particular hypothesis. Although it is common to con-
struct statistics from the likelihood function (e.g., the maximum-likelihood statistic
for a particular parameter, or the maximum-likelihood ratio to compare a signal-plus-
noise model to a noise-only model), there is no a priori restriction on the form of a
statistic other than it be some function of the data. Ultimately, it is the goal of the
analysis and the cleverness of the data analyst that dictate which statistic (or statistics)
to use.

To make statistical inferences in the frequentist framework requires knowledge of
the probability distribution (also called the sampling distribution) of the statistic. The
sampling distribution can either be calculated analytically (if the statistic is sufficiently
simple) or via Monte Carlo simulations, which effectively construct a histogram of the
values of the statistic by simulating many independent realizations of the data. Given a
statistic and its sampling distribution, one can then calculate either confidence intervals
for parameter estimation or p-values for hypothesis testing. (These will be discussed in
more detail below). Note that a potential problem with frequentist statistical inference
is that the sampling distribution depends on data values that were not actually observed,
which is related to how the experiment was carried out or might have been carried
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Fig. 3 Definition of the p-value (or significance) for frequentist hypothesis testing. The value of p equals
the area under the probability distribution p(Λ|H0) for Λ ≥ Λobs

out. The so-called stopping problem of frequentist statistics is an example of such a
problem (Howson and Urbach 2006).

3.2.1 Frequentist hypothesis testing

Suppose, as a frequentist, you want to test the hypothesis H1 that a gravitational-wave
signal, having some fixed but unknown amplitude a > 0, is present in the data. Since
you cannot assign probabilities to hypotheses or to parameters like a as a frequentist,
you need to introduce instead an alternative (or null) hypothesis H0, which, for this
example, is the hypothesis that there is no gravitational-wave signal in the data (i.e., that
a = 0). You then argue for H1 by arguing against H0, similar to proof by contradiction
in mathematics. Note that H1 is a composite hypothesis since it depends on a range
of values of the unknown parameter a. It can be written as the union, H1 = ∪a>0Ha ,
of a set of simple hypotheses Ha each corresponding to a single fixed value of the
parameter a.

To rule either in favor or against H0, you construct a statistic Λ, called a test or
detection statistic, on which the statistical test will be based. As mentioned above,
you will need to calculate analytically or via Monte Carlo simulations the sampling
distribution for Λ under the assumption that the null hypothesis is true, p(Λ|H0). If
the observed value of Λ lies far out in the tails of the distribution, then the data are
most likely not consistent with the assumption of the null hypothesis, so you reject
H0 (and thus accept H1) at the p ∗ 100% level, where

p ≡ Prob(Λ > Λobs|H0) ≡
∫ ∞

Λobs

p(Λ|H0) dΛ. (3.3)

This is the so-called p-value (or significance) of the test; it is illustrated graphically in
Fig. 3. The p-value required to reject the null hypothesis determines a threshold Λ∗,
above which you reject H0 and accept H1 (e.g., claim a detection). It is related to the
false alarm probability for the test as we explain below.

The above statistical test is subject to two types of errors: (i) type I or false alarm
errors, which arise if the data are such that you reject the null hypothesis (i.e., Λobs >
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Λ∗) when it is actually true, and (ii) type II or false dismissal errors, which arise if the
data are such that you accept the null hypothesis (i.e., Λobs < Λ∗) when it is actually
false. The false alarm probability α and false dismissal probability β(a) are given
explicitly by

α ≡ Prob(Λ > Λ∗|H0), (3.4)

β(a) ≡ Prob(Λ < Λ∗|Ha), (3.5)

where a is the amplitude of the gravitational-wave signal, assumed to be present under
the assumption that H1 is true. To calculate the false dismissal probability β(a), one
needs the sampling distribution of the test statistic assuming the presence of a signal
with amplitude a.

Different test statistics are judged according to their false alarm and false dismissal
probabilities. Ideally, you would like your statistical test to have false alarm and false
dismissal probabilities that are both as small as possible. But these two properties
compete with one another as setting a larger threshold value to minimize the false
alarm probability will increase the false dismissal probability. Conversely, setting a
smaller threshold value to minimize the false dismissal probability will increase the
false alarm probability.

In the context of gravitational-wave data analysis, the gravitational-wave commu-
nity is (at least initially) reluctant to falsely claim detections. Hence the false alarm
probability is set to some very low value. The best statistic then is the one that mini-
mizes the false dismissal probability (i.e., maximizes detection probability) for fixed
false alarm. This is theNeyman–Pearson criterion. For medical diagnosis, on the other
hand, a doctor is very reluctant to falsely dismiss an illness. Hence the false dismissal
probability will be set to some very low value. The best statistic then is the one which
minimizes the false alarm probability for fixed false dismissal.

3.2.2 Frequentist detection probability

The value 1 − β(a) is called the detection probability or power of the test. It is the
fraction of times that the test statistic Λ correctly identifies the presence of a signal of
amplitude a in the data, for a fixed false alarm probability α (which sets the threshold
Λ∗). A plot of detection probability versus signal strength is often used to show how
strong a signal has to be in order to detect it with a certain probability. Since detection
probability does not depend on the observed data—it depends only on the sampling
distribution of the test statistic and a choice for the false alarm probability—detection
probability curves are often used as a figure-of-merit for proposed search methods for
a signal. Figure 4 shows a detection probability curve, with the value of a needed to
be detectable with 90% frequentist probability indicated by the dashed vertical line.
We will denote this value of a by a90%,DP. Note that as the signal amplitude goes to
zero, the detection probability reduces to the false alarm probability α, which for this
example was chosen to be 0.10.
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Fig. 4 Detection probability as a function of the signal amplitude for a false alarm probability equal to
10%. The value of a needed for 90% detection probability is indicated by the dashed vertical line and is
denoted by a90%,DP

Fig. 5 Graphical representation of a frequentist 90% confidence level upper limit. When a = a90%,UL,
the probability of obtaining a value of the detection statistic Λ ≥ Λobs is equal to 0.90

3.2.3 Frequentist upper limits

In the absence of a detection (i.e., if the observed value of the test statistic is less
than the detection threshold Λ∗), one can still set a bound (called an upper limit) on
the strength of the signal that one was trying to detect. The upper limit depends on
the observed value of the test statistic, Λobs, and a choice of confidence level, CL,
interpreted in the frequentist framework as the long-run relative occurrence for a set
of repeated identical experiments. For example, one defines the 90% confidence-level
upper limit a90%,UL as the minimum value of a for which Λ ≥ Λobs at least 90% of
the time:

Prob(Λ ≥ Λobs|a ≥ a90%,UL, Ha) ≥ 0.90. (3.6)

In other words, if the signal has an amplitude a90%,UL or higher, we would have
detected it in at least 90% of repeated observations. A graphical representation of a
frequentist upper limit is given in Fig. 5.
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3.2.4 Frequentist parameter estimation

The frequentist prescription for estimating the value of a particular parameter a, like
the amplitude of a gravitational-wave signal, is slightly different than the method used
to claim a detection. You need to first construct a statistic (called an estimator) â of the
parameter a you are interested in. (This might be a maximum-likelihood estimator of
a, but other estimators can also be used). You then calculate its sampling distribution
p(â|a, Ha). Note that statements like

Prob(a − Δ < â < a + Δ) = 0.95, (3.7)

which one constructs from p(â|a, Ha) make sense in the frequentist framework, since
â is a random variable. Although the above inequality can be rearranged to yield

Prob(â − Δ < a < â + Δ) = 0.95, (3.8)

this should not be interpreted as a statement about the probability of a lying within a
particular interval [â − Δ, â + Δ], since a is not a random variable. Rather, it should
be interpreted as a probabilistic statement about the set of intervals {[â − Δ, â + Δ]}
for all possible values of â. Namely, in a set of many repeated experiments, 0.95 is the
fraction of the intervals that will contain the true value of the parameter a. Such an
interval is called a 95% frequentist confidence interval. This is illustrated graphically
in Fig. 6.

It is important to point out that an estimator can sometimes take on a value of the
parameter that is not physically allowed. For example, if the parameter a denotes the
amplitude of a gravitational-wave signal (so physically a ≥ 0), it is possible for â < 0
for a particular realization of the data. Note that there is nothing mathematically wrong
with this result. Indeed, the sampling distribution for â specifies the probability of

Fig. 6 Definition of the frequentist confidence interval for parameter estimation. Each circle and line
represents a measured interval [â−Δ, â+Δ]. The set of all such intervals will contain the true value of the
parameter a (indicated here by the dotted vertical line) CL ∗ 100% of the time, where CL is the confidence
level
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obtaining such values of â. It is even possible to have a confidence interval [â−Δ, â+Δ]
all of whose values are unphysical, especially if one is trying to detect a weak signal
in noise. Again, this is mathematically allowed, but it is a little awkward to report a
frequentist confidence interval that is completely unphysical. We shall see that within
the Bayesian framework unphysical intervals and unphysical posteriors never arise, as
a simple consequence of including a prior distribution on the parameter that requires
a > 0.

3.2.5 Unified approach for frequentist upper limits and confidence intervals

Frequentists also have a way of avoiding unphysical or empty confidence intervals,
which at the same time unifies the treatment of upper limits for null results and
two-sided intervals for non-null results. This procedure, developed by Feldman and
Cousins (1998), also solves the problem that the choice of an upper limit or two-sided
confidence interval leads to intervals that do not have the proper coverage (i.e., the
probability that an interval contains the true value of a parameter does not match the
stated confidence level) if the choice of reporting an upper limit or two-sided con-
fidence interval is based on the data and not decided upon before performing the
experiment.

The basic idea underlying this unified approach to frequentist intervals is a new
specification (or ordering) of the values of the random variable to include in the
acceptance intervals for an unknown parameter. If we let a denote the parameter
whose value we are trying to determine, and â be an estimator of a with sampling
distribution p(â|a, Ha), then the choice of acceptance intervals becomes, for each
value of a, how do we choose [â1, â2] such that

Prob(â1 < â < â2) ≡
∫ â2

â1

p(â|a, Ha) dâ = CL, (3.9)

where CL is the confidence level, e.g., CL = 0.95. The ordering principle proposed
by Feldman and Cousins (1998) is based on the ranking function

R(â|a) ≡ p(â|a, Ha)

p(â|a, Ha)
∣∣
a=abest

, (3.10)

where abest is the value of the parameter a that maximizes the sampling distribution
p(â|a, Ha) for a given value of â. The prescription then for constructing the acceptance
intervals is to find, for each allowed value of a, values of â1 and â2 such that R(â1|a) =
R(â2|a) and for which (3.9) is satisfied. The set of all such acceptance intervals for
different values of a forms a confidence belt in the âa-plane, which is then used to
construct an upper limit or a two-sided confidence interval for a particular observed
value of the estimator â, as explained below and illustrated in Fig. 7.

As a specific example, let us suppose that â is Gaussian-distributed about a with
variance σ 2:

p(â|a, Ha) = 1√
2πσ

e− 1
2

(â−a)2

σ2 , (3.11)

123



Living Rev Relativ  (2017) 20:2 Page 29 of 223  2 

Fig. 7 Confidence belt for 95%
confidence-level intervals for a
Gaussian distribution with mean
a > 0. (The values for a and â
are given here in units of σ ). The
solid horizontal line shows the
acceptance interval for a = 2.0.
The two dashed vertical lines
correspond to two different
observed values for the estimator
â: â = −0.5, which has a 95%
confidence-level upper limit
a ≤ 1.5; and â = 2, which has a
95% confidence-level two-sided
interval a ∈ [0.35, 3.95]

and that the unknown parameter a represents the amplitude of a signal, so that a > 0.
(Recall that it is possible, however, for the estimator â to take on negative values).
Then abest = â if â > 0, while abest = 0 if â ≤ 0, for which

p(â|a, Ha)

∣∣∣
a=abest

=
{ 1√

2πσ
, â > 0

1√
2πσ

exp
[
− 1

2
â2

σ 2

]
, â ≤ 0

(3.12)

and

R(â|a) =
⎧⎨
⎩

exp
[
− 1

2
(â−a)2

σ 2

]
, â > 0

exp
[
− 1

2
(−2âa+a2)

σ 2

]
, â ≤ 0

. (3.13)

The confidence belt constructed from this ranking function is shown in Fig. 7. The solid
horizontal line at a = 2 shows the corresponding 95% confidence-level acceptance
interval for this ranking function. The two dashed vertical lines correspond to two
different observed values for the estimator â, leading to a 95% confidence-level upper
limit and two-sided interval, respectively.

3.3 Bayesian inference

In the following subsections, we again describe parameter estimation and hypothesis
testing, but this time from the perspective of Bayesian inference.
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Fig. 8 Definition of a Bayesian credible interval for parameter estimation. Here we construct a symmetric
95% credible interval centered on the mode of the distribution

3.3.1 Bayesian parameter estimation

In Bayesian inference, a parameter, e.g., a, is estimated in terms of its posterior dis-
tribution, p(a|d), in light of the observed data d. As discussed in the introduction to
this section, the posterior p(a|d) can be calculated from the likelihood p(d|a) and the
prior probability distribution p(a) using Bayes’ theorem

p(a|d) = p(d|a)p(a)

p(d)
. (3.14)

The posterior distribution tells you everything you need to know about the parameter,
although you might sometimes want to reduce it to a few numbers—e.g., its mode,
mean, standard deviation, etc.

Given a posterior distribution p(a|d), a Bayesian confidence interval (often called
a credible interval given the Bayesian interpretation of probability as degree of belief,
or state of knowledge, about an event) is simply defined in terms of the area under
the posterior between one parameter value and another. This is illustrated graphically
in Fig. 8, for the case of a 95% symmetric credible interval, centered on the mode of
the distribution amode. If the posterior distribution depends on two parameters a and
b, but you really only care about a, then you can obtain the posterior distribution for
a by marginalizing the joint distribution p(a, b|d) over b:

p(a|d) =
∫

db p(a, b|d) =
∫

db p(a|b, d)p(b), (3.15)

where the second equality follows from the relationship between joint probabilities
and conditional probabilities, e.g., p(a|b, d)p(b) = p(a, b|d). Variables that you
don’t particularly care about (e.g., the variance of the detector noise as opposed to
the strength of a gravitational-wave signal) are called nuisance parameters. Although
nuisance parameters can be handled in a straight-forward manner using Bayesian
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inference, they are problematic to deal with (i.e., they are a nuisance!) in the context
of frequentist statistics. The problem is that marginalization doesn’t make sense to a
frequentist, for whom parameters cannot be assigned probability distributions.

The interpretation of Bayes’ theorem (3.14) is that our prior knowledge is updated
by what we learn from the data, as measured by the likelihood, to give our posterior
state of knowledge. The amount learned from the data is measured by the information
gain

I =
∫

da p(a|d) log

(
p(a|d)

p(a)

)
. (3.16)

Using a natural logarithm gives the information in nats, while using a base 2 logarithm
gives the information in bits. If the data tells us nothing about the parameter, then
p(d|a) = constant, which implies p(a|d) = p(a) and thus I = 0.

3.3.2 Bayesian upper limits

A Bayesian upper limit is simply a Bayesian credible interval for a parameter with the
lower end point of the interval set to the smallest value that the parameter can take.
For example, the Bayesian 90% upper limit on a parameter a > 0 is defined by:

Prob(0 < a < a90%,UL|d) = 0.90, (3.17)

where probability is interpreted as degree of belief, or state of knowledge, that the
parameter a has a value in the indicated range. One usually sets an upper limit on a
parameter when the mode of the distribution for the parameter being estimated is not
sufficiently displaced from zero, as shown in Fig. 9.

3.3.3 Bayesian model selection

Bayesian inference can easily be applied to multiple models or hypotheses, each with
a different set of parameters. In what follows, we will denote the different models

Fig. 9 Bayesian 90% credible upper limit for the parameter a
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by Mα , where the index α runs over the different models, and the associated set of
parameters by the vector θα . The joint posterior distribution for the parameters θα is
given by

p(θα|d,Mα) = p(d|θα,Mα)p(θα|Mα)

p(d|Mα)
, (3.18)

and the model evidence is given by

p(d|Mα) =
∫

p(d|θα,Mα)p(θα|Mα) dθα, (3.19)

where we marginalize over the parameter values associated with that model. The
posterior probability for model Mα is given by Bayes’ theorem as

p(Mα|d) = p(d|Mα)p(Mα)

p(d)
, (3.20)

where the normalization constant p(d) involves a sum over all possible models:

p(d) =
∑
α

p(d|Mα)p(Mα). (3.21)

Since the space of all possible models is generally unknown, the sum is usually taken
over the subset of models being considered. The normalization can be avoided by
considering the posterior odds ratio between two models:

Oαβ(d) = p(Mα|d)

p(Mβ |d)
= p(Mα)

p(Mβ)

p(d|Mα)

p(d|Mβ)
. (3.22)

The first ratio on the right-hand side of the above equation is the prior odds ratio for
models α, β, while the second term is the evidence ratio, or Bayes factor,

Bαβ(d) ≡ p(d|Mα)

p(d|Mβ)
. (3.23)

The prior odds ratio is often taken to equal unity, but this is not always justified. For
example, the prior odds that a signal is described by general relativity versus some
alternative theory of gravity should be much larger than unity given the firm theoretical
and observational footing of Einstein’s theory.

While the foundations of Bayesian inference were laid out by Laplace in the 1700s, it
did not see widespread use until the late twentieth century with the advent of practical
implementation schemes and the development of fast electronic computers. Today,
Monte Carlo sampling techniques, such as Markov Chain Monte Carlo (MCMC)
and Nested Sampling, are used to sample the posterior and estimate the evidence
(Skilling 2006; Gair et al. 2010). Successfully applying these techniques is something
of an art, but in principle, once the likelihood and prior have been written down, the
implementation of Bayesian inference is purely mechanical. Calculating the likelihood
and choosing a prior will be discussed in some detail in Sect. 3.6.
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3.4 Relating Bayesian and frequentist detection statements

It is interesting to compare the Bayesian model selection calculation discussed above
to frequentist hypothesis testing based on the maximum-likelihood ratio. For con-
creteness, let us assume that we have two models M0 (noise-only) and M1 (noise
plus gravitational-wave signal), with parameters θn and {θn, θh}, respectively. The
frequentist detection statistic will be defined in terms of the ratio of the maxima of the
likelihood functions for the two models:

ΛML(d) ≡ maxθn maxθh p(d|θn, θh,M1)

maxθ ′
n
p(d|θ ′

n,M0)
. (3.24)

As described above, the Bayes factor calculation also involves a ratio of two quantities,
the model evidences p(d|M1) and p(d|M0), but instead of maximizing over the
parameters, we marginalize over the parameters:

B10(d) =
∫
dθn

∫
dθh p(d|θn, θh,M1)p(θn, θh |M1)∫
dθ ′

n p(d|θ ′
n,M0)p(θ ′

n|M0)
. (3.25)

These two expressions can be related using Laplace’s approximation to individually
approximate the model evidences p(d|M1) and p(d|M0). This approximation is
valid when the data are informative—i.e., when the likelihood functions are peaked
relative to the joint prior probability distributions of the parameters. For an arbitrary
model M with parameters θ , the Laplace approximation yields:

∫
dθ p(d|θ ,M)p(θ |M) � p(d|θML,M)

ΔVM
VM

, (3.26)

where θML ≡ θML(d) maximizes the likelihood with respect to variations of θ given
the data d; ΔVM is the characteristic spread of the likelihood function around its
maximum (the volume of the uncertainty ellipsoid for the parameters); and VM is the
total parameter space volume of the model parameters. Applying this approximation
to models M0 and M1 in (3.25), we obtain

B10(d) � ΛML(d)
ΔV1/V1

ΔV0/V0
, (3.27)

or, equivalently,

2 lnB10(d) � 2 ln (ΛML(d)) + 2 ln

(
ΔV1/V1

ΔV0/V0

)
. (3.28)

The second term on the right-hand side of the above equation is negative and penalizes
models that require a larger parameter space volume than necessary to fit the data. This
is basically an Occam penalty factor, which prefers the simpler of two models that
fit the data equally well. The first term has the interpretation of being the squared
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Table 3 Bayes factors and their interpretation in terms of the strength of the evidence in favor of one model
relative to the other

Bαβ(d) 2 lnBαβ(d) Evidence for model Mα relative to Mβ

<1 <0 Negative (supports model Mβ )

1–3 0–2 Not worth more than a bare mention

3–20 2–6 Positive

20–150 6–10 Strong

>150 >10 Very strong

Adapted from Kass and Raftery (1995)

signal-to-noise ratio of the data, assuming an additive signal in Gaussian-stationary
noise, and it can be used as an alternative frequentist detection statistic in place of
ΛML.

Table 3 from Kass and Raftery (1995) gives a range of Bayes factors and their
interpretation in terms of the strength of the evidence in favor of one model relative to
another. The precise levels at which one considers the evidence to be “strong” or “very
strong” is rather subjective. But recent studies (Cornish and Sampson 2016; Taylor
et al. 2016a) in the context of pulsar timing have been trying to make this correspon-
dence a bit firmer, using sky and phase scrambles to effectively destroy signal-induced
spatial correlations between pulsars while retaining the statistical properties of each
individual dataset. This is similar to doing time-slides for LIGO analyses, which are
used to assess the significance of a detection.

Taylor et al. (2016a) even go so far as to perform a hybrid frequentist-Bayesian
analysis, doing Monte Carlo simulations: (i) over different noise-only realizations,
and (ii) over different sky and phase scrambles, which null the correlated signal.
These simulations produce different null distributions for the Bayes factor, similar
to a null-hypothesis distribution for a frequentist detection statistic (in this case, the
log of the Bayes factor). The significance of the measured Bayes factor is then its
corresponding p-value with respect to one of these null distributions. The utility of
such a hybrid analysis is its ability to better assess the significance of a detection claim,
especially when there might be questions about the suitability of one of the models
(e.g., the noise model) used in the construction of a likelihood function.

3.5 Simple example comparing Bayesian and frequentist analyses

To further illustrate the relationship between Bayesian and frequentist analyses, we
consider in this section a very simple example—a constant signal with amplitude
a > 0 in white, Gaussian noise (zero mean, variance σ ):

di = a + ni , i = 1, 2, . . . , N , (3.29)

where the index i labels the individual samples of the data. The likelihood functions for
the noise-only and signal-plus-noise models M0 and M1 are thus simple Gaussians:
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p(d|M0) = 1

(2π)N/2σ N
e− 1

2σ2
∑N

i=1 d
2
i , (3.30)

p(d|a,M1) = 1

(2π)N/2σ N
e− 1

2σ2
∑N

i=1(di−a)2
. (3.31)

We will assume that the value of σ is known a priori. Thus, the noise model has no
free parameters, while the signal model has just one parameter, which is the amplitude
of the signal that we are trying to detect. We will choose our prior on a to be flat over
the interval (0, amax], so p(a) = 1/amax.

It is straight-forward exercise to check that the maximum-likelihood estimator of
the amplitude a is given by the sample mean of the data:

â ≡ aML(d) = 1

N

N∑
i=1

di ≡ d̄. (3.32)

This is an unbiased estimator of a and has variance σ 2
â = σ 2/N (the familiar variance

of the sample mean). Thus, the sampling distribution of â is simply

p(â|a,M1) = 1√
2πσâ

e
− 1

2σ2
â

(â−a)2

, (3.33)

where â can take on either positive or negative values (even though a > 0).
To compute the posterior distribution p(a|d,M1) for the Bayesian analysis, we

first note that
N∑
i=1

(di − a)2 = N (Var[d] + (a − â)2). (3.34)

The model evidence p(d|M1) is then given by

p(d|M1) =
e
− Var[d]

2σ2
â

[
erf

(
amax−â√

2σâ

)
+ erf

(
â√
2σâ

)]

2amax
√
N (2π)(N−1)/2σ (N−1)

, (3.35)

and the posterior distribution is given by

p(a|d,M1) = 1√
2πσâ

e
− (a−â)2

2σ2
â 2

[
erf

(
amax − â√

2σâ

)
+ erf

(
â√
2σâ

)]−1

. (3.36)

Note that this is simply a truncated Gaussian on the interval a ∈ (0, amax], with mean
â and variance σ 2

â .
The above calculation shows that â is a sufficient statistic for a. This means that the

posterior distribution for a can be written simply in terms of â, in lieu of the individual
samples d ≡ {d1, d2, . . . , dN }. The Bayes factor
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B10(d) = p(d|M1)

p(d|M0)
, (3.37)

is given by

B10(d) = e
â2

2σ2
â

(√
2πσâ

amax

)
1

2

[
erf

(
amax − â√

2σâ

)
+ erf

(
â√
2σâ

)]
. (3.38)

In the limit where â is tightly peaked away from 0 and amax, the Bayes factor simplifies
to

B10(d) � e
â2

2σ2
â

(√
2πσâ

amax

)
. (3.39)

If we take the frequentist detection statistic to be twice the log of the maximum-
likelihood ratio, Λ(d) ≡ 2 ln ΛML(d), then

Λ(d) = â2

σ 2
â

= d̄2

σ 2/N
≡ ρ2, (3.40)

which is just the squared signal-to-noise ratio of the data. Furthermore, taking twice
the log of the approximate Bayes factor in (3.39) gives

2 lnB10(d) � Λ(d) + 2 ln

(√
2πσâ

amax

)
, (3.41)

where the first term is just the frequentist detection statistic and second term expresses
the Occam penalty. This last result is consistent with the general relation (3.28) dis-
cussed in the previous subsection.

The statistical distribution of the frequentist detection statistic can be found in
closed form for this simple example. Since a linear combination of Gaussian random
variables is also Gaussian-distributed, Λ is the square of a (single) Gaussian random
variable ρ = d̄

√
N/σ . Moreover, since ρ has mean μ ≡ a

√
N/σ and unit variance,

the sampling distribution for Λ in the presence of a signal is a noncentral chi-squared
distribution with one degree of freedom and non-centrality parameter λ ≡ μ2 =
a2N/σ 2:

p(Λ|a,M1) = 1

2
e−(Λ+λ)/2

(
Λ

λ

)−1/4

I−1/2(
√

λΛ), (3.42)

where I−1/2 is a modified Bessel function of the first kind of order −1/2. In the absence
of a signal (i.e., when a and hence λ are equal to zero), Λ is given by an (ordinary)
chi-squared distribution with one degree of freedom:

p(Λ|M0) = 1√
2
(1/2)

Λ−1/2e−Λ/2, (3.43)
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Fig. 10 Equal-probability contour plot for the frequentist detection statistic Λ ≡ d̄2N/σ 2 for a signal with
amplitude a > 0. The contours correspond to the values p(Λ|a,M1) = 0.01, 0.03, 0.05, 0.07, and 0.09

where 
 is the gamma function. Substituting explicit expressions for I−1/2(
√

λΛ) and

(1/2), we find:

p(Λ|M0) = 1√
2πΛ

e−Λ/2, (3.44)

p(Λ|a,M1) = 1√
2πΛ

1

2

[
e− 1

2 (
√

Λ−√
λ)2 + e− 1

2 (
√

Λ+√
λ)2
]
. (3.45)

An equal-probability contour plot of the sampling distribution of the detection statistic
is shown in Fig. 10. The fact that we are able to write down analytic expressions for the
sampling distributions for the detection statistic Λ is due to the simplicity of the signal
and noise models. For more complicated real-world problems, these distributions
would need to be generated numerically using fake signal injections and time-shifts
to produce many different realizations of the data (signal plus noise) from which one
can build up the distributions.

It is also important to point out that Λ is not a sufficient statistic for a, due to the fact
that Λ involves the square of the maximum-likelihood estimate â—i.e., Λ = â2N/σ 2.
Thus, we cannot take p(Λ|a,M1) conditioned on Λ (assuming a flat prior on a from
[0, amax]) to get the posterior distribution for a given d, since we would be missing
out on data samples that give negative values for â. Another way to see this is to start
with p(Λ|a,M1) given by (3.45), and then make a change of variables from Λ to â
using the general transformation relation

pY (y) dy = pX (x) dx ⇒ pX (x) = [
pY (y) | f ′(x)|]y= f (x) . (3.46)

This leads to

p̃(â|a,M1) = 1√
2πσâ

[
e
− 1

2σ2
â

(â−a)2

+ e
− 1

2σ2
â

(â+a)2
]

, (3.47)
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Fig. 11 Examples of simulated data for weak (left panel) and strong (right panel) signals injected into the
data—a0 = 0.05 and 0.3, respectively

which is properly normalized for â > 0, but differs from (3.33) due to the second
term involving â + a. Thus, we need to construct p(a|d) from (3.33)—and not from
(3.47)—if we want the posterior to have the proper dependence on a.

3.5.1 Simulated data

For our example, we will take N = 100 samples, σ = 1, and amax = 1.0. We also
simulate data with injected signals having amplitudes a0 = 0.05 and 0.3, respectively.
Since the expected signal-to-noise ratio, a

√
N/σ , is given by 0.5 and 3.0, these injec-

tions correspond to weak and (moderately) strong signals. Single realizations of the
data for the two different injections are shown in Fig. 11. The noise realization is the
same for the two injections.

3.5.2 Frequentist analysis

Given the values for N , σ , and the probability distributions (3.44) and (3.45) for the
frequentist detection statistic Λ, we can calculate the detection threshold for fixed
false alarm probability α (which we will take to equal 10%), and the corresponding
detection probability as a function of the amplitude a. The detection threshold turns
out to equal Λ∗ = 2.9 (so 10% of the area under the probability distribution p(Λ|M0)

is for Λ ≥ Λ∗). The value of the amplitude a needed for 90% confidence detection
probability with 10% false alarm probability is given by a90%,DP = 0.30. (These
results for the detection threshold and detection probability do not depend on the
particular realizations of the simulated data). The corresponding curves are shown in
Fig. 12.

The sample mean of the data for the two simulations are given by d̄ = 0.085
and 0.335, respectively. Since â = d̄ , these are also the values of the maximum-
likelihood estimator of the amplitude a. The corresponding values of the detection
statistic are Λobs = 0.72 and 11.2 for the two injections, and have p-values equal to
0.45 and 9.0 × 10−4, as shown in Fig. 13. The 95% frequentist confidence interval is
given simply by [â − 2σâ, â + 2σâ], since â is Gaussian-distributed, and has values
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Fig. 12 Left panel Probability distribution for the frequentist detection statistic Λ for the noise-only model.
The threshold value of the statistic for 10% false alarm probability is Λ∗ = 2.9. Right panel Detection
probability as a function of the amplitude a. The value of the amplitude needed for 90% confidence detection
probability with 10% false alarm probability is a90%,DP = 0.30

Fig. 13 Graphical representation of the p-value calculation for the weak (left panel) and strong (right panel)
injections. For the weak injection, Λobs = 0.72 is marked by the red vertical line, with corresponding p-
value 0.45. For the strong injection, Λobs = 11.2 is sufficiently large that the corresponding red vertical
line is not visible on this graph. The p-value for the strong injection is 9.0 × 10−4

[−0.11, 0.29] and [0.14, 0.54], respectively. These intervals contain the true value of
the amplitudes for the two injections, a0 = 0.05 and 0.3.

The 90% confidence-level frequentist upper limits are a90%,UL = 0.20 and 0.46,
respectively. Figure 14 shows the probability distributions for the detection statistic
Λ conditioned on these upper limit values for which the probability of obtaining
Λ ≥ Λobs is equal to 0.90.

3.5.3 Bayesian analysis

The results of the Bayesian analysis for the two different injections are summarized
in Fig. 15. The plots show the posterior distribution for the amplitude a given the
value of the maximum-likelihood estimator â, which (as we discussed earlier) is a
sufficient statistic for the data d. Recall that the posterior for a for this example is
simply a truncated Gaussian from 0 to amax centered on â, which could be negative,
see (3.36). The left two panels show the graphical construction of the Bayesian 90%
upper limit and 95% credible interval for the amplitude a for the weak injection,
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Fig. 14 Probability distributions for the frequentist detection statistic Λ, conditioned on the value of the
amplitude a for which the probability of obtaining Λ ≥ Λobs is equal to 0.90. These define the 90%
confidence-level frequentist upper limits a90%,UL = 0.20 and 0.46, respectively. The red vertical lines
mark the value of Λobs for the weak (left panel, Λobs = 0.72) and strong (right panel, Λobs = 11.2)
injections

Fig. 15 Posterior distributions for the amplitude a given the value of the maximum-likelihood estimator â.
The left two panels are for the weak injection; the right two panels are for the strong injection. The top two
plots illustrate the graphical construction of Bayesian 90% upper limits for the two injections; the bottom
two plots illustrate the graphical construction of the Bayesian 95% credible intervals. The dashed vertical
lines indicate the values of the injected signal amplitude a0, which equal 0.05 and 0.3, respectively

a90%,UL = 0.23 and [0, 0.26]. The right two panels show similar plots for the strong
injection, a90%,UL = 0.46 and [0.14, 0.54].

Finally, the Bayes factor for the signal-plus-noise model M1 relative to the noise-
only model M0 can be calculated by taking the ratio of the marginalized likelihood
p(d|M1) given by (3.35) to p(d|M0) given by (3.30). Doing this, we find 2 ln
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Table 4 Tabular summary of the frequentist and Bayesian analysis results for the simulated data (both
weak and strong injections)

(Weak injection, a0 = −0.05) (Strong injection, a0 = 0.3)
Frequentist Bayesian Frequentist Bayesian

Detection threshold (Λ∗) 2.9 – 2.9 –

Detection statistic (Λobs) 0.72 – 11.2 –

p-value 0.45 – 9.0 × 10−4 –

90% upper limit 0.20 0.23 0.46 0.46

95% interval [−0.11, 0.29] [0, 0.26] [0.14, 0.54] [0.14, 0.54]
ML estimator (â) 0.085 0.085 0.335 0.335

Bayes factor (2 lnB10) – −2.2 – 9.2

Laplace approximation – −2.0 – 8.5

A dash indicates that a particular quantity is not relevant for either the frequentist or Bayesian analysis

B10 = −2.2 and 9.2 for the weak and strong signal injections, respectively. The
Laplace approximation to this quantity is given by (3.41), with values −2.0 and 8.5,
respectively.

3.5.4 Comparison summary

Table 4 summarizes the numerical results for the frequentist and Bayesian analyses.
We see that the frequentist and Bayesian 90% upper limits and 95% intervals numer-
ically agree for the strong injection, but differ slightly for the weak injection. The
interpretation of these results is different, of course, for a frequentist and a Bayesian,
given their different definitions of probability. But for a moderately strong signal in
noisy data, we expect both approaches to yield a confident detection as they have for
this simple example.

3.6 Likelihoods and priors for gravitational-wave searches

To conclude this section on statistical inference, we discuss some issues related
to calculating the likelihood and choosing a prior in the context of searches for
gravitational-wave signals using a network of gravitational-wave detectors.

3.6.1 Calculating the likelihood

Defining the likelihood function (for either a frequentist or Bayesian analysis) involves
understanding the instrument response and the instrument noise. The data collected
by gravitational-wave detectors comes in a variety of forms. For ground-based inter-
ferometers such as LIGO and Virgo, the data comes from the error signal in the
differential arm-length control system, which is non-linearly related to the laser phase
difference, which in turn is linearly related to the gravitational-wave strain. For pulsar
timing arrays, the data comes from the arrival times of radio pulses (derived from
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the folded pulse profiles), which must be corrected using a complicated timing model
that takes into account the relative motion of the telescopes and the pulsars, along
with the spin-down of the pulsars, in addition to a variety of propagation effects. The
timing residuals formed by subtracting the timing model from the raw arrival times
contain perturbations due to gravitational waves integrated along the line of sight to
the pulsar. For future space-based gravitational-wave detectors such as LISA, the data
will be directly read out from phase meters that perform a heterodyne measurement
of the laser phase. Synthetic combinations of these phase read outs (chosen to cancel
laser phase noise) are then linearly proportional to the gravitational-wave strain.

Since gravitational waves can be treated as small perturbations to the background
geometry, the time delays or laser phase/frequency shifts caused by a gravitational
wave can easily be computed. These idealized calculations have then to be related
to the actual observations, either by propagating the effects through an instrument
response model, or, alternatively, inverting the response model to convert the measured
data to something proportional to the gravitational-wave strain. (For example, most
LIGO analyses work with the calibrated strain, rather than the raw differential error
signal). If we assume that the gravitational-wave signal and the instrument noise are
linearly independent, then the data taken at time t can be written as

d(t) = h(t) + n(t), (3.48)

where h(t) is shorthand for the gravitational-wave metric perturbations hab(t, �x)
convolved with the instrument response function and converted into the appropriate
quantity—phase shift, time delay, differential arm length error, etc. (A detailed calcu-
lation of h(t) and the associated detector response functions will be given in Sect. 5.2).
As mentioned above, the data d(t) may be the quantity that is measured directly, or,
more commonly, some quantity that is derived from the measurements such as timing
residuals or calibrated strain. In any analysis, it is important to marginalize over the
model parameters used to make the conversion from the raw data.

The likelihood of observing d(t) is found by demanding that the residual

r(t) ≡ d(t) − h̄(t), (3.49)

be consistent with a draw from the noise distribution pn(x):

p(d(t)|h̄(t)) = pn(r(t)) = pn(d(t) − h̄(t)). (3.50)

Here h̄(t) is our model6 for the gravitational-wave signal. The likelihood of observing
a collection of discretely-sampled data d ≡ {d1, d2, . . . , dN }, where di ≡ d(ti ),
is then given by p(d|h̄) = pn(r), where r ≡ {r1, r2, . . . , rN } with ri ≡ r(ti ). Since
instrument noise is due to a large number of small disturbances combined with counting
noise in the large-number limit, the central limit theorem suggests that the noise
distribution can be approximated by a multi-variate normal (Gaussian) distribution:

6 Since the model h̄(t) will differ from the actual h(t), we use an overbar for the model to distinguish the
two.
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p(d|h̄) = 1√
det(2πCn)

e− 1
2

∑
i, j ri

(
C−1
n
)
i j r j , (3.51)

where Cn is the noise correlation matrix, with components

(Cn)i j = 〈nin j 〉 − 〈ni 〉〈n j 〉. (3.52)

If the noise is stationary, then the correlation matrix only depends on the lag |ti −
t j |, and the matrix Cn can be (approximately) diagonalized by transforming to the
Fourier domain, where ri should then be interpreted as r̃( fi ) (see Appendix D.6 for a
more careful treatment of discrete probability distributions in the time and frequency
domain). In practice, the noise observed in most gravitational-wave experiments is
neither stationary nor Gaussian (Sect. 9 and Appendix C), but (3.51) still serves as a
good starting point for more sophisticated treatments. The Gaussian likelihood (3.51)
immediately generalizes for a network of detectors:

p(d|h̄) = 1√
det(2πCn)

e− 1
2

∑
I i,J j rI i

(
C−1
n
)
I i,J j rJ j , (3.53)

where I , J labels the detector, and i , j labels the discrete time or frequency sample
for the corresponding detector. Note here that the parameters θ appearing in (3.18) are
the individual time or frequency samples h̄i .

3.6.2 Choosing a prior

For Bayesian inference, it is also necessary to define a model M for the gravitational-
wave signal, which is done by placing a prior p(h̄|M) on the samples h̄i . In some cases,
a great deal is known about the signal model, such as when approximate solutions to
Einstein’s equations provide waveform templates. In that case the prior can be written
as

p(h̄|M) = δ(h̄ − h̄(θ ,M)) p(θ |M). (3.54)

Marginalizing over h̄ converts the posterior p(h̄|d) to a posterior distribution for the
signal parameters p(θ |d,M). In other cases, such as for short-duration bursts associ-
ated with certain violent astrophysical events, much less is known about the possible
signals and weaker priors have to be used. Models using wavelets, which have finite
time-frequency support, and priors that favor connected concentrations of power in
the time-frequency plane are commonly used for these “unmodeled burst” searches.
At the other end of the spectrum from deterministic point sources are the statistically-
isotropic stochastic backgrounds that are thought to be generated by various processes
in the early Universe, or through the superposition of a vast number of weak astro-
physical sources. In the case of Gaussian stochastic signals, the prior for a signal
h̄ = (h̄+(n̂), h̄×(n̂)) coming from direction n̂ direction has the form

p(h̄|M) = 1

2π Sh
e−(h̄2+(n̂)+h̄2×(n̂))/2Sh , (3.55)
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where Sh is the power spectrum of the background. As we shall show in Sect. 4,
marginalizing over h̄ converts the posterior p(h̄|d) to a posterior p(Sh |d,M) for Sh .

4 Correlations

Correlation is not cause, it is just a ‘music of chance’. Siri Hustvedt

Stochastic gravitational waves are indistinguishable from unidentified instrumental
noise in a single detector, but are correlated between pairs of detectors in ways that
differ, in general, from instrumental noise. Cross-correlation methods basically use
the random output of one detector as a template for the other, taking into account the
physical separation and relative orientation of the two detectors. In this section, we
introduce cross-correlation methods in the context of both frequentist and Bayesian
inference, analyzing in detail a simple toy problem (the data are “white” and we ignore
complications that come from the separation and relative orientation of the detectors—
this we discuss in detail in Sect. 5). We also briefly discuss possible alternatives to
cross-correlation methods, e.g., using a null channel as a noise calibrator.

The basic idea of using cross-correlation to search for stochastic gravitational-
waves can be found in several early papers (Grishchuk 1976; Hellings and Downs
1983; Michelson 1987; Christensen 1990, 1992; Flanagan 1993). The derivation of
the likelihood function in Sect. 4.2 follows that of Cornish and Romano (2013); parts
of Sect. 4.4 are also discussed in Allen et al. (2003) and Drasco and Flanagan (2003).

4.1 Basic idea

The key property that allows one to distinguish a stochastic gravitational-wave back-
ground from instrumental noise is that the gravitational-wave signal is correlated
across multiple detectors while instrumental noise typically is not. To see this, con-
sider the simplest possible example, i.e., a single sample of data from two colocated
and coaligned detectors:

d1 = h + n1,

d2 = h + n2.
(4.1)

Here h denotes the common gravitational-wave signal and n1, n2 the noise in the two
detectors. To cross correlate the data, we simply form the product of the two samples,
Ĉ12 ≡ d1d2. The expected value of the correlation is then

〈Ĉ12〉 = 〈d1d2〉 = 〈h2〉 + 〈n1n2〉 +����0〈hn2〉 +����0〈n1h〉 = 〈h2〉 + 〈n1n2〉, (4.2)

since the gravitational-wave signal and the instrumental noise are uncorrelated. If the
instrumental noise in the two detectors are also uncorrelated, then

〈n1n2〉 = 0, (4.3)
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which implies
〈Ĉ12〉 = 〈h2〉 ≡ Sh . (4.4)

This is just the variance (or power) of the stochastic gravitational-wave signal. So
by cross-correlating data in two (or more) detectors, we can extract the common
gravitational-wave component.

We have assumed here that there is no cross-correlated noise (instrumental or envi-
ronmental). If there is correlated noise, then the simple procedure describe above needs
to be augmented. This will be discussed in more detail in Sect. 9.6.

4.2 Relating correlations and likelihoods

The cross-correlation approach arises naturally from a standard likelihood analysis if
we adopt a Gaussian stochastic template for the signal. Revisiting the example from
the previous section, let’s assume that the detector noise is Gaussian-distributed with
variances Sn1 and Sn2 . Then the likelihood function for the data d ≡ (d1, d2) for the
noise-only model M0 is simply

p(d|Sn1 , Sn2 ,M0) = 1

2π
√
Sn1 Sn2

exp

[
−1

2

(
d2

1

Sn1

+ d2
2

Sn2

)]
. (4.5)

For the signal-plus-noise model M1, we have

p(d|Sn1 , Sn2 , h̄,M1) = 1

2π
√
Sn1 Sn2

exp

[
−1

2

{
(d1 − h̄)2

Sn1

+ (d2 − h̄)2

Sn2

}]
, (4.6)

where the gravitational-wave signal h̄ is assumed to be a Gaussian random deviate
with probability distribution

p(h̄|Sh,M1) = 1√
2π Sh

exp

[
−1

2

h̄2

Sh

]
. (4.7)

In most applications we are not interested in the value of h̄, but rather the power Sh .
Marginalizing over h̄, the likelihood takes the form

p(d|Sn1 , Sn2 , Sh,M1) = 1√
det(2πC)

e− 1
2

∑2
I,J=1 dI

(
C−1

)
I J dJ , (4.8)

where

C =
[
Sn1 + Sh Sh

Sh Sn2 + Sh

]
. (4.9)
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Maximizing the likelihood with respect to Sh , Sn1 and Sn2 yields the maximum-
likelihood estimators

Ŝh = d1d2 = Ĉ12,

Ŝn1 = d2
1 − d1d2,

Ŝn2 = d2
2 − d1d2.

(4.10)

Thus, the cross-correlation statistic Ĉ12 is the maximum-likelihood estimator for a
Gaussian stochastic gravitational wave template with zero mean and variance Sh .

4.3 Extension to multiple data samples

The extension to multiple data samples

d1i = hi + n1i , i = 1, 2, . . . , N ,

d2i = hi + n2i , i = 1, 2, . . . , N ,
(4.11)

is fairly straightforward. In the following two subsections, we consider the cases where
the detector noise and stochastic signal are either: (i) both white (i.e., the data are
uncorrelated between time samples) or (ii) both colored (i.e., allowing for correlations
in time). The white noise example will be analyzed in more detail in Sects. 4.4–4.6.

4.3.1 White noise and signal

If the detector noise and stochastic signal are both white, then the likelihood functions
for the data d ≡ {d1i ; d2i }, are simply products of the likelihoods (4.5) and (4.8) for the
individual data samples. We can write these product likelihoods as single multivariate
Gaussian distributions:

p(d|Sn1, Sn2 ,M0) = 1√
det(2πCn)

e− 1
2 d

T C−1
n d , (4.12)

p(d|Sn1, Sn2 , Sh,M1) = 1√
det(2πC)

e− 1
2 d

T C−1d , (4.13)

where

Cn =
[
Sn1 1N×N 0N×N

0N×N Sn2 1N×N

]
, (4.14)

C =
[

(Sn1 + Sh)1N×N Sh 1N×N

Sh 1N×N (Sn2 + Sh)1N×N

]
. (4.15)

The arguments in the exponential have the form

dTC−1
n d =

2∑
I,J=1

N∑
i, j=1

dI i
(
C−1
n

)
I i,J j

dJ j , (4.16)
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and similarly for dTC−1d. The maximum-likelihood estimators for this case are:

Ŝh ≡ 1

N

N∑
i=1

d1i d2i ,

Ŝn1 ≡ 1

N

N∑
i=1

d2
1i − 1

N

N∑
i=1

d1i d2i ,

Ŝn2 ≡ 1

N

N∑
i=1

d2
2i − 1

N

N∑
i=1

d1i d2i .

(4.17)

Note that these are just averages of the single-datum estimators (4.10) over the N
independent data samples.

A couple of remarks are in order: (i) It is easy to show that the expectation values
of the estimators are the true values of the parameters Sh , Sn1 , Sn2 . It is also fairly
straightforward to calculate the variances of the estimators. In particular,

Var(Ŝh) ≡ 〈Ŝ2
h 〉 − 〈Ŝh〉2 = 1

N

[
Sn1Sn2 + Sh(Sn1 + Sn2) + 2S2

h

]
. (4.18)

Note that this expression reduces to Var(Ŝh) ≈ Sn1 Sn2/N in the weak-signal limit,
Sh � SnI , for I = 1, 2. (ii) If we simply maximized the likelihood with respect to
variations of Sh , treating the noise variances Sn1 and Sn2 as known parameters, then
the frequentist estimator of Sh would also include auto-correlation terms for each
detector:

Ŝh = 1

(Sn1 + Sn2)
2

[
2Sn1Sn2

1

N

N∑
i=1

d1i d2i

+ Sn2

(
1

N

N∑
i=1

d2
1i − Sn1

)
+ Sn1

(
1

N

N∑
i=1

d2
2i − Sn2

)]
. (4.19)

In practice, however, the noise variances are not known well enough to be able to
extract useful information from the auto-correlation terms; they actually worsen the
performance of the simple cross-correlation estimator when the uncertainty in Sn1 or
Sn2 is greater than or equal to Sh .

4.3.2 Colored noise and signal

For the case where the detector noise and stochastic signal are colored, it simplest to
work in the frequency domain, since the Fourier components are independent of one
another. (This assumes that the data are stationary, so that there is no preferred origin
of time). Assuming multivariate Gaussian distributions as before, the variances Sn1 ,
Sn2 , and Sh generalize to power spectral densities, which are functions of frequency
defined by
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〈ñ I ( f )ñ∗
I ( f

′)〉 = 1

2
δ( f − f ′) SnI ( f ), 〈h̃( f )h̃∗( f ′)〉 = 1

2
δ( f − f ′) Sh( f ),

(4.20)
where I = 1, 2 and tilde denotes Fourier transform.7 The factor of 1/2 in (4.20) is for
one-sided power spectra, for which the integral of the power spectrum over positive
frequencies equals the variance of the data:

Var[h] =
∫ ∞

0
d f Sh( f ). (4.21)

This is just the continuous version of Parseval’s theorem, see e.g., (D.40). For N
samples of discretely-sampled data from each of two detectors I = 1, 2 (total duration
T ), the likelihood function for a Gaussian stochastic signal template becomes (Allen
et al. 2002; Cornish and Romano 2013):

p(d|Sn1, Sn2 , Sh,M1) =
N/2−1∏
k=0

1

det(2πC̃( fk))
e
− 1

2

∑
I,J d̃

∗
I ( fk )

(
C̃( fk )−1

)
I J
d̃J ( fk )

,

(4.22)
where

C̃( f ) = T

4

[
Sn1( f ) + Sh( f ) Sh( f )

Sh( f ) Sn2( f ) + Sh( f )

]
. (4.23)

Here k = 0, 1, . . . , N/2 − 1 labels the discrete positive frequencies. There is no
square root of the determinant in the denominator of (4.22) since the volume element
for the probability density involves both the real and imaginary parts of the Fourier
transformed data (Appendix D.6).

We do not bother to write down the maximum-likelihood estimators of the signal
and noise power spectral densities for this particular example. We will return to this
problem in Sect. 6, where we discuss the optimally-filtered cross-correlation statistic
for isotropic stochastic backgrounds. There one assumes a particular spectral shape
for the gravitational-wave power spectral density, and then simply estimates its overall
amplitude. That simplifies the analysis considerably.

4.4 Maximum-likelihood detection statistic

Let’s return to the example discussed in Sect. 4.3.1, which consists of N samples of
data in each of two detectors, having uncorrelated white noise and a common white
stochastic signal. As described in Sect. 3.4, one can calculate a frequentist detection
statistic based on the maximum-likelihood ratio:

ΛML(d) ≡ maxSn1 ,Sn2 ,Sh p(d|Sn1, Sn2 , Sh,M1)

maxSn1 ,Sn2
p(d|Sn1, Sn2 ,M0)

. (4.24)

7 Our convention for Fourier transform is h̃( f ) = ∫∞
−∞ dt e−i2π f t h(t).
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Substituting (4.12) and (4.13) for the likelihood functions and performing the maxi-
mizations yields

ΛML(d) =
[

1 − Ŝ2
h

Ŝ1 Ŝ2

]−N/2

, (4.25)

where

Ŝ1 ≡ 1

N

N∑
i=1

d2
1i = Ŝn1 + Ŝh, Ŝ2 ≡ 1

N

N∑
i=1

d2
2i = Ŝn2 + Ŝh . (4.26)

Note that the these estimators involve only autocorrelations of the data. In the absence
of a signal, they are maximum-likelihood estimators of the noise variances Sn1 and
Sn2 . But in the presence of a signal, they are maximum-likelihood estimators of the
combined variances S1 ≡ Sn1 + Sh and S2 ≡ Sn2 + Sh .

Recall that for comparison with Bayesian model selection calculations, it is
convenient to define the frequentist statistic Λ(d) as twice the logarithm of the
maximum-likelihood ratio:

Λ(d) ≡ 2 ln (ΛML(d)) = −N ln

[
1 − Ŝ2

h

Ŝ1 Ŝ2

]
. (4.27)

In the limit that the stochastic gravitational-wave signal is weak compared to the
detector noise—i.e., Sh � SnI , for I = 1, 2—the above expression reduces to

Λ(d) � Ŝ2
h

Ŝ1 Ŝ2/N
� Ŝ2

h

Ŝn1 Ŝn2/N
. (4.28)

This is just the squared signal-to-noise ratio of the cross-correlation statistic. Note also
that Ŝ2

h/Ŝ1 Ŝ2 is the normalized cross-correlation (i.e., coherence) of the data from the
two detectors. It is a measure of how well the data in detector 2matches that in detector
1.

From (4.17), we see that Λ(d) is a ratio of the square of a sum of products of Gaus-
sian random variables to the product of a sum of squares of Gaussian random variables.
This is a sufficiently complicated expression that we will estimate the distribution of
Λ(d) numerically, doing fake signal injections into many realizations of simulated
noise to build up the sampling distribution. We do this explicitly in Sect. 4.6, when
we compare the frequentist and Bayesian correlation methods for this example.

4.5 Bayesian correlation analysis

Compared to the frequentist cross-correlation analysis described above, a Bayesian
analysis is conceptually much simpler. One simply needs the likelihood functions
p(d|Sn1, Sn2 ,M0) and p(d|Sn1 , Sn2 , Sh,M1) given by (4.12) and (4.13), and joint
prior probability distributions for the signal and noise parameters. For our example,
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we will assume that the signal and noise parameters are statistically independent of
one another so that the joint prior distributions factorize into a product of priors for
the individual parameters. We use Jeffrey’s priors for the individual noise variances:

pI (SnI ) ∝ 1/SnI , I = 1, 2, (4.29)

and a flat8 prior for the signal variance:

p(Sh) = const. (4.30)

Then, using Bayes’ theorem (3.18), we obtain the joint posterior distribution:

p(Sn1 , Sn2 , Sh |d,M1) = p(d|Sn1 , Sn2 , Sh,M1)p(Sn1, Sn2 , Sh |M1)

p(d|M1)

∝ p(d|Sn1 , Sn2 , Sh,M1)
1

Sn1

1

Sn2

,

(4.31)

where p(d|M1) is the evidence (or marginalized likelihood) for the signal-plus-noise
model M1. (Similar expressions can be written down for the noise-only model M0).
The marginalized posterior distributions for the signal and noise parameters are given
by marginalizing over the other parameters. For example,

p(Sh |d,M1) ∝
∫

dSn1

Sn1

∫
dSn2

Sn2

p(d|Sn1, Sn2 , Sh,M1) (4.32)

for the signal variance Sh .
Correlations enter the Bayesian analysis via the covariance matrix C that appears

in the likelihood function p(d|Sn1 , Sn2 , Sh,M1). The covariance matrix for the data
includes the cross-detector signal correlations, as we saw in (4.15). So although one
does not explicitly construct a cross-correlation statistic in the Bayesian framework,
cross correlations do play an important role in the calculations.

4.6 Comparing frequentist and Bayesian cross-correlation methods

To explicitly compare the frequentist and Bayesian methods for handling cross-
correlations, we simulate data for the white noise, white signal example that we have
been discussing in the previous subsections. The particular realization of data that we
generate has N = 100 samples with Sn1 = 1, Sn2 = 1.5, and Sh = 0.3. Plots of the
simulated data in the two detectors are given in Fig. 16.

8 A flat prior for Sh yields more conservative (i.e., larger) upper limits for Sh than a Jeffrey’s prior, since
there is more prior weight at larger values of Sh for a flat prior than for a Jeffrey’s prior.
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Fig. 16 Simulated data in the two detectors. The detector output is shown by the black curves; the common
stochastic signal is shown by the red dashed curves

4.6.1 Frequentist analysis

The frequentist maximum-likelihood estimators (4.17) are very easy to calculate. For
the simulated data they have values:

Ŝn1 = 0.78, Ŝn2 = 1.46, Ŝh = 0.40. (4.33)

In addition
ΛML(d) = 44, Λ(d) ≡ 2 ln (ΛML(d)) = 7.6. (4.34)

The weak-signal approximation to Λ(d), given by (4.28), is significantly larger (having
a value of 14), since the injected stochastic signal for this case was relatively strong,
with the injected Sh equal to 0.3Sn1 and 0.2Sn2 . In addition, for this realization of data,
the signal variance was overestimated while both noise variances were underestimated,
leading to a much larger value than the nominal squared signal-to-noise ratio of 6.

As mentioned previously, the form (4.27) of the detection statistic Λ(d) is suffi-
ciently complicated that it was simplest to resort to numerical simulations to estimate
its sampling distribution, p(Λ|Sn1, Sn2 , Sh,M1). We took 50 values for each of Sn1 ,
Sn2 , and Sh in the interval [0, 3], and then for each of the corresponding 503 points
in parameter space, we generated 104 realizations of the data, yielding 104 values
of Λ(d). By histogramming these values for each point in parameter space, we were
able to estimate the probability density function (and also the cumulative distribution
function) for Λ.

Figure 17 shows the frequentist 90% confidence-level exclusion and inclusion
regions for our simulated data with Λobs = 7.6. The 90% confidence-level exclusion
region E90% lies above the red surface; it consists of points (Sn1, Sn2 , Sh) satisfying

Prob
(
Λ ≥ Λobs|(Sn1, Sn2 , Sh) ∈ E90%

) ≥ 0.90. (4.35)

The region below the red surface is the 90% confidence-level inclusion region I90%.
Note that construction of these regions is such that the true values of the parameters
Sn1 , Sn2 , and Sh have a 90% frequentist probability of lying in I90%. This generalizes,
to multiple parameters, the definition of the frequentist 90% confidence-level upper-
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Fig. 17 Frequentist 90% confidence-level exclusion and inclusion regions for the simulated data with
Λobs = 7.6. The 90% exclusion region E90% lies above the red surface; the 90% inclusion region I90%
lies below the red surface. The green, blue and magenta curves are projections of the Sh = 1.5, 1.0, 0.5
level surfaces of the boundary onto the (Sn1 , Sn2 ) plane

limit for a single parameter, which was discussed in detail in Sect. 3.2.3. Note that it is
not correct to simply “cut” the surface using the maximum-likelihood point estimates
Ŝn1 = 0.78 and Ŝn2 = 1.46 to obtain a single value for S90%,UL

h . One needs to include
the whole region in order to get the correct frequentist coverage.

A similar procedure can be used to estimate sampling distributions for the frequen-
tist maximum-likelihood estimators Ŝn1 , Ŝn2 , and Ŝh . From these distributions, one can
then calculate e.g., frequentist 95% confidence-level exclusion and inclusion regions
for the given point estimates. For example, (Sn1 , Sn2 , Sh) ∈ I95% for the observed point
estimate Ŝh,obs if and only if Ŝh,obs is contained in the symmetric 95% confidence-level
interval centered on the mode of the probability distribution p(Ŝh |Sn1, Sn2 , Sh,M1).
These regions again generalize to multiple parameters the definition of a frequentist
confidence interval for a single parameter, which was discussed in detail in Sect. 3.2.4.
They will be different, in general, for the different maximum-likelihood estimators.
But in order to move on to the Bayesian analysis for this example, we will leave the
explicit construction of these regions to the interested reader.

4.6.2 Bayesian analysis

For the Bayesian analysis of this example, we limit ourselves to calculating the Bayes
factor 2 lnB10(d) comparing the noise-only and signal-plus-noise models M0 and
M1, as well as the posterior distributions for the three parameters Sh , Sn1 , and Sn2 .
Following the procedure described above in Sect. 4.5 we find, for this particular real-
ization of data,

B10 = 10, 2 lnB10(d) = 4.6. (4.36)
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Fig. 18 Marginalized posterior distribution for the stochastic signal variance Sh for the signal-plus-noise
model M1. The actual value of Sh used for the simulation is shown by the grey dashed vertical line. The
95% Bayesian credible interval centered on the mode of the distribution is the grey-shaded region. For
comparison, the frequentist maximum-likelihood estimator of Sh is shown by the blue dotted vertical line

Fig. 19 Marginalized posterior distributions for the detector noise variances Sn1 (left panel) and Sn2 (right
panel) for the signal-plus-noise model M1 (blue curves) and the noise-only model M0 (green curves),
respectively. The actual values of Sn1 and Sn2 used for the simulation are shown by the grey dashed vertical
lines. The 95% Bayesian credible intervals for the signal-plus-noise modelM1 are the grey-shaded regions.
For comparison, the frequentist estimators of Sn1 and Sn2 for the two models are shown by the (blue and
green) dotted vertical lines

This Bayes factor corresponds to positive evidence (see Table 3) in favor of a correlated
stochastic signal in the data.

Figure 18 shows the marginalized posterior p(Sh |d,M1) for the stochastic signal
variance given the data d and signal-plus-noise model M1. The peak of the posterior
lies close the frequentist maximum-likelihood estimator Ŝh = 0.40 (blue dotted ver-
tical line), and easily contains the injected value in its 95% Bayesian credible interval
(grey shaded region). Figure 19 shows similar plots for the marginalized posteriors
for the noise variances Sn1 and Sn2 for both the signal-plus noise model M1 (blue
curves) and the noise-only model M0 (green curves). For comparison, the frequen-
tist maximum-likelihood estimators Ŝn1 , Ŝn2 = 0.78, 1.46 and 1.18, 1.86 for the two
models are shown by the corresponding (blue and green) dotted vertical lines. Again,
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the peaks of the Bayesian posterior distributions lie close to these values. The 95%
Bayesian credible intervals for Sn1 and Sn2 for the signal-plus-noise model M1 are
also shown (grey shaded region). These intervals easily contain the injected values for
these two parameters.

4.7 What to do when cross-correlation methods aren’t available

Cross-correlation methods can be used whenever one has two or more detectors that
respond to a common gravitational-wave signal. The beauty of such methods is that
even though a stochastic background is another source of “noise” in a single detector,
the common signal components in multiple detectors combine coherently when the
data from pairs of detectors are multiplied together and summed, as described in
Sect. 4.1. But with only a single detector, searches for a stochastic background need
some other way to distinguish the signal from the noise—e.g., a difference between
the spectra of the noise and the gravitational-wave signal, or the modulation of an
anisotropic signal due to the motion of the detector (as is expected for the confusion-
noise from galactic compact white dwarf binaries for LISA). Without some way of
differentiating instrumental noise from gravitational-wave “noise”, there is no hope
of detecting a stochastic background.

As a simple example, suppose that we have N samples of data from each of two
detectors I = 1, 2 (which we will call channels in what follows), but let’s assume that
the second channel is insensitive to the gravitational-wave signal:

d1i = hi + n1i , i = 1, 2, . . . , N ,

d2i = n2i , i = 1, 2, . . . , N .
(4.37)

Then if we make the same assumptions as before for the signal and the noise, it follows
that the likelihood function for the data d ≡ {d1i ; d2i } is given by

p(d|Sn1 , Sn2 , Sh,M1) = 1√
det(2πC)

e− 1
2 d

T C−1d , (4.38)

where

C =
[

(Sn1 + Sh)1N×N 0N×N

0N×N Sn2 1N×N

]
(4.39)

is the covariance matrix of the data. Since the off-diagonal blocks of the covariance
matrix are identically zero, it is clear that we will not be able to use the cross-correlation
methods developed in the previous sections. So we need to do something else if we
are going to extract the gravitational-wave signal from the noise.

123



Living Rev Relativ  (2017) 20:2 Page 55 of 223  2 

4.7.1 Single-detector excess power statistic

If we knew Sn1 a priori, then we could construct an excess power statistic from the
autocorrelated data to estimate the signal variance:

Ŝh ≡ 1

N

N∑
i=1

d2
1i − Sn1 . (4.40)

(This is effectively how Penzias and Wilson (1965) discovered the CMB; they observed
excess antenna noise that they could not attribute to any other known source of noise).
But as mentioned at the end of Sect. 4.3.1, typically we do not know the detector noise
well enough to use such a statistic, since the uncertainty in Sn1 is much greater than the
variance of the gravitational-wave signal that we are trying to detect. This is definitely
the case for ground-based detectors like LIGO, Virgo, etc. An exception to this “rule”
will probably be the predicted foreground signal from galactic white-dwarf binaries in
the LISA band. For frequencies below a few mHz, the gravitational-wave confusion
noise from these binaries is expected to dominate the LISA instrument noise (Hils
et al. 1990; Bender and Hils 1997; Hils and Bender 2000; Nelemans et al. 2001).

4.7.2 Null channel method

If it were possible to make an off-source measurement using detector 1, then we could
estimate the noise variance Sn1 directly from the detector output, free of contamination
from gravitational waves. Using this noise estimate, Ŝn1 , we could then define our
excess power statistic as

Ŝh ≡ 1

N

N∑
i=1

d2
1i − Ŝn1 . (4.41)

Unfortunately, such off-source measurements are not possible, since you cannot shield
a gravitational-wave detector from gravitational waves. However, in certain cases one
can construct a particular combination of the data (called a null channel) for which
the response to gravitational waves is strongly suppressed. The symmetrized Sagnac
combination of the data for LISA (Tinto et al. 2001; Hogan and Bender 2001) is one
such example.

So let us assume that channel 2 for our example is such a null channel, and let us also
assume that there is some relationship between the noise in the two channels—e.g.,
Sn1 = aSn2 , with a > 0. (For colored noise, the variances would be replaced by power
spectra and a would be replaced by a function of frequency—i.e., a transfer function
relating the noise in the two channels). To begin with, we will also assume that a is
known. Then the data from the second channel can be used as a noise calibrator for
the first channel. The frequentist estimators for this scenario are:
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Ŝn2 = 1

N

N∑
i=1

d2
2i ,

Ŝn1 = aŜn2 ,

Ŝh = 1

N

N∑
i=1

d2
1i − Ŝn1 .

(4.42)

These are the maximum-likelihood estimators of the signal and noise parameters,
derived from the likelihood (4.38) with Sn1 replaced by aSn2 . In the Bayesian frame-
work, the relation Sn1 = aSn2 is encoded in the joint prior probability distribution

p(Sn1 , Sn2) = δ(Sn1 − aSn2)p2(Sn2), (4.43)

which eliminates Sn1 as an independent variable. The marginalized posterior distribu-
tion for the signal variance Sh , assuming a flat prior ph(Sh) = const, is then

p(Sh |d) ∝
∫

dSn2 p(d|Sn1 = aSn2 , Sn2 , Sh)p2(Sn2). (4.44)

In the more realistic scenario where the transfer function a is not known a priori, but
is described by its own prior probability distribution pa(a), we have

p(Sn1, Sn2 , a) = δ(Sn1 − aSn2)pa(a)p2(Sn2) (4.45)

and

p(Sh |d) ∝
∫

da
∫

dSn2 p(d|Sn1 = aSn2 , Sn2 , Sh)pa(a)p2(Sn2). (4.46)

This integral can be done numerically given priors for Sn2 and a.
To help illustrate the above discussion, Fig. 20 shows plots of several different pos-

terior distributions for Sh , corresponding to different choices for the prior distribution
pa(a). For these plots, we chose a Jeffrey’s prior for Sn2 :

p2(Sn2) ∝ 1/Sn2 , (4.47)

and a log-normal prior for a:

p(a|μ, σ) = 1

a

1√
2πσ

e− 1
2

(ln a−μ)2

σ2 . (4.48)

The different curves correspond to different values of μ and σ :

μ ≡ ln A, A = a0, 0.67a0, 1.5a0,

σ ≡ ln Σ, Σ = 1, 1.1, 1.25, 1.5, 2,
(4.49)
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Fig. 20 Posterior distributions for Sh for the null channel analysis, corresponding to different priors for the
parameter a, which relates the instrumental noise variances in the two channels. The labels “p%, unbiased”
correspond to A = a0 and Σ = 1+ p/100; the labels “25%, biased low (or high)” correspond to A = 0.67a0
(or 1.5a0) and Σ = 1.25. The vertical grey dashed line corresponds to the injected value of Sh

where a0 denotes the nominal (true) value of a. Note that A = 0.67a0 and 1.5a0
correspond to priors for a that are biased away from its true value a = a0. Note
also that 68% of the prior distribution is contained in the region a ∈ [A/Σ, AΣ] (so
Σ = 1 corresponds to a delta-function prior—i.e., no uncertainty in a). The particular
realization that we used consisted of N = 100 samples of data (4.37) with Sh = 1,
Sn2 = 1, and Sn1 = a0Sn2 with a0 = 1. Note that for the biased priors for a (associated
with the dashed and dotted curves in Fig. 20), an under (over) estimate in a corresponds
to over (under) estimate in Sh , as Sh is effectively the difference between the estimated
variance in channel 1 anda times the estimated variance in channel 2. For this particular
realization of the data, the mode of the “0%, unbiased” posterior for Sh is about 20%
less than the injected value, Sh = 1. On average, they would agree.

5 Geometrical factors

There is geometry in the humming of the strings, there is music in the spacing
of the spheres. Pythagoras

In the previous sections, we ignored many details regarding detector response and
detector geometry. We basically assumed that the detectors were isotropic, responding
equally well to all gravitational waves, regardless of the waves’ directions of prop-
agation, frequency content, and polarization. We also ignored any loss in sensitivity
in the correlations between data from two or more detectors, due to the separation
and relative orientation of the detectors. But these details are important if we want to
design optimal (or near-optimal) data analysis algorithms to search for gravitational
waves. To specify the likelihood function, for example, requires models not only for
the gravitational-wave signal and instrument noise, but also for the response of the
detectors to the waves that a source produces.
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In this section, we fill in these details. We first discuss the response of a single
detector to an incident gravitational wave. We then show how these non-trivial detector
responses manifest themselves in the correlation between data from two or more
detectors. The results are first derived in a general setting making no assumption, for
example, about the wavelength of a gravitational wave to the characteristic size of a
detector. The general results are then specialized, as appropriate, to the case of ground-
based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar
timing arrays. We conclude this section by discussing how the motion of a detector
relative to the gravitational-wave source affects the detector response.

The approach we take in this section is similar in spirit to that of Hellings (1991),
attempting to unify the treatment of detector response functions and correlation func-
tions across different gravitational-wave detectors. Readers interested in more details
about the effect of detector geometry on the correlation of data from two or more
detectors should see the original papers by Hellings and Downs (1983) for pulsar tim-
ing arrays, and Flanagan (1993) and Christensen (1990, 1992) for ground-based laser
interferometers.

5.1 Detector response

Gravitational waves are time-varying perturbations to the background geometry of
spacetime. Since gravitational waves induce time-varying changes in the separation
between two freely-falling objects (so-called test masses), gravitational-wave detectors
are designed to be as sensitive as possible to this changing separation. For example,
a resonant bar detector acts like a giant tuning fork, which is set into oscillation
when a gravitational wave of the natural frequency of the bar is incident upon it.
These oscillations produce a stress against the equilibrium electromagnetic forces
that exist within the bar. The stress (or oscillation) is measured by a strain gauge (or
accelerometer), indicating the presence of a gravitational wave. The response for a bar
detector is thus the fractional change in length of the bar, h(t) = Δl(t)/ l, induced by
the wave. Since the length of the bar is typically much smaller than the wavelength
of a gravitational wave at the bar’s resonant frequency, the response is most easily
computed using the geodesic deviation equation (Misner et al. 1973) for the time-
varying tidal field.

In this article, we will focus our attention on beam detectors, which use electro-
magnetic radiation to monitor the separation of two or more freely-falling objects.
Spacecraft Doppler tracking, pulsar timing arrays, and ground- and space-based laser
interferometers (e.g., LIGO-like and LISA-like detectors) are all examples of beam
detectors, which can be used to search for gravitational waves (see, e.g., Section 4.2
in Sathyaprakash and Schutz 2009).

5.1.1 Spacecraft Doppler tracking

For spacecraft Doppler tracking, pulses of electromagnetic radiation are sent from one
test mass (e.g., a radio transmitting tower on Earth) to another (e.g., the Cassini probe),
and then bounced back (or coherently transponded) from the second test mass to the
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Fig. 21 A spacetime diagram
representation of ΔT (t) for a
two-way spacecraft Doppler
tracking measurement. Time
increases vertically upward. The
vertical arrows are spacetime
worldlines for the Earth and a
spacecraft. The measurement is
made at time t . The blue dotted
line shows the trajectory of a
pulse of electromagnetic
radiation in the absence of a
gravitational wave; the red solid
line shows the trajectory in the
presence of a gravitational wave

first. From the arrival times of the returning pulses, one can calculate the fractional
change in the frequency of the emitted pulses induced by a gravitational wave. The
detector response for such a measurement is thus

hdoppler(t) ≡ Δν(t)

ν0
= dΔT (t)

dt
, (5.1)

where ΔT (t) is the deviation of the round-trip travel time of a pulse away from the
value it would have had at time t in the absence of the gravitational wave. A schematic
representation of ΔT (t) for spacecraft Doppler tracking is given in Fig. 21.

5.1.2 Pulsar timing

Pulsar timing is even simpler in the sense that we only have one-way transmission of
electromagnetic radiation (i.e., radio pulses are emitted by a pulsar and received by a
radio antenna on Earth). The response for such a system is simply the timing residual

htiming(t) = ΔT (t), (5.2)

which is the difference between the measured time of arrival of a radio pulse and the
expected time of arrival of the pulse (as determined from a detailed timing model for
the pulsar) due to the presence of a gravitational wave. A schematic representation of
ΔT (t) for a pulsar timing measurement is given in Fig. 22.

5.1.3 Laser interferometers

For laser interferometers like LIGO or LISA, the detector response is the phase differ-
ence in the laser light sent down and back the two arms of the interferometer. Again,
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Fig. 22 A spacetime diagram
representation of ΔT (t) for a
(one-way) pulsar timing residual
measurement. Time increases
vertically upward. The vertical
arrows are spacetime worldlines
for a pulsar and a detector on
Earth. The measurement is made
at time t . The blue dotted line
shows the trajectory of the radio
pulse in the absence of a
gravitational wave; the red solid
line shows the trajectory in the
presence of a gravitational wave

the phase difference can be calculated in terms of the change in the round-trip travel
time of the laser light from one test mass (e.g., the beam splitter) to another (e.g., one
of the end test masses). If we consider an equal-arm Michelson interferometer with
unit vectors û and v̂ pointing from the beam splitter to the end masses in each of the
arms, then

hphase(t) ≡ Δ�(t) = 2πν0ΔT (t), (5.3)

where ΔT (t) ≡ Tû,rt(t) − Tv̂,rt(t) is the difference of the round-trip travel times, and
ν0 is the frequency of the laser light. (See Fig. 23). Alternatively, one often writes the
interferometer response as a strain measurement in the two arms

hstrain(t) ≡ ΔL(t)

L
= ΔT (t)

2L/c
, (5.4)

where ΔL(t) ≡ Lû(t) − L v̂(t) is the difference of the proper lengths of the two arms
(having unperturbed length L), and ΔT (t) is the difference in round-trip travel times
as before. Thus, interferometer phase and strain response are simply related to one
another.

Calculation of ΔT (t) for beam detectors is most simply carried out in the transverse-
traceless gauge9 (Misner et al. 1973; Schutz 1985; Hartle 2003) since the unperturbed
separation L of the two test masses can be larger than or comparable to the wavelength
λ ≡ c/ f of an incident gravitational wave having frequency f . This is definitely the
case for pulsar timing where L is of order a few kpc, and for spacecraft Doppler
tracking where L is of order tens of AU. It is also the case for space-based detectors
like LISA (L = 5 × 106 km) for gravitational waves with frequencies around a tenth
of a Hz. On the other hand, for Earth-based detectors like LIGO (L = 4 km), L � λ

is a good approximation below a few kHz. Thus, the approach that we will take in the
following subsections is to calculate the detector response in general, not making any
approximation a priori regarding the relative sizes of λ = c/ f and L . To recover the
standard expressions (i.e., in the long-wavelength or small-antenna limit) for Earth-

9 See Creighton et al. (2009) and Koop and Finn (2014) for an alternative derivation of the response
of a detector to gravitational waves, which is done in terms of the curvature tensor and not the metric
perturbations.
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Fig. 23 A spacetime diagram
representation of ΔT (t) for an
equal-arm Michelson
interferometer. Time increases
vertically upward. The vertical
arrows are spacetime worldlines
for the beam splitter and two end
mirrors. The blue dotted lines
show the trajectory of the laser
light in the two arms of the
interferometer in the absence of
a gravitational wave; the red
solid lines show the trajectory in
the presence of a gravitational
wave. The black dotted arrows,
labeled û and v̂, show the
orientation of the two arms,
from beam splitter to end
mirrors, at t = 0, assuming an
opening angle of 90◦

Table 5 Characteristic properties of different beam detectors: column 2 is the arm length or characteristic
size of the detector (tens of AU for spacecraft Doppler tracking; a few kpc for pulsar timing); column 3 is
the frequency corresponding to the characteristic size of the detector, f∗ ≡ c/L; columns 4 and 5 are the
frequencies at which the detector is sensitive in units of Hz and units of f∗, respectively; and column 6 is
the relationship between f and f∗

Beam detector L (km) f∗ (Hz) f (Hz) f/ f∗ Relation

Ground-based interferometer ∼1 ∼105 10 to 104 10−4 to 10−1 f � f∗
Space-based interferometer ∼106 ∼10−1 10−4 to 10−1 10−3 to 1 f � f∗
Spacecraft Doppler tracking ∼109 ∼10−4 10−6 to 10−3 10−2 to 10 f ∼ f∗
Pulsar timing ∼1017 ∼10−12 10−9 to 10−7 103 to 105 f � f∗

based detectors like LIGO will be a simple matter of taking the limit f L/c to zero. For
reference, Table 5 summarizes the characteristic properties (i.e., size, characteristic
frequency, sensitivity band, etc.) of different beam detectors.

5.2 Calculation of response functions and antenna patterns

Gravitational waves are weak. Thus, the detector response is linear in the metric
perturbations hab(t, �x) describing the wave, and can be written as the convolution of
the metric perturbations hab(t, �x) with the impulse response Rab(t, �x) of the detector:

h(t) = (R ∗ h)(t, �x) ≡
∫ ∞

−∞
dτ

∫
d3y Rab(τ, �y)hab(t − τ, �x − �y), (5.5)
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where �x is the location of the measurement at time t . In terms of a plane-wave expansion
(2.1) of the metric perturbations, we have

h(t) =
∫ ∞

−∞
d f

∫
d2Ωn̂ R

ab( f, n̂)hab( f, n̂)ei2π f t , (5.6)

or, in the frequency domain,

h̃( f ) =
∫

d2Ωn̂ R
ab( f, n̂)hab( f, n̂), (5.7)

where10

Rab( f, n̂) = ei2π f n̂·�x/c
∫ ∞

−∞
dτ

∫
d3y Rab(τ, �y) e−i2π f (τ+n̂·�y/c). (5.8)

Further specification of the response function depends on the choice of gravitational-
wave detector as well as on the basis tensors used to expand hab( f, n̂), as we shall see
below and in the following subsections.

For example, if we work in the polarization basis, with expansion coefficients
hA( f, n̂), where A = {+,×}, then

h̃( f ) =
∫

d2Ωn̂

∑
A

RA( f, n̂)hA( f, n̂), (5.9)

with
RA( f, n̂) = Rab( f, n̂)eAab(n̂). (5.10)

If we work instead in the tensor spherical harmonic basis, with expansion coefficients
aP
(lm)( f ), where P = {G,C}, then

h̃( f ) =
∑
(lm)

∑
P

RP
(lm)( f )a

P
(lm)( f ), (5.11)

with

RP
(lm)( f ) =

∫
d2Ωn̂ Rab( f, n̂)Y P

(lm)ab(n̂). (5.12)

Note that in the polarization basis the response function RA( f, n̂) is the detector
response to a sinusoidal plane-wave with frequency f , coming from direction n̂, and

10 Some authors (Christensen 1990, 1992; Flanagan 1993; Allen and Romano 1999; Cornish and Larson
2001; Finn et al. 2009), including us in the past, have defined the response function Rab( f, n̂) without the
factor of ei2π f n̂·�x/c . If one chooses coordinates so that the measurement is made at �x = �0, then these two
definitions agree. Just be aware of this possible difference when reading the literature. To distinguish the
two definitions, we will use the symbol R̄ab( f, n̂) to denote the expression without the exponential term,
i.e., Rab( f, n̂) = ei2π f n̂·�x/c R̄ab( f, n̂).
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Fig. 24 Geometry for
calculating the change in the
photon propagation time from �r1
to �r2 = r1 + Lû in the presence
of a plane gravitational wave
propagating in direction k̂

having polarization A = +,×. Plots of |RA( f, n̂)| for fixed frequency f are antenna
beam patterns for gravitational waves with polarization A. A plot of

R( f, n̂) ≡
(
|R+( f, n̂)|2 + |R×( f, n̂)|2

)1/2
(5.13)

for fixed frequency f is the beam pattern for an unpolarized gravitational wave—i.e.,
a wave having statistically equivalent + and × polarization components.

Since the previous subsection showed that the response of all beam detectors can
be written rather simply in terms of the change in the light-travel time of an elec-
tromagnetic wave propagating between two test masses, we now calculate ΔT (t) in
various scenarios and use the resulting expressions to read-off the response functions
Rab( f, n̂) for the different detectors. We also make plots of various antenna patterns.

5.2.1 One-way tracking

Consider two test masses located at position vectors �r1 and �r2 = �r1 +Lû, respectively,
in the presence of a plane gravitational wave propagating in direction k̂ = −n̂, as
shown in Fig. 24. Then the change in the light-travel time for a photon emitted at �r1
and received at �r2 at time t is given by Estabrook and Wahlquist (1975):

ΔT (t) = 1

2c
uaub

∫ L

s=0
ds hab(t (s), �x(s)), (5.14)

where the 0th-order expression for the photon trajectory can be used in hab:

t (s) = (t − L/c) + s/c, �x(s) = �r1 + sû. (5.15)
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Since hab(t, �x) = hab(t + n̂ · �x/c) for a plane wave, it is relatively easy to do the
integral. The result is

ΔT (t) =
∫ ∞

−∞
d f

1

2
uaubhab( f, n̂)

× 1

i2π f

1

1 + n̂ · û
[
ei2π f (t2+n̂·�r2/c) − ei2π f (t1+n̂·�r1/c)

]
(5.16)

=
∫ ∞

−∞
d f

1

2
uaubhab( f, n̂) ei2π f (t+n̂·�r2/c)

× 1

i2π f

1

1 + n̂ · û
[
1 − e− i2π f L

c (1+n̂·û)
]
, (5.17)

where we factored out ei2π f (t+n̂·�r2/c), corresponding to the time and location of the
measurement, to get the last line. Note that the two terms in square brackets in (5.16)
correspond to sampling the gravitational-wave phase at photon reception (location �r2
at time t2 ≡ t) and photon emission (location �r1 at time t1 ≡ t − L/c), respectively.
In the context of pulsar timing, these two terms are called the Earth term and pulsar
term, respectively.

From Eq. (5.17), we can read-off the response function for a timing residual mea-
surement, htiming(t) ≡ ΔT (t). It is

Rab
timing( f, n̂) = 1

2
uaub T�u( f, n̂ · û)ei2π f n̂·�r2/c, (5.18)

where

T�u( f, n̂ · û) ≡ 1

i2π f

1

1 + n̂ · û
[
1 − e− i2π f L

c (1+n̂·û)
]

= L

c
e− iπ f L

c (1+n̂·û) sinc

(
π f L

c
[1 + n̂ · û]

) (5.19)

is the timing transfer function for one-way photon propagation along �u = Lû. (Here
sinc x ≡ sin x/x). If we choose �r2 to be the origin of coordinates, then T�u( f, n̂ · û)

contains all the frequency-dependence of the timing response. For example, for normal
incidence of the gravitational wave (n̂ · û = 0), |T�u( f, 0)| = (L/c) |sinc(π f L/c)|.
Figure 25 is a plot of |T�u( f, 0)| versus frequency on a logarithmic frequency scale.

If we choose instead to measure the fractional Doppler frequency shift of the incom-
ing photons, then we need to differentiate the timing response with respect to t as
indicated in (5.1). This simply pulls-down a factor of i2π f from the exponential in
ΔT (t), leading to

Rab
doppler( f, n̂) = i2π f Rab

timing( f, n̂). (5.20)

Thus, the frequency-dependence of the Doppler frequency response is i2π f times the
timing transfer function T�u( f, n̂ · û). All of the above remarks are relevant for pulsar
timing and one-way spacecraft Doppler tracking.

In Fig. 26 we plot the antenna beam pattern (5.13) for unpolarized gravitational
waves for a one-way tracking Doppler frequency measurement (e.g., pulsar timing)
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Fig. 25 Magnitude of the
one-way tracking timing transfer
function |T�u( f, 0)| for normal
incidence of the gravitational
wave, plotted on a logarithmic
frequency scale. Nulls in the
transfer function occur at
frequencies equal to integer
multiples of c/L

Fig. 26 Antenna pattern for
unpolarized gravitational waves
for a one-way tracking Doppler
frequency measurement with
û = −ẑ. The gravitational waves
propagate toward the origin. The
3-d antenna pattern is axially
symmetric around û

with û = −ẑ. For this calculation, we chose �r2 = 0 and ignored the exponential (i.e.,
‘pulsar’) term in the timing transfer function, which yields

RA
doppler( f, n̂) = 1

2

uaub

1 + û · n̂ e
A
ab(n̂) (Earth term only), (5.21)

for the A = +,× polarization modes. Setting û = −ẑ and taking the gravitational
waves to propagate inward (toward the origin), we find

Rdoppler(n̂) = 1

2
(1 + cos θ), (5.22)

which is axially symmetric around û. The response is maximum when the photon and
the gravitational wave both propagate in the same direction.

Figure 27 shows plots of the real parts of the individual polarization basis response
functions (5.21), represented as color bar plots on a Mollweide projection of the sky.
For this plot we chose the pulsar to be located in the direction (θ, φ) = (50◦, 60◦).
(The direction p̂ to the pulsar is given by p̂ = −û). The imaginary parts of both
response functions are identically zero, so are not shown in the figure.
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Fig. 27 Mollweide projections of the response functions R+
doppler(n̂), R×

doppler(n̂), for one-way tracking
Doppler frequency measurements corresponding to a pulsar located in the direction of the white star (θ, φ) =
(50◦, 60◦). The imaginary parts of both response functions are identically zero, so are not shown above

Making the same approximations as above, we can also calculate the correspond-
ing Doppler-frequency response functions for the gradient and curl tensor spherical
harmonic components {aGlm( f ), aClm( f )} by performing the integration in (5.12). As
shown in Gair et al. (2014), this leads to11

RG
(lm)( f ) = 2π (2)NlYlm( p̂), RC

(lm)( f ) = 0, (5.23)

where (2)Nl is given by (2.8) and p̂ = −û is the direction on the sky to a pulsar. Note,
somewhat surprisingly, that the curl response is identically zero. We will discuss the
consequences of this result in more detail in Sect. 7.5.6, in the context of phase-coherent
mapping of anisotropic gravitational-wave backgrounds.

5.2.2 Two-way tracking

To calculate ΔT (t) for two-way spacecraft Doppler tracking, we need to generalize
the calculation of the previous subsection to include a return trip of the photon from
�r2 back to �r1. This can be done by simply summing the expressions for the one-way
timing residuals:

ΔT (t) = ΔT12(t − L/c) + ΔT21(t) (5.24)

where the subscripts on the ΔT ’s on the right-hand side of the above equation indicate
the direction of one-way photon propagation (e.g., 12 indicates photon propagation
from test mass 1 to test mass 2), and the arguments of ΔT12 and ΔT21 indicate when
the photon arrived at test mass 2 and test mass 1, respectively. Doing this calculation

11 There is a factor of (−1)l difference between RG
(lm)

( f ) in (5.23) and (92) in Gair et al. (2014). The
difference is due to the change in expressing the response functions in terms of the direction to the
gravitational-wave source, n̂, as opposed to the direction of gravitational-wave propagation, k̂ = −n̂.
Appendix H provides expressions relating the response functions calculated using these two different con-
ventions.
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leads to the following expression for the timing residual:

ΔT (t) =
∫ ∞

−∞
d f

1

2
uaubhab( f, n̂)

1

i2π f

[
1

1 − n̂ · û ei2π f (t+n̂·�r1/c)

− 2n̂ · û
1 − (n̂ · û)2 ei2π f (t−L/c+n̂·�r2/c) − 1

1 + n̂ · û ei2π f (t−2L/c+n̂·�r1/c)
]
,

(5.25)

which has three terms corresponding to the final reception of the photon at �r1 at time
t , the reflection of the photon at �r2 at time t − L/c, and the emission of the photon at
�r1 at time t − 2L/c. The timing response function is given by

Rab
timing( f, n̂) = 1

2
uaub T�u,rt( f, n̂ · û)ei2π f n̂·r1/c, (5.26)

where

T�u,rt( f, n̂ · û) ≡ L

c
e− i2π f L

c

[
e− iπ f L

c (1−n̂·û) sinc

(
π f L

c
[1 + n̂ · û]

)

+ e
iπ f L
c (1+n̂·û) sinc

(
π f L

c
[1 − n̂ · û]

)]
(5.27)

is the timing transfer function for two-way (or roundtrip) photon propagation along
�u and back. For normal incidence, the magnitude of the timing transfer function is
given by |T�u,rt( f, 0)| = (2L/c)|sinc(2π f L/c)|, which is identical to the expression
for one-way tracking with L/c replaced by 2L/c. We also note that if we choose the
origin of coordinates to be at �r1 (which we can always do for a single detector), and
if the frequency f is such that f L/c � 1, then the timing response simplifies to

Rab
timing( f, n̂) = uaub

L

c
(for f L/c � 1). (5.28)

We will use the terminology small-antenna limit (instead of long-wavelength limit) for
this type of limit, since it avoids an ambiguity that might arise if we want to compare
three or more length scales. For example, if we have two detectors that are physically
separated and the wavelength of a gravitational wave is large compared to the size of
each detector but small compared to the separation of the detectors, we would be in the
long-wavelength limit with respect to detector size but in the short-wavelength limit
with respect to detector separation. (This is actually the case for the current network
of ground-based interferometers). The terminology small-antenna, large-separation
limit is more appropriate for this case.

5.2.3 Michelson interferometer

For an equal-arm Michelson interferometer, the timing residual that we calculate is
the difference in the round-trip light-travel times down and back each of the arms.
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Fig. 28 Geometry for calculating the difference in the round-trip light-travel times in the two arms of a
Michelson interferometer: k̂ = −n̂ is the direction of propagation for a plane gravitational wave; û and
v̂ are unit vectors that point from the vertex of the interferometer (e.g., the beam splitter) to the two end
masses; and L denotes the lengths of each of the arms in the absence of a gravitational wave

(See Fig. 28). If we let �u and �v denote the vectors pointing from e.g., the beam splitter
to the two end mirrors for LIGO, or from one spacecraft to the other two spacecraft
for LISA, then12

ΔT (t) ≡ T�u,rt(t) − T�v,rt(t) = ΔT�u,rt(t) − ΔT�v,rt(t), (5.29)

where the last equality is valid for an equal-arm interferometer. But we just calculated
these single-arm round-trip ΔT ’s in the previous section. Thus, the timing response
of an equal-arm Michelson is simply

Rab
timing( f, n̂) = 1

2

[
uaub T�u,rt( f, n̂ · û) − vavb T�v,rt( f, n̂ · v̂)

]
, (5.30)

where we have chosen the origin of coordinates to be at the vertex of the interferometer.
The phase and strain responses of a Michelson are related to the timing response by
constant multiplicative factors, cf. (5.3) and (5.4), so that

Rab
phase( f, n̂) = 2πν0R

ab
timing( f, n̂),

Rab
strain( f, n̂) = Rab

timing( f, n̂)/(2L/c),
(5.31)

where ν0 is the frequency of the laser. Note that in the small-antenna limit, which is
valid for the LIGO detectors below a few kHz, the strain response is given by

Rab
strain( f, n̂) = 1

2
(uaub − vavb) (for f L/c � 1). (5.32)

Plots of the antenna patterns for the strain response to A = +,× polarized gravitational
waves are given in Fig. 29, for both the small-antenna limit (where we simply set
f = 0) and at the free-spectral range of the interferometer, f = ffsr ≡ c/(2L).

12 Although Fig. 28 shows û and v̂ making right angles with one another, the following calculation is valid
for û and v̂ separated by an arbitrary angle.
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Fig. 29 Antenna patterns for Michelson interferometer strain response |R+
strain| and |R×

strain| evaluated in
the small-antenna limit, f = 0 (top two plots) and at the free-spectral range frequency, f = c/(2L) (bottom
two plots). The interferometer arms point in the x̂ and ŷ directions. Note the change in the scale of the axes
between the top and bottom two plots

Similar plots of the antenna patterns for unpolarized gravitational waves are given in
Fig. 30. In Fig. 31 we show colorbar plots of the antenna patterns for the strain response
to unpolarized gravitational waves for the LIGO Hanford and Virgo interferometers
(located in Hanford, WA and Cascina, Italy, respectively), again evaluated in the small-
antenna limit.

We can also calculate the strain response of an interferometer to the gradient and
curl tensor spherical harmonic components {aG(lm)( f ), a

C
(lm)( f )} by performing the

integration in (5.12). As shown in Appendix E of Gair et al. (2014), this leads to

RG
(lm)( f ) = δl2

4π

5

√
1

3

[
Y2m(û) − Y2m(v̂)

]
, RC

(lm)( f ) = 0, (5.33)

for an interferometer in the small-antenna limit, where the vertex is at the origin of
coordinates, and û, v̂ are unit vectors pointing in the direction of the interferometer
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Fig. 30 Antenna pattern for Michelson interferometer strain response to unpolarized gravitational waves
evaluated in the small-antenna limit, f = 0 (left plot) and at the free-spectral range frequency, f = c/(2L)

(right plot). The interferometer arms point in the x̂ and ŷ directions. Note the change in the scale of the
axes between the two plots

arms. Similar to (5.23) for pulsar timing, the curl response is again identically zero.
We will discuss the consequences of this result in more detail in Sect. 7.5.7, in the
context of phase-coherent mapping of anisotropic gravitational-wave backgrounds.

5.3 Overlap functions

As mentioned in Sect. 4, a stochastic gravitational-wave background manifests itself
as a non-vanishing correlation between the data taken by two or more detectors. This
correlation differs, in general, from that due to instrumental noise, allowing us to dis-
tinguish between a stochastic gravitational-wave signal and other noise sources. In this
section, we calculate the expected correlation due to a gravitational-wave background,
allowing for non-trivial detector response functions and non-trivial detector geometry.
Interested readers can find more details in Hellings and Downs (1983), Christensen
(1990, 1992), Flanagan (1993), and Finn et al. (2009).

5.3.1 Definition

Let dI and dJ denote the data taken by two detectors labeled by I and J . In the presence
of a gravitational wave, these data will have the form

dI = hI + nI ,

dJ = hJ + nJ ,
(5.34)

where hI,J denote the response of detectors I , J to the gravitational wave, and nI,J
denote the contribution from instrumental noise. If the instrumental noise in the two
detectors are uncorrelated with one another, it follows that the expected correlation of
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Fig. 31 Antenna patterns for the strain response to unpolarized gravitational waves for the LIGO Hanford
(top panel) and Virgo (bottom panel) interferometers evaluated in the small-antenna limit. The antenna
patterns are represented as colorbar plots on a Mollweide projection of the Earth. Note that the maxima
of the antenna patterns (the centers of the red regions) are directly above (and below) the location of the
two interferometers—in Hanford, WA and Cascina, Italy, respectively. The blue regions correspond to the
minima of the antenna patterns—i.e., the ‘dimples’ in the left panel plot of Fig. 30

the data is just the expected correlation of the detector responses, 〈dI dJ 〉 = 〈hI h J 〉. If
we also assume that the gravitational wave is due to a stationary, Gaussian, isotropic,
and unpolarized stochastic background, then

〈hI (t)hJ (t
′)〉 = 1

2

∫ ∞

−∞
d f ei2π f (t−t ′)
I J ( f )Sh( f ), (5.35)

where Sh( f ) is the one-sided strain power spectral density of the gravitational-wave
background, computed from the expectation values of the Fourier components of the
metric perturbations (2.14), and


I J ( f ) ≡ 1

8π

∫
d2Ωn̂

∑
A

RA
I ( f, n̂)RA

J
∗( f, n̂) (5.36)
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is the so-called overlap function for the two detectors I , J written in terms of the
polarization-basis response function RA

I,J ( f, n̂),13 where A = {+,×}. In terms of the

tensor spherical harmonic-basis response functions RP
I,J (lm)( f ), we would have


I J ( f ) = 1

8π

∑
(lm)

∑
P

RP
I (lm)( f )R

P∗
J (lm)( f ), (5.37)

where P = {G,C} for the gradient and curl tensor spherical harmonic components.

5.3.2 Interpretation

The overlap function 
I J ( f ) quantifies the reduction in sensitivity of the cross-
correlation to a stochastic gravitational-wave background due to the non-trivial
response of the detectors and their separation and orientation relative to one another.
This meaning of the overlap function is most easily seen in the frequency domain,
where (5.35) becomes

〈h̃ I ( f )h̃
∗
J ( f

′)〉 = 1

2
δ( f − f ′) 
I J ( f )Sh( f ). (5.38)

This implies
C̃hI h J ( f ) = 
I J ( f )Sh( f ), (5.39)

where C̃hI h J ( f ) is the (one-sided) cross-spectrum of the response in the two detectors.
Thus, 
I J ( f ) can be interpreted as the transfer function between gravitational-wave
strain power Sh( f ) and detector response cross-power C̃hI h J ( f ).

Expression (5.36) for the overlap function involves four length scales: the lengths
of the two detectors, L I and L J , which appear in the response functions RA

I,J ( f, n̂);
the separation of the detectors, s ≡ |�xI − �xJ |, which appears in the exponential factor;
and the wavelength of the gravitational waves, λ = c/ f . In general, one has to evaluate
the integral in (5.36) numerically, due to the non-trivial frequency dependence of the
response functions. However, as we shall see in Sect. 5.4, in certain limiting cases
of the ratio of these length scales, we can do the integral analytically and obtain
relatively simple expressions for the overlap function in terms of spherical Bessel
or trigonometric functions. This is the case for ground-based interferometers, which
operate in the small-antenna limit—i.e., f L/c � 1 for both detectors, even though
the separation can be large compared to the wavelength, f s/c � 1. It is also the case
for pulsar timing arrays, which operate in the large-antenna, small-separation limit,

13 Recall from Footnote 10 that the phase factors ei2π f n̂·�xI,J /c are already contained in our definition of
the response functions RA

I,J ( f, k). If we explicitly display this dependence then


I J ( f ) ≡ 1

8π

∫
d2Ωn̂

∑
A

R̄A
I ( f, n̂)R̄ A

J
∗( f, n̂)ei2π f n̂·(�xI−�xJ )/c,

where R̄ A
I,J ( f, n̂) ≡ R̄ab

I,J ( f, n̂)eAab(n̂). One often sees this latter expression for 
I J ( f ) in the literature.
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since f L/c � 1 for each pulsar and f s/c � 1 for different radio receivers on Earth.
(The Earth effectively resides at the solar system barycenter relative to the wavelength
of the gravitational waves relevant for pulsar timing).

5.3.3 Normalization

It is often convenient to define a normalized overlap function γI J ( f ) ∝ 
I J ( f ) by
requiring that γI J (0) = 1 for two detectors that are co-located and co-aligned. For
the strain response of two identical equal-arm Michelson interferometers, this leads
to the relation

γI J ( f ) = 5

sin2 β

I J ( f ) (5.40)

where β is the opening angle between the two arms (π/2 for LIGO and π/3 for LISA).

5.3.4 Auto-correlated response

To obtain the auto-correlated response of a single detector, we can simply set I = J in
the previous expressions. This means that the gravitational-wave strain power Sh( f )
and the detector response power PhI ( f ) in detector I are related by

PhI ( f ) = 
I I ( f )Sh( f ), (5.41)

where


I I ( f ) = 1

8π

∫
d2Ωn̂

∑
A

|RA
I ( f, n̂)|2. (5.42)

Note that 
I I ( f ) is just the square of the antenna pattern for the response to unpolarized
gravitational waves integrated over the whole sky. A plot of the normalized transfer
function γI I ( f ) for the strain response of an equal-arm Michelson interferometer is
shown in Fig. 32. Compared to Fig. 25 for the timing transfer function |T�u( f, 0)| for
one-way photon propagation evaluated at normal incidence of the gravitational wave,
we see that the relevant frequency scale for an equal-arm Michelson is c/(2L) (as
opposed to c/L) due to the round-trip motion of the photons. Also, the hard nulls in
Fig. 25 have been softened into dips due to averaging of the waves over the whole
sky. The high-frequency ‘bumps’ for γI I ( f ) are lower than those for |T�u( f, 0)| due
to the squaring of |RA

I ( f, n̂)| which enters into the definition of 
I I ( f ) (and γI I ( f )).
Figure 33 is an extended version of Fig. 32, with the appropriate frequency ranges for
ground-based interferometers (like LIGO), space-based interferometers (like LISA),
spacecraft Doppler tracking, and pulsar timing searches indicated on the plot. See also
Table 5 for more details.
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Fig. 32 A plot of the
normalized transfer function
γI I ( f ) for the strain response of
an equal-arm Michelson
interferometer. The dips in the
transfer function occur around
integer multiples of c/(2L)

Fig. 33 An extension of Fig. 32
to lower and higher frequencies,
and plotted on a log–log scale.
The position of the labels show
the relative location of the
frequency bands for
gravitational-wave searches
using ground-based
interferometers like LIGO,
space-based interferometers like
LISA, spacecraft Doppler
tracking, and pulsar timing
arrays, expressed in units of
c/(2L). See also Table 5 for
more details

5.4 Examples of overlap functions

5.4.1 LHO-LLO overlap function

As mentioned above, Earth-based interferometers like LIGO operate in the small-
antenna limit where f L/c � 1. This implies that the associated response functions
are well-approximated by the expression in (5.32). If we denote the unit vectors along
the two arms of one Earth-based interferometer by û1 and v̂1, and the corresponding
unit vectors of a second Earth-based interferometer by û2 and v̂2, then the strain
responses in the two interferometers are simply

RA
1,strain( f, n̂) � Dab

1 eAab(n̂)ei2π f n̂·�x1/c,

RA
2,strain( f, n̂) � Dab

2 eAab(n̂)ei2π f n̂·�x2/c,
(5.43)

where

Dab
1 ≡ 1

2

(
ua1u

b
1 − va1vb1

)
, Dab

2 ≡ 1

2

(
ua2u

b
2 − va2vb2

)
, (5.44)
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and �x1 and �x2 denote the vertices of the two interferometers. The tensors Dab
1 , Dab

2
defined above are called detector tensors; they are symmetric and trace-free with
respect to their ab indices. In terms of the detector tensors, the overlap function
becomes


12( f ) = Dab
1 Dcd

2 
abcd(Δ�x), (5.45)

where


abcd(Δ�x) ≡
∫

d2Ωn̂

∑
A

eAab(n̂)eAcd(n̂) e−i2π f n̂·Δ�x/c (5.46)

and Δ�x ≡ �x2 − �x1 is the separation vector connecting the two vertices. We will also
define:

α ≡ 2π f s/c, s ≡ |Δ�x |, ŝ ≡ Δ�x/s. (5.47)

Thus, in the small-antenna limit, the orientation-dependence of the overlap function

12( f ) is encoded in the detector tensors Dab

1 , Dab
2 , while the separation-dependence

is encoded in 
abcd(Δ�x).
Note that 
abcd is a tensor which is symmetric under the interchanges a ↔ b,

c ↔ d, and ab ↔ cd; it is also trace-free with respect to the ab and cd index pairs.
The most general expression that we construct for 
abcd(Δ�x) given δab, sa , and its
symmetry properties is:


abcd(Δ�x) = A(α)δabδcd + B(α)(δacδbd + δbcδad) + C(α)(δabscsd + δcdsasb)

+ D(α)(δacsbsd + δadsbsc + δbcsasd + δbdsasc) + E(α)sasbscsd .

(5.48)

By contracting the above expression with tensors of the form δabδcd , (δacδbd+δbcδad),
. . ., sasbscsd , we obtain a linear system of equations for A, B, . . . , E , which we can
solve in terms of scalar integrals involving contractions of the products of the polar-
ization tensors, eAab(n̂)eAcd(n̂), with various combinations of δab and sa . As shown in
Flanagan (1993) and Allen and Romano (1999), these integrals can be done analyti-
cally, leading to ⎡

⎢⎢⎢⎢⎣

A(α)

B(α)

C(α)

D(α)

E(α)

⎤
⎥⎥⎥⎥⎦ = 1

2α2

⎡
⎢⎢⎢⎢⎣

−5α2 10α 5
5α2 −10α 5
5α2 −10α −25

−5α2 20α −25
5α2 −50α 175

⎤
⎥⎥⎥⎥⎦

⎡
⎣ j0(α)

j1(α)

j2(α)

⎤
⎦ , (5.49)

where j0(α), j1(α), and j2(α) are the standard spherical Bessel functions (Abramowitz
and Stegun 1972). With these explicit expressions for A, B, . . . , E in hand, all that is
left to do is to contract the right-hand side of (5.48) with Dab

1 Dcd
2 to obtain 
12( f ).

If we only assume that the detector tensors are symmetric,14 then all terms contribute
(Coughlin and Harms 2014):

14 This is needed, for example, to calculate the overlap functions for an array of seismometers in the small-
antenna limit (Coughlin and Harms 2014). For this case, the detector tensors are simply Dab

I ≡ uaI u
b
I ,

where û I is a unit vector pointing along the sensitive direction of the I th seismometer.
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Fig. 34 Overlap function for the LIGO Hanford-LIGO Livinston cross-correlation in the small-antenna
limit. Left panel linear frequency scale. Right panel logarithmic frequency scale


12( f ) = A(α)Tr (D1)Tr (D2) + 2B(α)Dab
1 D2ab

+ C(α)
[
Tr (D1)D

ab
2 + Tr (D2)D

ab
1

]
sasb

+ 4D(α)Dab
1 D2a

csbsc + E(α)Dab
1 Dcd

2 sasbscsd .

(5.50)

For symmetric, trace-free detector tensors, as is the case for ground-based interfer-
ometers, there is no contribution from the A and C terms. Thus, in the small-antenna
limit, the overlap function for the strain response of two equal-arm Michelson inter-
ferometers can be written as a sum of the first three spherical Bessel functions with
coefficients that depend on the product of the frequency and separation of the two
detectors. (The analytic expression for the overlap function can also be derived using
(5.37), which involves the tensor spherical harmonic response functions. A detailed
derivation using these response functions is given in Romano et al., 2015).

Figure 34 is a plot of the normalized overlap function for the strain response of the
4-km LIGO interferometers in Hanford, WA and Livingston, LA. There are several
things to note about the plot: (i) The overlap function is negative as f → 0. This is
because the arms of the Hanford and Livingston interferometers are rotated by 90◦
with respect to one another. (ii) The magnitude of the overlap function at f = 0 is less
than unity—i.e., |γHL(0)| = 0.89, even though the overlap function was normalized.
This is because the planes of the Hanford and Livingston interferometers are not
identical; these two detectors are separated by 27.2◦ as seen from the center of the
Earth. (iii) The first zero of the overlap function occurs just above 60 Hz. This is
roughly equal to c/(2s) = 50 Hz, where s = 3000 km is the separation between
the two interferometers. Note that f = c/(2s) is the frequency of a gravitational
wave that has a wavelength equal to twice the separation of the two sites. For lower
frequencies, the two interferometers will be driven (on average) by the same positive
(or negative) part of the incident gravitational wave. For slightly higher frequencies,
one interferometer will be driven by the positive (or negative) part of the incident
wave, while the other interferometer will be driven by the negative (or positive) part.
The zeros of the overlap function correspond to the transitions between the in-phase
and out-of-phase excitations of the two interferometers.
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Fig. 35 Hexagram configuration for the cross-correlation of two LISA-like detectors, relevant for the
proposed Big-Bang Observer space mission. Spacecraft, which house lasers and freely-falling test masses,
are located at each vertex of the hexagram. The vectors �x1 and �x2 denote the vertices of two equal-arm
Michelson interferometers, with opening angle β = 60◦. Image reproduced with permission from Cornish
and Larson (2001), copyright by IOP

Fig. 36 Plot of the normalized
overlap function for strain
response for the hexagram
configuration shown in Fig. 35

5.4.2 Big-bang observer overlap function

As a second example, we consider the overlap function between two LISA-like con-
stellations oriented in a hexagram (i.e., ‘six-pointed star’) configuration as shown in
Fig. 35. This is one of the configurations being considered for the Big-Bang Observer
(BBO), which is a proposed space mission designed to detect or put stringent limits
on a cosmologically-generated gravitational-wave background (Phinney et al. 2004).
The arm lengths of the two interferometers, with vertices �x1 and �x2, are taken to be
L = 5 × 106 km. The opening angle for the two interferometers is β = 60◦. For this
example, we calculate the normalized overlap function for strain response numerically,
since the small-antenna limit is not valid for the high-frequency end of the sensitivity
band. A plot of the normalized overlap function is given in Fig. 36.
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5.4.3 Pulsar timing overlap function (Hellings and Downs curve)

As our final example, we consider the overlap function for timing residual measure-
ments from an array of N pulsars, labeled by index I = 1, 2, . . . , N . Each pulsar
defines a one-way tracking beam detector with the position of pulsar I at �pI and
the position of detector I (i.e., a radio receiver on Earth) by �xI . For convenience,
we will take the origin of coordinates to lie at the solar system barycenter. Since the
diameter of the Earth (∼104 km) and its distance from the Sun (∼108 km) are both
small compared to the wavelength of gravitational waves relevant for pulsar timing
(λ = c/ f ∼ 1013 km), we can effectively set �xI ≈ �xJ ≈ �0 in the argument of the
exponential term that enters expression (5.36) for the overlap function. Thus,


I J ( f ) = 1

(2π f )2

∫
d2Ωn̂

∑
A

1

2
uaI u

b
I e
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J e
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1 + n̂ · û I

1
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2π f L I

c (1+n̂·û I )
] [

1 −�������
e+i

2π f L J
c (1+n̂·û J )

]
,

(5.51)

where the unit vectors û I , û J are defined by �xI = �pI +L I û I , where L I is the distance
to pulsar I . But since �xI ≈ �0, it follows that û I and û J are just unit vectors pointing
from the location of pulsars I and J toward the solar system barycenter. For distinct
pulsars (I �= J ), we can ignore the exponential terms in the square brackets, since
f L/c � 1 for L ∼ 1 kpc (=3 × 1016 km) implies that e−i2π f L I (1+n̂·û I )/c and its
product with the corresponding term for pulsar J are rapidly varying functions of n̂
and do not contribute significantly when integrated over the whole sky (Hellings and
Downs 1983; Anholm et al. 2009). (For a single pulsar (I = J ), the product of the two
exponential terms equals 1 and hence cannot be ignored). With these simplifications,
the integral can be done analytically (Hellings and Downs 1983; Anholm et al. 2009;
Jenet and Romano 2015). The result is


I J ( f ) = 1

(2π f )2

1

3
χ(ζI J ), (5.52)

where

χ(ζI J ) ≡ 3

2

(
1 − cos ζI J

2

)
ln

(
1 − cos ζI J

2

)
− 1

4

(
1 − cos ζI J

2

)
+ 1

2
+ 1

2
δI J ,

(5.53)
and ζI J is the angle between the two pulsars I and J relative to the solar system
barycenter. (For Doppler frequency measurements, the overlap function is independent
of frequency, 
I J = χ(ζI J )/3). χ(ζ ) is the Hellings and Downs function (Hellings
and Downs 1983); it depends only on the angular separation of a pair of pulsars. The
normalization was chosen so that for a single pulsar, χ(0) = 1 (for two distinct pulsars
occupying the same angular position on the sky, χ(0) = 0.5). A plot of the Hellings
and Downs curve is given in Fig. 37.
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Fig. 37 Plot of the Hellings and
Downs curve as a function of the
angular separation between two
distinct pulsars

A couple of remarks are in order: (i) The Hellings and Downs curve is independent
of frequency; it is a function of theangle ζ between different pulsar pairs. This contrasts
with the overlap functions for the two LIGO interferometers and for BBO given in
Figs. 34 and 36. These overlap functions were calculated for a fixed pair of detectors;
they are functions instead of the frequency of the gravitational wave. (ii) The value
of the Hellings and Downs function χ(ζI J ) for a pair of pulsars I , J can be written
as a Legendre series in the cosine of the angle between the two pulsars. This follows
immediately if one uses (5.37) for the overlap function and (5.23) for the pulsar
timing response functions in the tensor spherical harmonic basis. As shown in Gair
et al. (2014):

χ(ζI J ) = 3

4

∞∑
l=2

((2)Nl)
2(2l + 1)Pl( p̂I · p̂ j ), (5.54)

where p̂I and p̂J are unit vectors that point in the directions to the two pulsars. A
Legendre series expansion out to lmax = 4 (i.e., only three terms) gives very good
agreement with the exact expression for the Hellings and Downs function, except for
very small angular separations. This is illustrated in Fig. 38.

5.5 Moving detectors

So far, we have ignored any time-dependence in the detector response introduced by
the motion of the detectors relative to the gravitational-wave source. In general, this
relative motion produces a modulation in both the amplitude and the phase of the
response of a detector to a monochromatic, plane-fronted gravitational wave (Cut-
ler 1998). For Earth-based interferometers like LIGO, the modulation is due to both
the Earth’s daily rotation and yearly orbital motion around the Sun. For space-based
interferometers like LISA, the modulation is due to the motion of the individual space-
craft as they orbit the Sun with a period of 1 year. For example, for the original LISA
design, three spacecraft fly in an equilateral-triangle configuration around the Sun.
The center-of-mass (or guiding center) of the configuration moves in a circular orbit
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Fig. 38 Comparison of the
exact expression of the Hellings
and Downs curve (black) with
Legendre series approximations
for different values of lmax. The
blue, green, and red curves
correspond to lmax = 2, 3, and
4, respectively

Fig. 39 Original LISA configuration: the center-of-mass of the equilateral-triangle configuration of space-
crafts orbits the Sun in a circle of radius 1 AU, 20◦ behind Earth, while the configuration ‘cartwheels’ in
retrograde motion about the center-of-mass, also with a period of 1 year. [Figure adapted from Cornish and
Larson (2001)]

of radius 1 AU, at an angle of 20◦ behind Earth, while the configuration ‘cartwheels’ in
retrograde motion about the guiding center, also with a period of 1 year (see Fig. 39).

5.5.1 Monochromatic plane waves

The phase modulation of a monochromatic plane wave will have contributions from
both the time-varying orientation of the detector as well as the detector’s transla-
tional motion relative the source. The time-varying orientation leads to changes in the
response of the detector to the + and × polarization components of the wave, |R+h+|
and |R×h×|. The translational motion leads to a Doppler shift in the observed fre-
quency of the wave, which is proportional to v/c times the nominal frequency, where
v is velocity of the detector relative to the source:

ΔD f = 1

2π

dϕD(t)

dt
= − f n̂ · �v(t)/c. (5.55)

For example, for a monochromatic source with f = 100 Hz observed by ground-based
detectors like LIGO, the Earth’s daily rotational motion (v ≈ 500 m/s) produces
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Fig. 40 The time-domain output of a particular Michelson combination, X (t), of the LISA data over a 2-
year period. The contribution from the detector noise is shown in black. The combined output, consisting of
both detector noise and the confusion noise from the Galactic population of compact white-dwarf binaries,
is shown in red. The modulation in the amplitude is due to the time-varying orientation of the LISA
constellation as it performs a ‘cart-wheel’ in its 1-year orbit around the Sun (Fig. 39). The amplitude of
the output is largest when the main lobes of LISA’s antenna pattern points in the general direction of the
galactic center. (Data provided by Matt Benacquista)

a Doppler shift of order ∼10−4 Hz, while the Earth’s yearly orbital motion (v ≈
3 × 104 m/s), produces a shift of order ∼10−2 Hz. A matched-filter search for a
sinusoid must take this latter modulation into account, as the frequency shift is larger
than the width of a frequency bin for a typical search for such a signal.

5.5.2 Stochastic backgrounds

For stochastic gravitational-wave backgrounds, things are slightly more complicated as
the signal is an incoherent sum of sinusoidal plane waves having different amplitudes,
frequencies, and phases, and coming from different directions on the sky (2.1). But
since the signal is broad-band, the Doppler shift associated with the phase modulation
of the individual component plane waves is not important, as the gravitational-wave
signal power is (at worst) shuffled into nearby bins.15 On the other hand, the amplitude
modulation of the signal, due to the time-varying orientation of a detector, can be sig-
nificant if the background is anisotropic—i.e., stronger coming from certain directions
on the sky than from others. (We will discuss searches for anisotropic backgrounds
in detail in Sect. 7). As the lobes of the antenna pattern sweep through the “hot” and
“cold” spots of the anisotropic background, the amplitude of the signal is modulated
in time.

15 Actually, the bin size for a typical LIGO search for a stochastic background is larger than the ∼10−2 Hz
Doppler shift due to the Earth’s orbital motion around the Sun.
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Fig. 41 A single frame of an animation showing the time evolution of the LISA antenna pattern, represented
as a colorbar plot on a Mollweide projection of the sky in ecliptic coordinates. Maxima (minima) of the
antenna pattern are shown by the red (blue) regions. The full animation corresponds to a period of 1 year.
To view the animation, please go to the online version of this review article at http://dx.doi.org/10.1007/
s41114-017-0004-1

Figure 40 shows the expected time-domain output of a particular Michelson com-
bination, X (t), of the LISA data over a 5-year period. The combined signal (red)
consists of both detector noise (black) and the confusion-limited gravitational-wave
signal from the galactic population of compact white-dwarf binaries. At frequencies
∼10−4 −10−3 Hz, which corresponds to the lower end of LISA’s sensitivity band, the
contribution from these binaries dominates the detector noise. The modulation of the
detector output is clearly visible in the figure. The peaks in amplitude are more than
50% larger than the minimima; they repeat on a 6 month time scale, as expected from
LISA’s yearly orbital motion around the Sun (Fig. 39).

Figure 41 is a single frame of an animation showing the time evolution of the LISA
antenna pattern, represented as a colorbar plot on a Mollweide projection of the sky
in ecliptic coordinates. The peaks in the detector output that we saw earlier in Fig. 40
correspond to those times when the maxima of the antenna pattern point in the general
direction of the galactic center, (lon, lat) = (−93.3◦,−5.6◦) in ecliptic coordinates.16

The motion of the LISA constellation was taken from Cutler (1998), and the antenna
pattern was calculated for the X -Michelson combination of the LISA data, assuming
the small-antenna approximation for the interferometer response functions. The full
animation corresponds to LISA’s orbital period of 1 year. Go to http://dx.doi.org/10.
1007/s41114-017-0004-1 to view the animation.

5.5.3 Rotational and orbital motion of Earth-based detectors

As mentioned above, given the broad-band nature of a stochastic signal, the Doppler
shift associated with the motion of a detector does not play an important role for
stochastic background searches. This means that we can effectively ignore the velocity
of a detector, and treat its motion as quasi-static. So, for example, the motion of a
single Earth-based detector like LIGO can be thought of as synthesizing a set of static

16 In equatorial coordinates, the galactic center is located at (ra, dec) = (−6h15m, −29◦).
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virtual detectors located along an approximately circular ring 1 AU from the solar
system barycenter (Romano et al. 2015). Each virtual detector in this set observes the
gravitational-wave background from a different spatial location and with a different
orientation.

As described in Romano et al. (2015), the relevant time-scale for a set of virtual
detectors is the time over which measurements made by the different virtual detectors
are correlated with one another. Basically, we want two neighboring virtual detectors
to be spaced far enough apart that they provide independent information about the
background. For a gravitational wave of frequency f , the minimal separation corre-
sponds to |Δ�x | ≈ λ/2, where λ = c/ f is the wavelength of the gravitational wave. For
smaller separations, the two detectors will be driven in coincidence (on average), as
discussed in item (iii) at the very end of Sect. 5.4.1. Writing |Δ�x | = vΔt and solving
for Δt yields

Δt ≈ λ

2v
= c

2v f
≡ tcorr, (5.56)

where tcorr is the correlation time-scale. For Δt � tcorr, the measurements taken
by the two virtual detectors will be correlated with one another; for Δt � tcorr the
measurements will be uncorrelated with one another.

As a concrete example, let us consider a gravitational wave having frequency f =
100 Hz, and calculate the correlation time scale for the Earth’s rotational and orbital
motion, treated independently. Since v ≈ 500 m/s for daily rotation and v ≈ 3 ×
104 m/s for orbital motion, we get

tcorr ≈ 3000 s (rotational motion),

tcorr ≈ 50 s (orbital motion).
(5.57)

Thus, the orbital motion of the Earth around the Sun will more rapidly synthesize a
large network of independent detectors from the motion of a single detector, compared
to just rotational motion.

We can confirm these approximate results by plotting the overlap function at
f = 100 Hz for two virtual interferometers synthesized by the Earth’s rotational
and orbital motion as function of time. This is done in Fig. 42, assuming an isotropic
and unpolarized stochastic background, and using the small-antenna approximation
to calculate the detector response functions. The left-hand plot is for a set of virtual
interferometers synthesized by the daily rotation of a detector located on the Earth’s
equator, with no orbital motion. The center of the Earth is fixed at the solar system
barycenter, and the virtual interferometers have one arm pointing North and the other
pointing East. One sees from the plot that the virtual interferometers decorrelate on a
timescale of roughly an hour, consistent with (5.57), and recorrelate after 24 h when
the original detector returns to its starting position. The right-hand plot is for a set
of virtual interferometers at 1 AU from the solar system barycenter, associated with
Earth’s yearly orbital motion. There is no rotational motion for this case, as the inter-
ferometers are located at the center of the Earth in its orbit around the Sun, with the
orientation of the interferometer arms unchanged by the orbital motion. Here we see
that the virtual interferometers decorrelate on a timescale of roughly 1 min, again
consistent with (5.57). They will recorrelate only after 1 year (not shown on the plot).
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Fig. 42 Overlap function at f = 100 Hz for two virtual interferometers as a function of time. The left-
hand plot is for a set of virtual interferometers located on Earth’s equator, associated with Earth’s daily
rotational motion. The right-hand plot is for a set of virtual interferometers at 1 AU from the SSB, associated
with Earth’s yearly orbital motion. The first zero-crossing times in these two plots are consistent with the
correlation times given in (5.57). Image reproduced with permission from Romano et al. (2015), copyright
by APS

Since the orbital velocity of the Earth is much larger than the velocity of a detector
on the surface of the Earth due to the Earth’s daily rotational motion, the virtual inter-
ferometers associated with orbital motion build up a larger separation and decorrelate
on a much shorter time scale.

We will return to this idea of using the motion of a detector to synthesize a set
of static virtual detectors when we discuss a phase-coherent approach for mapping
anisotropic gravitational-wave backgrounds in Sect. 7.5.

6 Optimal filtering

Filters are for cigarettes and coffee. Cassandra Clare

Optimal filtering, in its most simple form, is a method of combining data so as to
extremize some quantity of interest. The optimality criterion depends on the particular
application, but for signal processing, one typically wants to: (i) maximize the detection
probability for a fixed rate of false alarms, (ii) maximize the signal-to-noise ratio of
some test statistic, or (iii) find the minimal variance, unbiased estimator of some
quantity. Finding such optimal combinations plays a key role in both Bayesian and
frequentist approaches to statistical inference (Sect. 3), and it is an important tool
for every data analyst. For a Bayesian, the optimal combinations are often implicitly
contained in the likelihood function, while for a frequentist, optimal filtering is usually
more explicit, as there is much more freedom in the construction of a statistic.

In this section, we give several simple examples of optimal (or matched) filtering
for deterministic signals, and we then show how the standard optimally-filtered cross-
correlation statistic (Allen 1997; Allen and Romano 1999) for an Gaussian-stationary,
unpolarized, isotropic gravitational-wave background can be derived as a matched-
filter statistic for the expected cross-correlation. This derivation of the optimally-
filtered cross-correlation statistic differs from the standard derivation given, e.g., in
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Allen (1997), but it illustrates a connection between searches for deterministic and
stochastic signals, which is one of the goals of this review article.

6.1 Optimal combination of independent measurements

As a simple explicit example, suppose we have N independent measurements

di = a + ni , i = 1, 2, . . . , N , (6.1)

where a is some astrophysical parameter that we want to estimate and ni are (indepen-
dent) noise terms. Assuming the noise has zero mean and known variance σ 2

i (which
can be different from measurement to measurement), it follows that

〈di 〉 = a, Var(di ) ≡ 〈d2
i 〉 − 〈di 〉2 = σ 2

i . (6.2)

The goal is to find a linear combination of the data

â ≡
∑
i

λi di (6.3)

that is optimal in the sense of being an unbiased, minimal variance estimator of a.
Unbiased (i.e., 〈â〉 = a) implies ∑

i

λi = 1, (6.4)

while minimum variance implies

Var(â) ≡ σ 2
â =

∑
i

λ2
i σ

2
i = minimum. (6.5)

Since (6.4) is a constraint that must hold when we minimize the variance, we can use
Lagrange’s method of undetermined multipliers (Boas 2006) and minimize instead

f (λi ,Λ) ≡
∑
i

λ2
i σ

2
i + Λ

(
1 −

∑
i

λi

)
(6.6)

with respect to both λi and Λ. The final result is:

λi =
⎛
⎝∑

j

1

σ 2
j

⎞
⎠

−1
1

σ 2
i

(6.7)

so that

â =
⎛
⎝∑

j

1

σ 2
j

⎞
⎠

−1 ∑
i

di
σ 2
i

. (6.8)
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Thus, the linear combination is a weighted average that gives less weight to the noiser
measurements (i.e., those with large variance σ 2

i ). The variance of the optimal com-
bination is

σ 2
â =

⎛
⎝∑

j

1

σ 2
j

⎞
⎠

−1

. (6.9)

If the individual variances happen to be equal (i.e., σ 2
i ≡ σ 2), then the above expres-

sions reduce to â = N−1 ∑
i di and σ 2

â = σ 2/N , which are the standard formulas for
the sample mean and the reduction in the variance for N independent and identically-
distributed measurements as we saw in Sect. 3.5.

The above results can also be derived by maximizing the likelihood function

p(d|a, σ 2
1 , σ 2

2 , . . . , σ 2
N ) = 1

(2π)N/2
√

σ 2
1 σ 2

2 . . . σ 2
N

exp

[
−1

2

N∑
i=1

(di − a)2

σ 2
i

]

(6.10)
with respect to the signal parameter a, assuming that the noise terms ni are Gaussian-
distributed and independent of one another. In fact, similar to what we showed in
Sect. 3.5, one can rewrite the argument of the exponential so that

p(d|a, σ 2
1 , σ 2

2 , . . . , σ 2
N ) ∝ exp

[
−1

2

(a − â)2

σ 2
â

]
, (6.11)

where â and σ 2
â are given by (6.8) and (6.9), respectively. From this expression, it

immediately follows that â maximizes the likelihood, and also the posterior distribution
of a, if the prior for a is flat.

6.2 Correlated measurements

Suppose the N measurements di are correlated, so that the covariance matrix C has
non-zero elements

Ci j ≡ 〈did j 〉 − 〈di 〉〈d j 〉 (6.12)

when i �= j . Again, we want to find a linear combination (6.3) that is unbiased and
has minimum variance

σ 2
â =

∑
i

∑
j

λiλ jCi j . (6.13)

By following the same Lagrange multiplier procedure described in the previous sub-
section, one can show that the optimal estimator is

â =
(∑

k

∑
l

(
C−1

)
kl

)−1 ∑
i

∑
j

(
C−1

)
i j
di . (6.14)
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Thus, the weighting factors 1/σ 2
i of the previous subsection are replaced by∑

j (C
−1)i j . Note that for uncorrelated measurements, Ci j = δi jσ

2
i , so the above

expression for â reduces to that found previously in (6.8).
Note that although (6.14) shows how to optimally combine data that are correlated

with one another, it turns out that for most practical purposes one can get by using
expressions like (6.8) and (6.18) below, which are valid for uncorrelated data. This
is because the values of the Fourier transform of a stationary random process are
uncorrelated for different frequency bins. Basically, the Fourier transform is a rotation
in data space to a basis in which the covariance matrix is diagonal; this is called a
Karhunen–Loeve transformation. (See also Appendix D.6). This is one of the reasons
why much of signal processing is done in the frequency domain.

6.3 Matched filter

Suppose that the astrophysical signal is not constant but also has a ‘shape’ hi so that

di = ahi + ni , i = 1, 2, . . . , N . (6.15)

We will assume that the hi are known, so that the only unknown signal parameter is
a. We will also assume that the different measurements are independent, as will be
the case for a stationary random process in the frequency domain. Since 〈di 〉 = ahi
is not a constant, the analysis of the previous subsection does not immediately apply.
However, if we simply rescale di by hi , we obtain a new set of measurements

d̄i ≡ di/hi (6.16)

for which
〈d̄i 〉 = a, Var(d̄i ) ≡ σ̄ 2

i = σ 2
i /h2

i , (6.17)

so that the previous analysis is now valid. Thus,

â =
⎛
⎝∑

j

1

σ̄ 2
j

⎞
⎠

−1 ∑
i

d̄i
σ̄ 2
i

=
⎛
⎝∑

j

h2
j

σ 2
j

⎞
⎠

−1 ∑
i

hi di
σ 2
i

(6.18)

is the optimal estimator of a.
The above expression for â is often called a matched filter (Wainstein and Zubakov

1971) since the data di are projected onto the expected signal shape hi (as well as
weighted by the inverse of the noise variance σ 2

i ). The particular combination

Qi ≡ hi/σ
2
i (6.19)
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multiplying di is the optimal filter for this analysis.17 When there are many possible
candidate signal shapes, one constructs a template bank—i.e., a collection of possible
shapes against which the data compared. By normalizing each of the templates so that∑

i (h
2
i /σ

2
i ) = 1, the signal-to-noise ratio of the matched filter

ρ̂(h) ≡
∑
i

hi di
σ 2
i

, (6.20)

or its square, can be used as a frequentist detection statistic. That is, the maximum
value of ρ̂(h) over the space of templates {hi } is compared against some threshold
ρ∗ (chosen so that the false alarm probability is below some acceptable value). If the
maximum signal-to-noise ratio exceeds the threshold, then one claims detection of the
signal with a certain level of confidence. The shape of the detected signal is that which
corresponds to the maximum matched-filter signal-to-noise ratio.

6.4 Optimal filtering for a stochastic background

As noted by Fricke (2006), the above results can be used to derive the optimal cross-
correlation statistic for the stochastic background search. (A more standard derivation
can be found, e.g., in Allen 1997). To see this, consider a cross-correlation search
for a Gaussian-stationary, unpolarized, isotropic gravitational-wave background using
two detectors having uncorrelated noise. Let T be the total observation time of the
measurement. In the frequency domain, the measurements are given by the values of
the complex-valued cross-correlation

x( f ) = d̃1( f )d̃
∗
2 ( f ) (6.21)

where d̃I ( f ), I = 1, 2 are the Fourier transforms of the time-series output of the two
detectors:

d1(t) = h1(t) + n1(t),

d2(t) = h2(t) + n2(t).
(6.22)

The x( f ) for different frequencies correspond to the measurements di of the previous
subsections. Since we are assuming uncorrelated detector noise,

〈x( f )〉 = 〈h̃1( f )h̃
∗
2( f )〉 = T

2

12( f )Sh( f ), (6.23)

where Sh( f ) is the power spectral density of the stochastic background signal, and

12( f ) is the overlap function for the two detectors.18 In the weak-signal limit, the

17 For correlated measurements, Qi = ∑
j (C̄

−1)i j /hi where C̄−1 is the inverse of the re-scaled covari-

ance matrix C̄i j ≡ Ci j /(hi h j ).
18 The last equality in (6.23) follows from (5.38) with the Dirac delta function δ( f − f ′) replaced by its
finite-time version δT ( f − f ′) = T sinc[π( f − f ′)T ], which equals T when f = f ′.
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covariance matrix is dominated by the diagonal terms:

C f f ′ ≡ 〈x( f )x∗( f ′)〉 − 〈x( f )〉〈x∗( f ′)〉
≈ 〈ñ1( f )ñ

∗
1( f

′)〉〈ñ∗
2( f )ñ2( f

′)〉
= T

4
Pn1( f )Pn2( f ) δ( f − f ′),

(6.24)

where PnI ( f ) are the 1-sided power spectral densities of the noise in the two detectors:

〈ñ I ( f )ñ∗
I ( f

′)〉 = 1

2
PnI ( f ) δ( f − f ′). (6.25)

Thus, in this approximation

∫ ∞

−∞
d f ′ (C−1) f f ′ ≈ 4

T

1

Pn1( f )Pn2( f )
. (6.26)

Now, suppose we are searching for a stochastic background with a power-law spectrum

Ωgw( f ) = Ωβ

(
f

fref

)β

, (6.27)

whose amplitude Ωβ we would like to estimate. Then, according to (2.18),

Sh( f ) = 3H2
0

2π2

Ωβ

f 3
ref

(
f

fref

)β−3

= ΩβHβ( f ), (6.28)

where

Hβ( f ) ≡ 3H2
0

2π2

1

f 3
ref

(
f

fref

)β−3

. (6.29)

Using the above form of Sh( f ) and (6.23), we see that

T

2

12( f )Hβ( f ) ←→ hi (6.30)

is the expected signal ‘shape’ hi in the notation of the previous subsection. Given
(6.26) and (6.30), it is now a simple matter to show that

Ω̂β = N
∫ ∞

−∞
d f


12( f )Hβ( f )

Pn1( f )Pn2( f )
d̃1( f )d̃

∗
2 ( f ), (6.31)

where

N ≡
[
T

2

∫ ∞

−∞
d f


2
12( f )H

2
β ( f )

Pn1( f )Pn2( f )

]−1

. (6.32)
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The variance and expected signal-to-noise ratio of the estimator Ω̂β are:

σ 2
Ω̂β

=
[
T
∫ ∞

−∞
d f


2
12( f )H

2
β ( f )

Pn1( f )Pn2( f )

]−1

, (6.33)

and

ρ = √
T

[∫ ∞

−∞
d f


2
12( f )S

2
h( f )

Pn1( f )Pn2( f )

]1/2

. (6.34)

The combination

Q̃( f ) ≡ N 
12( f )Hβ( f )

Pn1( f )Pn2( f )
(6.35)

multiplying d̃1( f )d̃∗
2 ( f ) in (6.31) is the standard optimal filter (see, e.g., Allen 1997;

Allen and Romano 1999), which was derived in those references for a flat spectrum,
β = 0. The optimally-filtered cross-correlation statistic, denoted S in Allen (1997)
and Allen and Romano (1999), is given by S = Ω̂0T .

6.4.1 Optimal estimators for individual frequency bins

As shown in Aasi et al. (2015), we can also construct estimators of the amplitude Ωβ

of a power-law spectrum using cross-correlation data for individual frequency bins,
of width Δ f , centered at each (positive) frequency f :

Ω̂β( f ) ≡ 2

T

�[d̃1( f )d̃∗
2 ( f )]


12( f )Hβ( f )
. (6.36)

Note that these estimators are just the measured values of the cross-spectrum divided
by the expected spectral shape of the cross-correlation due to a gravitational-wave
background with spectral index β. In the above expression, T is the duration of the
data segments used in calculating the Fourier transforms d̃1( f ), d̃2( f ); and 
12( f ) is
the overlap function for the two detectors.

In the absence of correlated noise, the above estimators are optimal in the sense
that they are unbiased estimators of Ωβ and have minimal variance for a single bin:

σ 2
Ω̂β

( f ) ≈ 1

2TΔ f

Pn1( f )Pn2( f )


2
12( f )H

2
β ( f )

, (6.37)

where we assumed the weak-signal limit to obtain the approximate equality for the
variance. For a frequency band consisting of many bins of width Δ f , we can opti-
mally combine the individual estimators Ω̂β( f ) using the standard 1/σ 2-weighting
discussed earlier:

Ω̂β ≡
∑

f σ−2
Ω̂β

( f )Ω̂β( f )
∑

f ′ σ−2
Ω̂β

( f ′)
, σ 2

Ω̂β
≡
⎡
⎣∑

f

σ−2
Ω̂β

( f )

⎤
⎦

−1

. (6.38)
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The expressions for Ω̂β and σ 2
Ω̂β

obtained in this way reproduce the standard optimal

filter expressions (6.31) and (6.33) in the limit where Δ f → d f and the sums are
replaced by integrals.

6.4.2 More general parameter estimation

The analyses in the previous two subsections take as given the spectral shape of an
isotropic stochastic background, and then construct estimators of its overall amplitude.
But it is also possible to construct estimators of both the amplitude and spectral index
of the background. One simply treats these as free parameters in the signal model e.g.,
when constructing the likelihood function. Interested readers should see Mandic et al.
(2012) for details.

7 Anisotropic backgrounds

Sameness is the mother of disgust, variety the cure. Francesco Petrarch

An anisotropic background of gravitational radiation has preferred directions on the
sky—the associated signal is stronger coming from certain directions (“hot” spots)
than from others (“cold” spots). The anisotropy is produced primarily by sources
that follow the local distribution of matter in the universe (e.g., compact white-dwarf
binaries in our galaxy), as opposed to sources at cosmological distances (e.g., cosmic
strings or quantum fluctuations in the gravitational field amplified by inflation Allen,
1997; Maggiore, 2000), which would produce an isotropic background. This means
that the measured distribution of gravitational-wave power on the sky can be used to
discriminate between cosmologically-generated backgrounds, produced in the very
early Universe, and astrophysically-generated backgrounds, produced by more recent
populations of astrophysical sources. In addition, an anisotropic distribution of power
may allow us to detect the gravitational-wave signal in the first place; as the lobes
of the antenna pattern of a detector sweep across the “hot” and “cold” spots of the
anisotropic distribution, the amplitude of the signal is modulated in time, while the
detector noise remains unaffected (Adams and Cornish 2010).

In this section, we describe several different approaches for searching for anisotropic
backgrounds of gravitational waves: The first approach (described in Sect. 7.2) looks
for modulations in the correlated output of a pair of detectors, at harmonics of the
rotational or orbital frequency of the detectors (e.g., daily rotational motion for
ground-based detectors like LIGO, Virgo, etc., or yearly orbital motion for space-based
detectors like LISA). This approach assumes a known distribution of gravitational-
wave power P(n̂), and filters the data so as to maximize the signal-to-noise ratio of
the harmonics of the correlated signal. The second approach (Sect. 7.3) constructs
maximum-likelihood estimates of the gravitational-wave power on the sky based on
cross-correlated data from a network of detectors. This approach produces sky maps
of P(n̂), analogous to sky maps of temperature anisotropy in the cosmic microwave
background radiation. The third approach (Sect. 7.4) constructs frequentist detection
statistics for either an unknown or an assumed distribution of gravitational-wave power
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on the sky. The fourth and final approach we describe (Sect. 7.5) attempts to measure
both the amplitude and phase of the gravitational-wave background at each point on
the sky, making minimal assumptions about the statistical properties of the signal. This
latter approach produces sky maps of the real and imaginary parts of the random fields
h+( f, n̂) and h×( f, n̂), from which the power in the backgroundP(n̂) = |h+|2+|h×|2
is just one of many quantities that can be estimated from the measured data.

Numerous papers have been written over the last ≈20 years on the problem of
detecting anisotropic stochastic backgrounds, starting with the seminal paper by Allen
and Ottewill (1997), which laid the foundation for much of the work that followed.
Readers interested in more details should see Allen and Ottewill (1997) regarding
modulations of the cross-correlation statistic at harmonics of the Earth’s rotational
frequency; Ballmer (2006a, b), Mitra et al. (2008), Thrane et al. (2009), Mingarelli et al.
(2013) and Taylor and Gair (2013) for maximum-likelihood estimates of gravitational-
wave power; Thrane et al. (2009) and Talukder et al. (2011) for maximum-likelihood
ratio detection statistics; and Gair et al. (2014), Cornish and van Haasteren (2014)
and Romano et al. (2015) regarding phase-coherent mapping. For results of actual
analyses of initial LIGO data and pulsar timing data for anisotropic backgrounds, see
Abadie et al. (2011) and Taylor et al. (2015) and Sect. 10.2.5.

Note that we will not discuss in any detail methods to detect anisotropic backgrounds
using space-based interferometers like LISA or the Big-Bang Observer (BBO). As
mentioned in Sect. 5.5.2, the confusion noise from the galactic population of compact
white dwarf binaries is a guaranteed source of anisotropy for such detectors. At low
frequencies, measurements made using a single LISA will be sensitive to only the
l = 0, 2, 4 components of the background, while cross-correlating data from two
independent LISA-type detectors (as in BBO) will allow for extraction of the full
range of multipole moments. The proposed data analysis methods are similar to those
that we will discuss in Sects. 7.2 and 7.3, but using the synthesized A, E , and T data
channels for a single LISA (see Sect. 9.7). Readers should see Giampieri and Polnarev
(1997), Cornish (2001), Ungarelli and Vecchio (2001), Seto (2004), Seto and Cooray
(2004), Kudoh and Taruya (2005), Edlund et al. (2005) and Taruya and Kudoh (2005)
for details.

7.1 Preliminaries

7.1.1 Quadratic expectation values

For simplicity, we will restrict our attention to Gaussian-stationary, unpolarized,
anisotropic backgrounds with quadratic expectation values given by (2.16):

〈hA( f, n̂)h∗
A′( f ′, n̂′)〉 = 1

4
P( f, n̂)δ( f − f ′)δAA′δ2(n̂, n̂′), (7.1)

where

Sh( f ) =
∫

d2Ωn̂ P( f, n̂). (7.2)
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We will also assume that P( f, n̂) factorizes

P( f, n̂) = H̄( f )P(n̂), (7.3)

so that the angular distribution of power on the sky is independent of frequency. We
will chose our normalization so that H̄( fref) = 1, where fref is a reference frequency,
typically taken to equal 100 Hz for ground-based detectors. We will also assume that
the spectral shape H̄( f ) is known, so that we only need to recover P(n̂). If we expand
the power P(n̂) in terms of spherical harmonics,

P(n̂) =
∞∑
l=0

l∑
m=−l

PlmYlm(n̂), (7.4)

then this normalization choice is equivalent to P00 = Sh( fref)/
√

4π , and has units
of (strain)2 Hz−1 sr−1, where sr ≡ rad2 is one steradian. Thus, P00 is a measure of
the isotropic component of the background, and sets the overall normalization of the
strain power spectral density Sh( f ).

7.1.2 Short-term Fourier transforms

Since the response of a detector changes as its antenna pattern sweeps across the “hot”
and “cold” spots of an anisotropic distribution, we will need to split the data taken by the
detectors into chunks of duration τ , where τ is much greater than the light-travel time
between any pair of detectors, but small enough that the detector response functions
do not change appreciably over that interval. (For Earth-based interferometers like
LIGO, τ ∼ 100 s to 1000 s is appropriate). Each chunk of data [t − τ/2, t + τ/2] will
then be Fourier transformed over the duration τ , yielding

d̃I (t; f ) =
∫ t+τ/2

t−τ/2
dt ′ dI (t ′)e−i2π f t ′ . (7.5)

This operation is often called a short-termFourier transform. Note that, in this notation,
t labels a particular time chunk, and is not a variable that is subsequently Fourier
transformed.

7.1.3 Cross-correlations

For many of the approaches that map the distribution of gravitational-wave power, it
is convenient to work with cross-correlated data from two detectors, evaluated at the
same time chunk t and frequency f :

ĈI J (t; f ) = 2

τ
d̃I (t; f )d̃∗

J (t; f ). (7.6)
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Fig. 43 Real and imaginary parts of γ ( f, n̂) (appropriately normalized) for the strain response of the 4-
km LIGO Hanford and LIGO Livingston interferometers for f = 0 Hz (top two plots) and f = 200 Hz
(bottom two plots). In the top left plot, note the large blue region in the vicinity of the two detectors,
corresponding to the anti-alignment of the Hanford and Livingston interferometers—i.e., the arms of the
two interferometers are rotated by 90◦ with respect to one another. As shown in the top right plot, there is no
imaginary component to the integrand of the overlap function at 0 Hz. The bottom two plots show multiple
positive and negative oscillations (‘lobes’), which come from the exponential factor e−i2π f n̂·Δ�x/c of the
product of the two response functions (5.43). The location of the positive and negative lobes are shifted
relative to one another for the real and imaginary parts. The separation between the lobes depends inversely
on the frequency

The factor of 2 is a convention consistent with the choice of one-sided power spectra.
Assuming uncorrelated detector noise and using expectation values given in (7.1), we
find

〈ĈI J (t; f )〉 = H̄( f )
∫

d2Ωn̂ γI J (t; f, n̂)P(n̂), (7.7)

where

γI J (t; f, n̂) ≡ 1

2

∑
A

RA
I (t; f, n̂)RA∗

J (t; f, n̂). (7.8)

Note that up to a factor of 1/(4π), the function γI J (t; , f, n̂) is just the integrand of
the isotropic overlap function 
I J ( f ) given by (5.36). In what follows, we will drop
the detector labels I J from both ĈI J (t; f ) and γI J (t; f, n̂) when there is no chance
for confusion.

Figure 43 shows maps of the real and imaginary parts of γ (t; f, n̂) (appropriately
normalized) for the strain response of the 4-km LIGO Hanford and LIGO Livingston
interferometers evaluated at f = 0 Hz (top two plots) and f = 200 Hz (bottom
two plots). (In the Earth-fixed frame, the detectors don’t move so there is no time
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Fig. 44 Top row Mollweide projections of γ (n̂) for pairs of pulsars separated on the sky by ζ = 0◦, 45◦,
90◦, 135◦, 180◦. Reddish regions correspond to positive values of γ (n̂); blueish regions correspond to
negative values of γ (n̂). Bottom Hellings and Downs curve as a function of the angular separation between
two distinct pulsars. The integral of the top plots over the whole sky equal the values of the Hellings and
Downs curve for these angular separations. (See also Fig. 37)

dependence to worry about). Note the presence of oscillations or ‘lobes’ for the f =
200 Hz plots, which come from the exponential factor e−i2π f n̂·Δ�x/c of the product of
the two response functions (5.43). For f = 0, this factor is unity.

Figure 44 is a similar plot, showing Mollweide projections of γ (t; f, n̂) for the
Earth-term-only Doppler frequency response (5.21) of pairs of pulsars separated on
the sky by ζ = 0◦, 45◦, 90◦, 135◦, 180◦. (There is no time dependence nor frequency
dependence for these functions). The bottom panel is a plot of the Hellings and Downs
curve as a function of the angular separation between a pair of Earth-pulsar baselines.
By integrating the top plots over the whole sky (appropriately normalized), one obtains
the values of the Hellings and Downs curve for those angular separations.

7.1.4 Spherical harmonic components of γ (t; f, n̂)

As first noted in Allen and Ottewill (1997), the functions γ (t; f, n̂) defined above (7.8)
play a very important role in searches for anisotropic backgrounds. For a fixed pair of
detectors at a fixed time t and for fixed frequency f , these functions are scalar fields
on the unit 2-sphere and hence can be expanded in terms of the ordinary spherical
harmonics Ylm(n̂):

γ (t; f, n̂) ≡
∞∑
l=0

l∑
m=−l

γlm(t; f )Y ∗
lm(n̂), (7.9)

or, equivalently,

123



 2 Page 96 of 223 Living Rev Relativ  (2017) 20:2 

γlm(t; f ) ≡
∫

d2Ωn̂ γ (t; f, n̂)Ylm(n̂). (7.10)

Note that this definition differs from (7.4) for Plm by a complex conjugation, but
agrees with the convention used in Allen and Ottewill (1997). In terms of the spherical
harmonic components, it follows that

∫
d2Ωn̂ γ (t; f, n̂)P(n̂) =

∞∑
l=0

l∑
m=−l

γlm(t; f )Plm, (7.11)

as a consequence of the orthogonality of the Ylm(n̂). This expression enters (7.7) for
the expected cross-correlation of the output in two detectors. As explained in Allen
and Ottewill (1997) and Thrane et al. (2009), the time dependence of γlm(t; f ) is
particularly simple:

γlm(t; f ) = γlm(0; f ) eim2π t/Tmod , (7.12)

where Tmod is the relevant modulation period associated with the motion of the detec-
tors. For example, for ground-based detectors like LIGO and Virgo, Tmod = 1 sidereal
day, since the displacement vector Δ�x(t) ≡ �x2(t)−�x1(t) connecting the vertices of the
two interferometers (and which enters the expression for the overlap function) traces
out a cone on the sky with a period of one sidereal day. If there is no time dependence,
as is the case for pulsar timing, Tmod is infinite.

Example: Earth-based interferometers
As was also shown in Allen and Ottewill (1997), one can derive analytic expressions
for γlm(t; f ) for a pair of Earth-based interferometers in the short-antenna limit. If we
set t = 0, then γlm(0; f ) can be written as a linear combination19 involving spherical
Bessel functions, jn(x)/xn (for l even) and jn(x)/xn−1 (for l odd), where x depends
on the relative separation of the two detectors, x ≡ 2π f |Δ�x |/c. The coefficients of
the expansions are complex numbers that depend on the relative orientation of the
detectors. Explicit expression for the first few spherical harmonic components for the
LIGO Hanford–LIGO Livingston pair are given below:

γ00(0; f ) = −0.0766 j0(x) − 2.1528 j1(x)/x + 2.4407 j2(x)/x
2,

γ10(0; f ) = −0.0608i j1(x) − 2.6982i j2(x)/x + 7.7217i j3(x)/x
2,

γ11(0; f ) = −(0.0519 + 0.0652i) j1(x) − (1.8621 + 1.0517i) j2(x)/x

+(4.0108 − 2.4933i) j3(x)/x
2,

γ20(0; f ) = 0.0316 j0(x) − 0.9612 j1(x)/x + 10.9038 j2(x)/x
2 − 52.7905 j3(x)/x

3,

γ21(0; f ) = −(0.0669 − 0.0532i) j0(x) − (1.9647 − 2.6145i) j1(x)

+(15.0524 − 24.7604i) j2(x)/x
2 − (36.5620 − 50.7179i) j3/x

3,

γ22(0; f ) = −(0.0186 − 0.0807i) j0(x) + (1.2473 + 1.6858i) j1(x)/x

−(12.2048 + 12.5814i) j2(x)/x
2 + (60.7859 + 12.7191i) j3(x)/x

3.

(7.13)

19 The number of terms in the expansion is given by 2 + floor(1 + l/2).
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Note that the above numerical coefficients do not agree with those in Allen and Ottewill
(1997) due to an overall normalization factor of 4π/5 and phase eimφ , where φ =
−38.52◦ is the angle between the separation vector between the vertices of the LIGO-
Hanford and LIGO-Livingston interferometers and the Greenwich meridian (Thrane
et al. 2009). Plots of the real and imaginary parts of γlm(0; f ) for l = 0, 1, 2, 3, 4 and
m ≥ 0 for the LIGO Hanford-LIGO Livingston detector pair are given in Fig. 45. For
m < 0, one can use the relation

γlm(t; f ) = (−1)l+mγl,−m(t; f ), (7.14)

which follows from the properties of the spherical harmonicsYlm(n̂) (see Appendix E).
Note that up to an overall normalization factor of 5/

√
4π , the real part of γ00(0; f )

is the Hanford-Livingston overlap function for an unpolarized, isotropic stochastic
background, shown in Fig. 34.

Example: Pulsar timing arrays
In Fig. 46, we show plots of the spherical harmonic components of γ (t; f, n̂) calculated
using the Earth-term-only Doppler-frequency response functions (5.21) for pulsar
timing. Since there is no frequency or time-dependence for these response functions,
the spherical harmonic components of γ (n̂) depend only of the angular separation ζ

between the two pulsars that define the detector pair. As shown in Mingarelli et al.
(2013) and Gair et al. (2014), these functions can be calculated analytically for all
values of l and m. A detailed derivation with all the relevant formulae can be found
in Appendix E of Gair et al. (2014); there the calculation is done in a ‘computational’
frame, where one of the pulsars is located along the z-axis and the other is in the
xz-plane, making an angle ζ with respect to the first. In this computational frame, all
of the components γlm(ζ ) are real. Note that up to an overall normalization factor20 of
3/

√
4π , the function γ00(ζ ) is just the Hellings and Downs function for an unpolarized,

isotropic stochastic background, shown in Fig. 37.

7.2 Modulations in the correlated output of two detectors

For ground-based detectors like LIGO and Virgo, an anisotropic gravitational-wave
background will modulate the correlated output of a pair of detectors at harmonics
of the Earth’s rotational frequency. It turns out that for an unpolarized, anisotropic
background, the contribution to the mth harmonic of the correlation has a frequency
dependence proportional to

H̄( f )
∞∑

l=|m|
γlm(0; f )Plm, (7.15)

20 The functions here are a factor of 1/2 smaller than those in Fig. 8 in Gair et al. (2014), due to different
definitions of γ (t; f, n̂). Compare (115) in that paper to (7.8) and (7.10) above.
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Fig. 45 Real and imaginary parts of the spherical harmonic components γlm(0; f ) for the LIGO Hanford–
LIGO Livingston detector pair. Here we show plots for l = 0, 1, 2, 3, 4 and m ≥ 0. For m < 0, use (7.14)

where Plm are the spherical harmonic components of the gravitational-wave power
on the sky P(n̂). (We are assuming here that the spherical harmonic decomposition
of P(n̂) is with respect to a coordinate system whose z-axis points along the Earth’s
rotational axis). In this section, we derive the above result following the presentation in
Allen and Ottewill (1997) and construct an optimal filter for the cross-correlation that
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(a) (b)

(d)(c)

(f)(e)

Fig. 46 Spherical harmonic component functions γlm (ζ ) for pulsar timing as a function of the angle ζ

between two distinct pulsars. Here we show plots for l = 0, 1, . . . , 5 and m ≥ 0. We used the Earth-term-
only Doppler-frequency response (5.21) to calculate these functions

maximizes the signal-to-noise ratio for the mth harmonic. This was the first concrete
approach that was proposed for detecting an anisotropic stochastic background.

7.2.1 Time-dependent cross-correlation

We start by writing down an expression (in the frequency domain) for the correlated
output of two ground-based detectors (e.g., LIGO Hanford and LIGO Livingston):

Ĉ(t) =
∫ ∞

−∞
d f Q̃(t; f )d̃1(t; f )d̃∗

2 (t; f ), (7.16)

where d̃1,2(t; f ) are (short-term) Fourier transforms (7.5) centered around t , and where
we have included a filter function Q̃(t; f ), whose specific form we will specify later.
Since the cross-correlation is periodic with a period Tmod = 1 sidereal day (due to the
motion of the detectors attached to the surface of the Earth), we can expand Ĉ(t) as a
Fourier series:
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Ĉ(t) =
∞∑

m=−∞
Ĉme

im2π t/Tmod ,

Ĉm = 1

T

∫ T

0
dt Ĉ(t)e−im2π t/Tmod .

(7.17)

Here T is the total observation time, e.g., 1 sidereal year, which we will assume for
simplicity is an integer multiple of Tmod.

Assuming as usual that the detector noise is uncorrelated across detectors, and using
the expectation values (7.1) for an unpolarized, anisotropic background, we find

〈Ĉ(t)〉 = τ

2

∫ ∞

−∞
d f Q̃(t; f )H̄( f )

∞∑
l=0

l∑
m=−l

γlm(t; f )Plm, (7.18)

where γlm(t; f ) are the spherical harmonic components of γ12(t; f, n̂). (We have
dropped the 12 indices to simplify the notation). Similarly, if we assume that the
gravitational-wave signal is weak compared to the detector noise, and that the duration
τ is also much larger than the correlation time of the detectors, then

〈Ĉ(t)Ĉ∗(t ′)〉 − 〈Ĉ(t)〉〈Ĉ∗(t ′)〉 ≈ τ

4
δ2
t t ′

∫ ∞

−∞
d f |Q̃(t; f )|2Pn1(t; f )Pn2(t; f ),

(7.19)
where Pn1(t; f ) is the one-sided power spectral density for the noise in detector
I = 1, 2 centered around t . These two results can now be cast in terms of the Fourier
components Ĉm using (7.17). Since (7.12) implies

1

T

∫ T

0
dt γlm′(t; f )e−im2π t/Tmod = δmm′ γlm(0; f ), (7.20)

we immediately obtain

〈Ĉm〉 = τ

2

∫ ∞

−∞
d f Q̃(t; f )H̄( f )

∞∑
l=|m|

γlm(0; f )Plm, (7.21)

where we used
∞∑
l=0

l∑
m=−l

=
∞∑

m=−∞

∞∑
l=|m|

. (7.22)

Similarly,

〈ĈmĈ
∗
m′ 〉 − 〈Ĉm〉〈Ĉ∗

m′ 〉 ≈ δmm′
1

T

(τ

2

)2
∫ ∞

−∞
d f |Q̃(t; f )|2Pn1(t; f )Pn2(t; f )

(7.23)
for the covariance of the estimators.
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7.2.2 Calculation of the optimal filter

To determine the optimal form of the filter Q̃(t; f ) for the mth harmonic Ĉm , we
maximize the (squared) signal-to-noise:

SNR2
m ≡ |〈Cm〉|2

〈|Ĉm |2〉 − |〈Ĉm〉|2 =
T
∣∣∣∫∞

−∞ d f Q̃(t; f )H̄( f )
∑∞

l=|m| γlm(0; f )Plm

∣∣∣2∫∞
−∞ d f |Q̃(t; f )|2Pn1(t; f )Pn2(t; f )

.

(7.24)
The above expression can be written in a more suggestive form if we introduce an
inner product on the space of complex-valued functions (Allen 1997):

(A, B) ≡
∫ ∞

−∞
d f A( f )B∗( f )Pn1(t; f )Pn2(t; f ). (7.25)

In terms of this inner product,

SNR2
m =

T
∣∣∣
(
Q̃, H̄

Pn1 Pn2

∑∞
l=|m| γlmPlm

)∣∣∣2
(Q̃, Q̃)

. (7.26)

But now the maximization problem is trivial, as it has been cast as a simple
problem in vector algebra—namely to find the vector Q̃ that maximizes the ratio
|(Q̃, A)|2/(Q̃, Q̃) for a fixed vector A. But since this ratio is proportional to the squared
cosine of the angle between Q̃ and A, it is maximized by choosing Q̃ proportional to
A. Thus,

Q̃(t; f ) ∝ H̄( f )

Pn1(t; f )Pn2(t; f )

∞∑
l=|m|

γlm(0; f )Plm (7.27)

is the form of the filter function that maximizes the SNR for the mth harmonic.
Note that this expression reduces to the standard form of the optimal filter (6.35)

for an isotropic background, Plm = δl0δm0P00. Note also that the optimal filter
assumes knowledge of both the spectral shape H̄( f ) and the angular distribution of
gravitational-wave power on the sky, Plm . So if one has some model for the expected
anisotropy (e.g., a dipole in the same direction as the cosmic microwave background),
then one can filter the cross-correlated data to be optimally sensitive to the harmonics
Ĉm induced by that anisotropy.

7.2.3 Inverse problem

In Allen and Ottewill (1997), there was no attempt to solve the inverse problem—that
is, given the measured values of the correlation harmonics, how can one infer (or
estimate) the components Plm? The first attempt to solve the inverse problem was
given in Cornish (2001), in the context of correlation measurements for both ground-
based and space-based interferometers. Further developments in solving the inverse
problem were given in subsequent papers, e.g., Ballmer (2006a, b), Mitra et al. (2008)
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and Thrane et al. (2009), which we explain in more detail in the following subsections.
Basically, these latter methods constructed frequentist maximum-likelihood estimators
for the Plm , using singular-value decomposition to ‘invert’ the Fisher matrix (or point
spread function), which maps the true gravitational-wave power distribution to the
measured distribution on the sky.

7.3 Maximum-likelihood estimates of gravitational-wave power

In this section, we describe an approach for constructing maximum-likehood estimates
of the gravitational-wave power distributionP(n̂). It is a solution to the inverse problem
discussed at the end of the previous subsection. But since a network of gravitational-
wave detectors typically does not have perfect coverage of the sky, the inversion
requires some form of regularization, which we describe below. The gravitational-
wave radiometer and spherical harmonic decomposition methods (Sect. 7.3.6) are the
two main implementations of this approach, and have been used to analyze LIGO
science data (Abadie et al. 2011; Abbott et al. 2016a).

7.3.1 Likelihood function and maximum-likelihood estimators

As shown in Sect. 7.1.3 the cross-correlated data from two detectors

ĈI J (t; f ) = 2

τ
d̃I (t; f )d̃∗

J (t; f ) (7.28)

has expectation values

〈ĈI J (t; f )〉 = H̄( f )
∫

d2Ωn̂ γI J (t; f, n̂)P(n̂). (7.29)

We can write this relation abstractly as a matrix equation

〈ĈI J 〉 = MI J P, (7.30)

where MI J ≡ H̄( f )γI J (t; f, n̂) and the matrix product is summation over directions
n̂ on the sky. The covariance matrix for the cross-correlated data is given by

Nt f,t ′ f ′ ≡ 〈ĈI J (t; f )Ĉ∗
I J (t

′; f ′)〉 − 〈ĈI J (t; f )〉〈Ĉ∗
I J (t

′; f ′)〉
≈ δt t ′δ f f ′ PnI (t; f )PnJ (t; f ),

(7.31)

where we have assumed as before that there is no cross-correlated detector noise, and
that the gravitational-wave signal is weak compared to the detector noise.

If we treat the detector noise and the gravitational-wave spectral shape H̄( f ) as
known quantities (or if we estimate the detector noise from the auto-correlated output
of each detector), then we can write down a likelihood function for the cross-correlated
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data given the signal model (7.30). Assuming a Gaussian-stationary distribution for
the noise, we have

p(Ĉ |P) ∝ exp

[
−1

2
(Ĉ − MP)†N−1(Ĉ − MP)

]
, (7.32)

where we have temporarily dropped the I J indices for notational convenience.21 Since
the gravitational-wave power distribution P enters quadratically in the exponential of
the likelihood, we can immediately write down the maximum-likelihood estimators
of P:

P̂ = F−1X, (7.33)

where
F ≡ M†N−1M, X ≡ M†N−1Ĉ . (7.34)

The (square) matrix F is called the Fisher information matrix. It is typically a singular
matrix, since the response matrix M = H̄γ usually has null directions (i.e., anisotropic
distributions of gravitational-wave power that are mapped to zero by the detector
response). Inverting F therefore requires some sort of regularization, such as singular-
value decomposition (Press et al. 1992) (Sect. 7.3.5). The vector X is the so-called
dirty map, as it represents the gravitational-wave sky as ‘seen’ by a pair of detectors.
If the spectral shape H̄( f ) that we used for our signal model exactly matches that of
the observed background, then

〈X〉 = M†N−1M P = F P. (7.35)

Thus, even in the absence of noise, a point source P(k) = δ2(n̂, n̂0) does not map
to a point source by the response of the detectors, but it maps instead to Fn̂n̂0 . This
‘blurring’ or ‘spreading’ of point sources is represented by a point spread function,
which is a characteristic feature of any imaging system. We give plots of point spread
functions for both pulsar timing arrays and ground-based interferometers in Sect. 7.3.4.

7.3.2 Extension to a network of detectors

The above results generalize to a network of detectors. One simply replaces X and F
in (7.33) by their network expressions, which are simply sums of the dirty maps and
Fisher matrices for each distinct detector pair:

X =
∑
I

∑
J>I

X I J , F =
∑
I

∑
J>I

FI J . (7.36)

21 The multiplications inside the exponential arematrixmultiplications—either summations over sky direc-
tions n̂ or summations over discrete times and frequencies, t and f .
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Explicit expressions for the dirty map and Fisher matrix for a network of detectors
are:

X ≡ Xn̂ =
∑
I

∑
J>I

∑
t

∑
f

γ ∗
I J (t; f, n̂)

H̄( f )

PnI (t; f )PnJ (t, f )
ĈI J (t; f ), (7.37)

and

F ≡ Fn̂n̂′ =
∑
I

∑
J>I

∑
t

∑
f

γ ∗
I J (t; f, n̂)

H̄2( f )

PnI (t; f )PnJ (t, f )
γI J (t; f, n̂′). (7.38)

Note that including more detectors in the network is itself a form of regularization,
as adding more detectors typically means better coverage of the sky. This tends to
‘soften’ the singularities that may exist when trying to deconvolve (i.e., invert) the
detector response.

7.3.3 Error estimates

Using (7.35) it follows that P̂ is an unbiased estimator of P:

〈P̂〉 = P. (7.39)

Similarly, in the weak-signal approximation,

〈XX†〉 − 〈X〉〈X†〉 ≈ F,

〈P̂P̂†〉 − 〈P̂〉〈P̂†〉 ≈ F−1.
(7.40)

Thus, F is the covariance matrix for the dirty map X , while F−1 is the covariance
matrix of the clean map P̂ . We will see below (Sect. 7.3.5) that regularization neces-
sarily changes these results as one cannot recover modes of P to which the detector
network is insensitive. This introduces a bias in P̂ , and changes the corresponding
elements of the covariance matrix for P̂ .

7.3.4 Point spread functions

As discussed in the previous section, the point spread function for mapping
gravitational-wave power is given by the components of the Fisher information matrix:

PSFn̂0(n̂) ≡ PSF(n̂, n̂0) = Fn̂n̂0 . (7.41)

Here n̂0 is the direction to the point source and n̂ is an arbitrary point on the sky. In
the following three figures (Figs. 47, 48, 49) we shows plots of point spread functions
for both pulsar timing arrays and the LIGO Hanford–LIGO Livingston detector pair.
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Fig. 47 Point spread functions for gravitational-wave power for pulsar timing arrays consisting of N = 2,
5, 10, 20, 25, 50 pulsars. The point source is located at the center of the maps, (θ, φ) = (90◦, 0◦), indicated
by a black dot. The pulsar locations (indicated by white stars) are randomly placed on the sky. The point
spread function becomes tighter as the number of pulsars in the array increases

Example: Pulsar timing arrays
Figure 47 shows plots of point spread functions for pulsar timing arrays consisting
of N = 2, 5, 10, 20, 25, 50 pulsars. The point source is located at the center of the
maps, indicated by a black dot. The pulsar locations (indicated by white stars) were
randomly-distributed on the sky, and we used equal-noise weighting for calculating
the point spread function. One can see that the point spread function becomes tighter
as the number of pulsars in the array increases. Figure 48 are similar plots for an
actual array of N = 20 pulsars given in Table 6. Note that the pulsar locations are
concentrated in the direction of the galactic center, (ra, dec) = (−6h15m,−29◦) in
equatorial coordinates. The point source is again located at the center of the maps,
indicated by a black dot. The left panel shows the point spread function calculated
using equal-noise weighting, while the right panel shows the point spread function
calculated using actual-noise weighting, based on the timing noise values given in the
second column of Table 6. Note that this latter plot is similar to the small-N plots in
Fig. 47, being dominated by pulsars with low timing noise—in this particular case,
J0437−4715 and J2124−3358, which have the lowest and third-lowest timing noise.

Example: Earth-based interferometers
In Fig. 49 we plot point spread functions for gravitational-wave power for the LIGO
Hanford-LIGO Livingston pair of detectors. The left-hand plot is for a point source
located at the center of the map, (θ, φ) = (90◦, 0◦), while the right-hand plot is for a
point source located at (θ, φ) = (60◦, 0◦) (indicated by black dots). We assumed equal
white-noise power spectra for the two detectors, and we combined the contributions
from 100 discrete frequencies between 0 and 100 Hz, and 100 discrete time chunks
over the course of one sidereal day. The point spread functions for the two different
point source locations are shaped, respectively, like a figure-eight with a bright region
at the center of the figure-eight pattern, and a tear drop with a bright region near the
top of the drop. These results are in agreement with Mitra et al. (2008) (see e.g., Fig. 1
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Fig. 48 Point spread functions for the array of N = 20 pulsars listed in Table 6 for both equal-noise
weighting (left panel) and actual-noise weighting (right panel), using the timing noise values in the second
column of the Table. The timing noise values were rescaled by an overall factor so that the maps for the
two different weighting schemes could be meaningfully compared with one another. The point source is
located at the center of the maps, indicated by a black dot

Table 6 Actual pulsar locations and timing noise

Pulsar name Timing noise (µs) Pulsar name Timing noise (µs)

J0437−4715 0.14 J1730−2304 0.51

J0613−0200 2.19 J1732−5049 1.81

J0711−6830 1.04 J1744−1134 0.17

J1022+1001 0.60 J1824−2452 3.62

J1024−0719 0.35 J1909−3744 0.56

J1045−4509 3.24 J1939+2134 3.58

J1600−3053 2.67 J2124−3358 0.25

J1603−7202 1.64 J2129−5721 2.55

J1643−1224 4.86 J2145−0750 0.50

J1713+0747 0.89 B1855+0900 0.70

The pulsar name specifies its location: the first four digits is right ascension (ra) in hours and minutes
(hhmm); the last four digits is declination (dec) in degrees and minutes (ddmm), with the preceding + or
− sign. The rms timing noise is in microsec

Fig. 49 Point spread functions for gravitational-wave power for the LIGO Hanford–LIGO Livingston
detector pair. Left panel point source at the center of the map, (θ, φ) = (90◦, 0◦). Right panel point source
at (θ, φ) = (60◦, 0◦)
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in that paper). Provided one combines data over a full sidereal day, the point spread
function is independent of the right ascension (i.e., azimuthal) angle of the source.
Readers should see Mitra et al. (2008) for more details, including a stationary phase
approximation for calculating the point spread function.

Angular resolution estimates
There are “rules of thumb” that can be used to estimate the angular resolution Δθ

(or size of a point spread function) for an anisotropic stochastic background search.
For cross-correlations using ground-based interferometers like LIGO, Virgo, etc., the
angular resolution of the detector network can be estimated from the diffraction limit
(Monnier 2003):

Δθ � λ

2D
= c

2 f D
, (7.42)

where f is gravitational-wave frequency and D is separation between a pair of detec-
tors. Thus, the larger the separation between detectors and the higher frequencies
searched for, the better the angular resolution. For a pulsar timing array consisting of
N pulsars, the corresponding estimate is given by

Δθ � 180◦/ lmax � 180◦/
√
N , (7.43)

where lmax is the maximum value of l for a spherical harmonic decomposition of the
background having angular features of size Δθ . The last approximate equality follows
from the fact that, at each frequency, one can extract at most N (complex) pieces of
information about the gravitational-wave background using an N -pulsar array (Boyle
and Pen 2012; Cornish and van Haasteren 2014; Gair et al. 2014); and those N pieces
of information correspond to the number of spherical harmonic components (lm) out
to lmax, so N ∼ l2max. (We will discuss this again in Sect. 7.5.4, in the context of basis
skies for a phase-coherent search for anisotropic backgrounds). Note that if we knew
the distances to the pulsars in the array and used information from the pulsar-term
contribution to the timing residuals (5.17), then Δθ for a pulsar timing array would
have the same form as (7.42), but with D now representing the Earth-pulsar distance.
See Boyle and Pen (2012) for details.

7.3.5 Singular-value decomposition

Expression (7.33) for the maximum-likelihood estimator P̂ involves the inverse of
the Fisher matrix F . But this is just a formal expression, as F is typically a singular
matrix, requiring some sort of regularization to invert. Here we describe how singular-
value decomposition (Press et al. 1992) can be used to ‘invert’ F . Since this a general
procedure, we will frame our discussion in terms of an arbitrary matrix S.

Singular value decomposition factorizes an n×m matrix S into the product of three
matrices:

S = UΣV †, (7.44)

where U and V are n × n and m ×m unitary matrices, and Σ is an n ×m rectangular
matrix with (real, non-negative) singular values σk along its diagonal, and with zeros
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everywhere else. We will assume, without loss of generality, that the singular values
are arranged from largest to smallest along the diagonal. We define the pseudo-inverse
S+ of S as

S+ ≡ VΣ+U †, (7.45)

where Σ+ is obtained by taking the reciprocal of each nonzero singular value of Σ,
leaving all the zeros in place, and then transposing the resulting matrix. Note that
when S is a square matrix with non-zero determinant, then the pseudo-inverse S+
is identical to the ordinary matrix inverse S−1. Thus, the pseudo-inverse of a matrix
generalizes the notion of ordinary inverse to non-square or singular matrices.

As a practical matter, it is important to note that if the nonzero singular values of
Σ vary over several orders of magnitude, it is usually necessary to first set to zero
(by hand) all nonzero singular values ≤ some minimum threshold value σmin (e.g.,
10−5 times that of the largest singular value). Alternatively, we can set those very
small singular values equal to the threshold value σmin. This procedure helps to reduce
the noise in the maximum-likelihood estimates, which is dominated by the modes to
which we are least sensitive.

Returning to the gravitational-wave case, the above discussion means that all of
the previous expressions for the inverse of the Fisher matrix, F−1, should actually be
written in terms of the pseudo-inverse F+. Thus,

P̂ = F+X, (7.46)

which then implies
〈P̂〉 = F+F P,

〈P̂P̂†〉 − 〈P̂〉〈P̂†〉 ≈ F+.
(7.47)

So P̂ is actually a biased estimator of P if F+ �= F−1, as was discussed in Thrane
et al. (2009).

Figure 50 is a plot of the singular values of typical Fisher matrices for differ-
ent ground-based interferometer detector pairs (Hanford–Livingston, Hanford–Virgo,
Livingston–Virgo) and a multibaseline detector network (Hanford–Livingston–Virgo).
For these examples, we chose to expand the gravitational-wave power on the sky P(n̂)

and the integrand of the overlap functions γI J (t; f, n̂) in terms of spherical harmon-
ics out to lmax = 20. (See Sect. 7.3.6 for more details about the spherical harmonic
decomposition method). This yields (lmax + 1)2 = 441 modes of gravitational-wave
sky that we would like to recover. Note how the inclusion of more detectors to the
network reduces the dynamic range of the singular values of F , hence making the
matrix less singular without any external form of regularization.

7.3.6 Radiometer and spherical harmonic decomposition methods

The gravitational-wave radiometer (Ballmer 2006a, b; Mitra et al. 2008) and spher-
ical harmonic decomposition methods (Thrane et al. 2009; Abadie et al. 2011) are
two different ways of implementing the maximum-likelihood approach for mapping
gravitational-wave power P(n̂). They differ primarily in their choice of signal model,
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Fig. 50 Singular values of typical Fisher matrices F for different ground-based interferometer detector
pairs and a multibaseline detector network. For this analysis there were 441 total modes. For each individual
detector pair, some of the singular values are (almost) null. The multibaseline network has fewer null modes,
thus acting as a natural regularizer. Image reproduced with permission from Thrane et al. (2009), copyright
by APS

and their approach for deconvolving the detector response from the underlying (true)
distribution of power on the sky.

Gravitational-wave radiometer
The radiometer method takes as its signal model a point source characterized by a
direction n̂0 and amplitude Pn̂0 :

P(n̂) = Pn̂0 δ2(n̂, n̂0). (7.48)

It is applicable to an anisotropic gravitational-wave background dominated by a limited
number of widely-separated point sources. As the number of point sources increases
or if two point sources are sufficiently close to one another, the point spread function
for the detector network will cause the separate signals to interfere with one another.
Thus, the radiometer method is not appropriate for diffuse backgrounds. Moreover,
by assuming that the signal is point-like, the radiometer method ignores correlations
between neighboring pixels on the sky, effectively side-stepping the deconvolution
problem. Explicitly, the inverse of the Fisher matrix that appears in the maximum-
likelihood estimator P̂ = F−1X is replaced by the inverse of the diagonal element
Fn̂n̂ to obtain an estimate of the point-source amplitude at n̂:

P̂n̂ = (Fn̂n̂)
−1Xn̂, (7.49)

where X is the dirty map (7.34). Thus, the radiometer method estimates the strength
of point sources at different points on the sky, ignoring any correlations between
neighboring pixels.

123



 2 Page 110 of 223 Living Rev Relativ  (2017) 20:2 

Note that for a single pair of detectors I J the above estimator (7.49) is equivalent
to an appropriately normalized cross-correlation statistic:

ĈI J (t; n̂) ≡
∫ ∞

−∞
d f QI J (t; f, n̂)d̃I (t; f )d̃∗

J (t; f ), (7.50)

with filter function

QI J (t; f, n̂) ∝ γI J (t; f, n̂) H̄( f )

PnI (t; f )PnJ (t; f )
, (7.51)

where γI J is given by (7.8). For a network of detectors, one recovers the estimator
P̂n̂ by summing the individual-baseline statistics (7.50) over both time and distinct
detector pairs, weighted by the inverse variances of the individual-baseline statistics.
See e.g., Ballmer (2006a, b) and Mitra et al. (2008) for more details.

Spherical harmonic decomposition
The spherical harmonic decomposition method is appropriate for extended anisotropic
distributions on the sky, assuming a signal model for gravitational-wave power that
includes spherical harmonic components up to some specified value of lmax:

P(n̂) =
lmax∑
l=0

l∑
m=−l

PlmYlm(n̂). (7.52)

The cutoff in the expansion at lmax corresponds to an angular scale Δθ � 180◦/ lmax.
The diffraction limit (Monnier 2003):

Δθ � λ

2D
= c

2 f D
, (7.53)

where f is the maximum gravitational-wave frequency and D is the separation between
a pair of detectors, sets an upper limit on the size of lmax, since the detector network is
not able to resolve features having smaller angular scales. For example, for the LIGO
Hanford–LIGO Livingston detector pair (D = 3000 km) and a stochastic background
having contributions out to f ∼ 500 Hz, we find lmax � 30. Alternatively, one can
use Bayesian model selection to determine the value of lmax that is most consistent
with the data.

Since the spherical harmonic method targets extended distributions of gravitational-
wave power on the sky, correlations between neighboring pixels or, equivalently,
between different spherical harmonic components must be taken into account. This is
addressed by using singular-value decomposition as described in Sect. 7.3.5 to ‘invert’
the Fisher matrix. By effectively ignoring those modes to which the detector network
is insensitive, we can construct the pseudo-inverse F+ to perform the deconvolution.
In terms of F+, we have

P̂lm =
lmax∑
l ′=0

l ′∑
m′=−l ′

F+
lm,l ′m′ Xl ′m′ (7.54)
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Fig. 51 Results of spherical harmonic decomposition analyses performed using different detector pairs and
a multibaseline detector network. The simulated anisotropic power distribution is shown in the bottom plot.
Top row clean maps for the Hanford–Livingston and Hanford–Virgo detector pairs. Second row same as the
top row, but for the Livingston–Virgo detector pair and for the Hanford–Livingston–Virgo multibaseline
detector network. For all maps lmax = 20. Image reproduced with permission from Thrane et al. (2009),
copyright by APS

for the spherical harmonic components of the maximum-likelihood estimators P̂ . The
sky map constructed from the P̂lm is called a ‘clean’ map, since the inversion removes
the detector response from the ‘dirty’ map X .

Figure 51 shows clean maps produced by the spherical harmonic decomposi-
tion method for a simulated anisotropic background distributed along the galactic
plane (Thrane et al. 2009). The injected map is the bottom plot in the figure. (All
sky maps are in equatorial coordinates). The four maps shown in the top two rows
of the figure correspond to analyses with different interferometer detector pairs
(Hanford–Livingston, Hanford–Virgo, and Livingston–Virgo) and a multibaseline
detector network (Hanford–Livingston–Virgo). Consistent with our findings in Fig. 50,
we see that the recovered map is best for the multibaseline network, whose Fisher
matrix has singular values with the smallest dynamic range. For the reconstructed
maps, F+ was calculated by keeping 2/3 of all the eigenmodes (those with the largest
singular values), setting the remaining singular values equal to the minimum value
σmin of the modes that were kept. For all cases, lmax = 20. The anisotropic background
was injected into simulated LIGO and Virgo detector noise (initial design sensitivity)
whose power spectra are shown in Fig. 52. The overall amplitude of the signal was
chosen to be large enough that it was easily detectable in 1 sidereal day’s worth of
simulated data. For additional details see Thrane et al. (2009).
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Fig. 52 The power spectral
densities used for the simulated
detector noise for the injections
described in Fig. 51. Image
reproduced with permission
from Thrane et al. (2009),
copyright by APS

7.4 Frequentist detection statistics

As discussed in Sects. 3.4 and 4.4, one can construct a frequentist detection statistic
ΛML(d) by taking the ratio of the maxima of the likelihood functions for the signal-
plus-noise model to the noise-only model. The logarithm,

Λ(d) ≡ 2 ln[ΛML(d)], (7.55)

is the squared signal-to-noise ratio of the data. If we calculate this quantity for an
anisotropic background P(n̂) using (7.32) for the signal-plus-noise model, we find

Λ(d) = P̂†FP̂, (7.56)

where P̂ are the maximum-likelihood estimators of P . As described in Sect. 3.2.1,
one can use this statistic to do frequentist hypothesis testing, comparing its observed
value Λobs to a threshold Λ∗ to decide whether or not to claim detection of a signal.

The above detection statistic can be written in several alternative forms:

Λ(d) = P̂†FP̂ = X†F−1X = 1

2

(
P̂†X + X†P̂

)
, (7.57)

where X is the ‘dirty’ map, which is related to P̂ via P̂ = F−1X . The last form
suggests a standard matched-filter statistic:

λ(d) ≡ 1

2

(
P̄†

modelX + X†P̄model

)
, (7.58)

where P̄model is an assumed distribution of gravitational-wave power on the sky, nor-
malized such that

P̄†
modelFP̄model = 1. (7.59)
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The above normalization is chosen so that if the true gravitational-wave background
has the same spectral shape H̄( f ) and the same angular distribution P̄model, then λ(d)

is an estimator of the overall amplitude of the background. In the absence of a signal,
λ(d) has zero mean and unit variance.

Such a matched-filter statistic was proposed in Appendix C of Thrane et al. (2009)
and studied in detail in Talukder et al. (2011). One nice property of this statistic is that it
does not require inverting the Fisher matrix. Hence it avoids the inherent bias (7.47) and
introduction of other uncertainties associated with the deconvolution process. Indeed,
if we are given a model of the expected anisotropy, λ(d) is the optimal statistic for
detecting its presence. Thus, λ(d) is especially good at detecting weak anisotropic
signals. See Talukder et al. (2011) for more details.

7.5 Phase-coherent mapping

Phase-coherent mapping is an approach that constructs estimates of both the amplitude
and phase of the gravitational-wave background at each point of the sky (Cornish
and van Haasteren 2014; Gair et al. 2014; Romano et al. 2015). In some sense, it
can be thought of as the “square root” of the approaches described in the previous
subsections, which attempt to measure the distribution of gravitational-wave power
P(n̂) = |h+|2 + |h2×|. The gravitational-wave signal can be characterized in terms of
either the standard polarization basis components {h+( f, n̂), h×( f, n̂)} or the tensor
spherical harmonic components {aG(lm)( f ), a

C
(lm)( f )}. In what follows we will restrict

our attention the polarization basis components, although a similar analysis can be
carried out in terms of the spherical harmonic components (Gair et al. 2014).

7.5.1 Maximum-likelihood estimators and Fisher matrix

Unlike the previous approaches, which target gravitational-wave power and hence use
cross-correlations (7.6) as their fundamental data product, phase-coherent mapping
works directly with the data from the individual detectors. In terms of the short-term
Fourier transforms defined in Sect. 7.1.2, we can write

d̃I (t; f ) =
∫

d2Ωn̂

∑
A

RA
I (t; f, n̂)hA( f, n̂) + ñ I (t; f ), (7.60)

where I labels the different detectors, and ñ I (t; f ) denotes the corresponding detector
noise. Given our assumption (7.3) that the spectral and angular dependence of the
background factorize with known spectral function H̄( f ), we can rewrite the above
equation as

d̃I (t; f ) =
∫

d2Ωn̂ H̄1/2( f )
∑
A

RA
I (t; f, n̂)hA(n̂) + ñ I (t; f ), (7.61)

123



 2 Page 114 of 223 Living Rev Relativ  (2017) 20:2 

so that the only unknowns are {h+(n̂), h×(n̂)} at different locations on the sky. We
will write this equation abstractly as a matrix equation

d = Ma + n, (7.62)

where
M ≡ {H̄1/2( f )RA

I (t; f, n̂)}, a ≡ {hA(n̂)}. (7.63)

The matrix multiplication corresponds to a sum over polarizations A and directions n̂
on the sky.

Assuming that the noise is uncorrelated across detectors, the noise covariance matrix
is given by:

NIt f,I ′t ′ f ′ ≡ 〈ñ I (t; f )ñ∗
I ′(t ′; f ′)〉 − 〈ñ I (t; f )〉〈ñ∗

I ′(t ′; f ′)〉
= τ

2
δI I ′δt t ′δ f f ′ PnI (t; f ),

(7.64)

where PnI (t; f ) is the one-sided power spectral density of the noise in detector I at
time t . Thus, we can write down a likelihood function for the data d ≡ {d̃I (t; f )}
given a:

p(d|a) ∝ exp

[
−1

2
(d − Ma)†N−1(d − Ma)

]
(7.65)

where the multiplications inside the exponential are matrix multiplications, involving
summations over detectors I , times t , and frequencies f , or summations over polar-
izations A and directions n̂ on the sky. Note that (7.65) has exactly the same form as
(7.32), so the same general remarks made in Sect. 7.3.1 apply here as well. Namely,
the maximum-likelihood estimators of a are

â = F−1X, (7.66)

where
F ≡ M†N−1M, X ≡ M†N−1d, (7.67)

are the Fisher matrices and ‘dirty’ maps for this analysis. (The definitions of M , N
here are different, of course, from those in Sect. 7.3.1). Explicit expression for X and
F are given below:

X ≡ XAn̂ = 2

τ

∑
I

∑
t

∑
f

RA∗
I (t; f, n̂)

H̄1/2( f )

PnI ( f )
d̃I (t; f ), (7.68)

and

F ≡ FAn̂,A′n̂′ = 2

τ

∑
I

∑
t

∑
f

RA∗
I (t; f, n̂)

H̄( f )

PnI ( f )
RA′
I (t; f, n̂′). (7.69)

Note that these expressions have an extra polarization index A, compared to the cor-
responding expressions, (7.37) and (7.38), for gravitational-wave power.
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7.5.2 Point spread functions

The point spread function for the above analysis can now be obtained by fixing values
for both A′ and n̂′, and letting A and n̂ vary. Since there are two polarization modes
(+ and ×), there are actually four different point spread functions for each direction
n̂′ on the sky:

PSFAA′(n̂, n̂′) = FAn̂,A′n̂′ . (7.70)

These correspond to the A = +,× responses to the A′ = +,×-polarized point sources
located in direction n̂′.

To illustrate the above procedure, we calculate point spread functions for phase-
coherent mapping, for pulsar timing arrays consisting of N = 1, 2, 5, 10, 25, 50,
100 pulsars. Figure 53 show plots of these point spread functions. The pulsars are
randomly distributed over the sky (indicated by white stars), and the point source is
located at the center of the maps (indicated by a black dot). For simplicity, we assumed
a single frequency bin, and used equal-noise weighting for calculating the point spread
functions. (In addition, there is no time dependence as the directions to the pulsars
are fixed on the sky). Different rows in the figure correspond to different numbers of
pulsars in the array. Different columns correspond to different choices for A and A′:
columns 1, 2 correspond to the A = +,× response of the pulsar timing array to an
A′ = +-polarized point source; columns 3, 4 correspond to the A = +,× response
of the pulsar timing array to an A′ = ×-polarized point source. Note that for N = 1,
the point spread functions are proportional to either R+

I (n̂) or R×
I (n̂) for that pulsar,

producing maps similar to those shown in Fig. 27. As N increases the ++ and ××
point spread functions (columns 1 and 4) become tighter around the location of the
point source, which is at the center of the maps. But since the + and × polarizations
are orthogonal, the ×+ and +× point spread functions (columns 2 and 3) have values
close to zero around the location of the point source.

7.5.3 Singular value decomposition

Just as we had to deconvolve the detector response in order to obtain the estimators P̂
for gravitational-wave power, we need to do the same for the estimators â for the phase-
coherent mapping approach. Although we could use singular-value decomposition for
the Fisher matrix F given by (7.69), we will first whiten the data, which leads us
directly to pseudo-inverse of the whitened response matrix M , (7.63). This is the
approach followed in Cornish and van Haasteren (2014) and Romano et al. (2015),
and it leads to some interesting results regarding sky-map basis vectors, which we will
describe in more detail in Sect. 7.5.4. An alternative approach involving the pseudo-
inverse of the unwhitened response matrix is given in Gair et al. (2014) and Appendix B
of Romano et al. (2015).

To whiten the data, we start by finding the Cholesky decomposition of the inverse
noise covariance matrix N−1 = LL†, where L is a lower triangular matrix. The
whitened data are then given by d̄ = L†d (since this has unit covariance matrix),
and the whitened response matrix is given by M̄ = L†M . In terms of these whitened
quantities,
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Fig. 53 Point spread functions for phase-coherent mapping, for pulsar timing arrays consisting of N = 1,
2, 5, 10, 25, 50, 100 pulsars. The point source is located at the center of the maps, (θ, φ) = (90◦, 0◦),
indicated by a black dot. The pulsar locations (indicated by white stars) are randomly placed on the sky.
Different rows correspond to different numbers of pulsars in the array. Columns 1 and 2 correspond to the
+ and × response of the pulsar timing array to a +-polarized point source; columns 3 and 4 correspond to
the + and × response of the pulsar timing array to a ×-polarized point source

F = M̄†M̄, X = M̄†d̄, (7.71)

implying
â = F−1X = (M̄†M̄)−1M†d̄ ≡ M̄+d̄. (7.72)

The last equality is a formal expression for the pseudo-inverse M̄+ since M̄†M̄ is not
necessarily invertible. But as shown in Sect. 7.3.5 it is always possible to define the
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pseudo-inverse of a matrix in terms of its singular-value decomposition. Thus, given
the singular-value decomposition:

M̄ = UΣV †, (7.73)

we have
M̄+ = VΣ+U †, (7.74)

where Σ+ is defined by the procedure described in Sect. 7.3.5. Thus,

â = M̄+d̄ = VΣ+U †d̄. (7.75)

This is the expression we need to compute to calculate the maximum-likelihood esti-
mators â for the phase-coherent mapping approach.

7.5.4 Basis skies

The singular-value decomposition of M̄ also has several nice geometrical properties.
For example, from (7.75), we see that the columns of V corresponding to the non-zero
singular values of Σ are basis vectors (which we will call basis skies) in terms of which
â can be written as a linear combination. Similarly, if write the whitened response to
the gravitational-wave background as

M̄a = UΣV †a, (7.76)

then we see that the columns of U corresponding to the non-zero singular values of Σ

can be interpreted as range vectors for the response. To be more explicit, let u(k) and
v(k) denote the kth columns of U and V , and let r be the number of non-zero singular
values of Σ. Then

â =
r∑

k=1

σ−1
k (u(k) · d̄) v(k),

M̄a =
r∑

k=1

σk(v(k) · a) u(k),

(7.77)

where the dot product of two vectors a and b is defined as a · b = a†b. If we further
expand d̄ = M̄a + n̄ in the first of these equations, then

â =
r∑

k=1

(v(k) · a)v(k) + M̄+n̄. (7.78)

This last expression involves the projection of the true gravitational-wave sky a onto
the basis skies v(k) for only the non-zero singular values of Σ.

In Fig. 54, we show plots of the real parts of the + and ×-polarization basis skies
for a pulsar timing array consisting of N = 5 pulsars randomly distributed on the
sky. The imaginary components of the basis skies are identically zero, and hence are
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Fig. 54 The real parts of the + and ×-polarization basis skies for pulsar timing array consisting of N = 5
pulsars randomly distributed on the sky. The imaginary components of the basis skies are identically zero.
The basis skies are shown in decreasing size of their singular values, from the top of the figure to the bottom
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not shown in the figure. The basis skies are shown in decreasing size of their singular
values, from top to bottom. In general, if N is the number of pulsars in the array, then
the number of basis skies is 2N (the factor of 2 corresponding to the two polarizations,
+ and ×). This means that one can extract at most 2N real pieces of information about
the gravitational-wave background with an N -pulsar array. This is typically fewer than
the number of modes of the background that we would like to recover.

7.5.5 Underdetermined reconstructions

More generally, let’s consider the case where the total number of measured data points
n is less than the number of modesm that we are trying to recover (so n < m), or where
there are certain modes of the gravitational-wave background (e.g., null skies) that our
detector network is simply insensitive to. Then, for both of these cases, the linear
system of equations that we are trying to solve, d̄ = M̄a, is underdetermined—i.e.,
there exist multiple solutions for a, which differ from (7.75) by terms of the form

anull = (1m×m − M̄+M̄)aarb, (7.79)

where aarb is an arbitrary gravitational-wave background. (Note that anull is an element
of the null space of M̄ as it maps to zero under the action of M̄). Our solution for â
given in (7.75) sets to zero those modes that we are insensitive to. Our solution also
sets to zero the variance of these modes.

In a Bayesian formulation of the problem, one needs to specify prior probability
distributions for the signal parameters, in addition to specifying the likelihood function
(7.65). For a mode of the background to which our detector network is insensitive,
the marginalized posterior for that mode will be the same as the prior, since the data
are uniformative about this mode. This is what one would expect for a mode that
is unconstrained by the data, in contrast to setting the variance equal to zero as we
do with our maximum-likelihood reconstruction. Basically, our maximum-likelihood
reconstruction does not attempt to say anything about the modes of the background
for which we have no information.

7.5.6 Pulsar timing arrays

The phase-coherent mapping approach was first developed in the context of pulsar
timing arrays (Cornish and van Haasteren 2014; Gair et al. 2014). In Cornish and
van Haasteren (2014), the analysis was done in terms of the standard polarization
components a ≡ {h+( f, n̂), h×( f, n̂)}, similar to what we described above. In Gair
et al. (2014), the analysis was done in terms of the tensor spherical harmonic com-
ponents a ≡ {aG(lm)( f ), a

C
(lm)( f )}. Now recall from (5.23) that the Earth-term-only,

Doppler-frequency response functions are given by

RG
(lm)( f ) = 2π(2)NlYlm( p̂), RC

(lm)( f ) = 0, (7.80)

where p̂ is the direction to an arbitrary pulsar. Thus, the pulsar response to curl modes
is identically zero. This means that a pulsar timing array is blind to half of all possible
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Fig. 55 Mollweide projections of the real parts of h+(n̂) for the different components of the simulated
background (panels a–c), the maximum-likelihood recovered map for a pulsar timing array consisting of
N = 100 pulsars (panel e), and the corresponding residual maps for the grad-component (panel d) and the
total simulated background (panel f). Sky maps of the imaginary part of h+(n̂) and the real and imaginary
parts of h×(n̂) are similar, and hence are not shown in this figure. Note that the maximum-likelihood
recovered map most-closely resembles the gradient component of the simulated background, since a pulsar
timing array is insensitive to the curl modes of a gravitational-wave background. Image reproduced with
permission from Gair et al. (2014), copyright by APS. a Total map (grad+curl). b Gradient component. c
Curl component. d Gradient residual map. e Max-likelihood recovered map. f Total residual map

modes of a gravitational-wave background, regardless of how many pulsars there are
in the array. Note that this statement is not restricted to the tensor spherical harmonic
analysis; it is also true in terms of the standard (+,×) polarization components, since
aG(lm)( f ) and aC(lm)( f ) are linear combinations of h+( f, n̂) and h×( f, n̂), see (2.11).
It is just that the insensivity of a pulsar timing array to half of the gravitational-wave
modes is manifest in the gradient and curl spherical harmonic basis for which (7.80)
is valid.

To explicitly demonstrate that a pulsar timing array is insensitive to the curl-
component of a gravitational-wave background, Gair et al. (2014) constructed
maximum-likelihood estimates of a simulated background containing both gradient
and curl modes. The total simulated background and its gradient and curl components
are shown in the top row (panels a–c) of Fig. 55. (Note that this is for a noiseless
simulation so as not to confuse the lack of reconstructing the curl component with the
presence of detector noise). Panel e shows the maximum-likelihood recovered map
for a pulsar timing array consisting of N = 100 pulsars randomly distributed on the
sky. Panels d and f are residual maps obtained by subtracting the maximum-likelihood
recovered map from the gradient component and the total simulated background,
respectively. Note that the maximum-likelihood recovered map resembles the gradi-
ent component of the background, consistent with the fact that a pulsar timing array
is insenstive to the curl component of a gravitational-wave background. The resid-
ual map for the gradient component (panel d) is much cleaner than the residual map
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for the total simulated background (panel f), which has angular structure that closely
resembles the curl component of the background.

7.5.7 Ground-based interferometers

The phase-coherent mapping approach can also be applied to data taken by a network
of ground-based interferometers (Romano et al. 2015). Again the analysis can be
performed in terms of either the standard +, × polarization components or the gradient
and curl spherical harmonic components. Recall from (5.33) that

RG
(lm)( f ) = δl2

4π

5

√
1

3

[
Y2m(û) − Y2m(v̂)

]
, RC

(lm)( f ) = 0, (7.81)

for a ground-based interferometer in the small-antenna limit, with its vertex at the
origin, and with unit vectors û, v̂ pointing in the direction of the interferometer arms.
At first, one might think that these expressions imply that a network of ground-based
interferometers is also blind to the curl component of a gravitational-wave background.
But (7.81) are valid only for interferometers with their vertices at the origin of coordi-
nates. Since a translation mixes gradient and curl components, the response functions
for an interferometer displaced from the origin by x̂0 are given by Romano et al.
(2015):

RG
(lm)( f ) =

2∑
m′=−2

l+2∑
L=l−2

L∑
M=−L

Fm′(û, v̂)

× 4π(−i)L jL(α)Y ∗
LM (x̂0)

(−1)m
′

2

[
(−1)l + (−1)L

]

×
√

(2 · 2 + 1)(2l + 1)(2L + 1)

4π

(
2 l L

−m′ m M

)(
2 l L
2 −2 0

)

RC
(lm)( f ) =

2∑
m′=−2

l+2∑
L=l−2

L∑
M=−L

Fm′(û, v̂)

× 4π(−i)L jL(α)Y ∗
LM (x̂0)

(−1)m
′

2i

[
(−1)l − (−1)L

]

×
√

(2 · 2 + 1)(2l + 1)(2L + 1)

4π

(
2 l L

−m′ m M

)(
2 l L
2 −2 0

)
,

(7.82)

where α ≡ 2π f |�x0|/c and jL(α) are spherical Bessel functions of order L . Here

Fm(û, v̂) ≡ 4π

5

√
1

3

[
Y2m(û) − Y2m(v̂)

]
, (7.83)

is shorthand for the particular combination of spherical harmonics that enter the expres-
sion for RG

(lm)( f ) in (7.81). The two expressions in parentheses ( ) for each response
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function are Wigner 3- j symbols (see, e.g., Wigner 1959; Messiah 1962). Note that the
curl response is now non-zero, and both response functions depend on frequency via
the quantity α, which equals 2π times the number of radiation wavelengths between
the origin and the vertex of the interferometer. These expressions are valid in an arbi-
trary translated and rotated coordinate system, provided the angles for û, v̂, and x̂0 are
calculated in the rotated frame.

Thus, the spatial separation of a network of ground-based interferometers, or of a
single interferometer at different times during its daily rotational and yearly orbital
motion around the Sun (Sect. 5.5.3), allows for recovery of both the gradient and
curl components of a gravitational-wave background. This is in contrast to a pulsar
timing array, which is insensitive to the curl component, because one vertex of all
the pulsar baselines are ‘pinned’ to the solar system barycenter. To illustrate this
difference, we show in Fig. 56, maximum-likelihood recovered sky maps for simulated
grad-only and curl-only anistropic backgrounds injected into noise for a 3-detector
network of ground-based interferometers (Hanford–Livingston–Virgo). The grad-only
and curl-only backgrounds are the same as those used for the simulated maps in
Fig. 55. In contrast to the recovered maps shown in that figure for the pulsar timing
array, the maximum-likelihood maps (bottom row) for the network of ground-based
interferometers reproduce the general angular structure of both the grad-only and curl-
only injected maps (shown in the top row). (The noise for these injections degrades the
recovery compared to the noiseless injections in Fig. 55). See Romano et al. (2015)
for more details and related simulations.

8 Searches for other types of backgrounds/signals

No idea is so outlandish that it should not be considered with a searching but at
the same time a steady eye. Winston Churchill

Since stochastic gravitational-wave backgrounds come in many different “flavors”,
one needs additional search methods that go beyond the standard “vanilla” cross-
correlation search for a Gaussian-stationary, unpolarized, isotropic signal (Sects. 4, 5)
to extract the relevant information from the more exotic backgrounds. In Sect. 7, we
discussed how to search for anisotropic signals, which are stronger coming from cer-
tain directions on the sky than from others. In this section, we discuss search methods
for non-Gaussian signals (Sect. 8.1), circularly polarized backgrounds (Sect. 8.2), and
additional polarization modes predicted by alternative (non-general-relativity) metric
theories of gravity (Sects. 8.3, 8.4, 8.5). In Sect. 8.6, we also briefly mention searches
for other types of gravitational-wave signals, which are not really stochastic back-
grounds, but nonetheless can be searched for using the basic idea of cross-correlation,
which we developed in Sect. 4. The majority of the search methods that we will
describe here have been implemented “across the band”—i.e., for ground-based inter-
ferometers, space-based interferometers, and pulsar timing arrays. For these methods,
we will highlight any significant differences in the implementations for the different
detectors, if there are any.
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Fig. 56 Mollweide projections of the real parts of h+(n̂) for grad-only and curl-only anisotropic back-
grounds injected into noise and analysed using a 3-detector network of ground-based laser interferometers
(Hanford–Livingston–Virgo). The injected maps are shown in the top row; the maximum-likelihood recov-
ered maps are shown in the second row. Sky maps of the imaginary part of h+(n̂) and the real and imaginary
parts of h×(n̂) are similar for both the injections and the recovered maps, and hence are not shown in the
figure. Note that a network of ground-based interferometers is capable of recovering both the gradient and
curl components of a gravitational-wave background, in contrast to a pulsar timing array (compare with
Fig. 55). Image reproduced with permission from Romano et al. (2015), copyright by APS. a Injected
grad-only map. b Injected curl-only map. c Max-likelihood recovered map. d Max-likelihood recovered
map

Of course, we do not have enough time or space in this section to do justice for all of
these methods. As such, readers are strongly encouraged to read the original papers for
more details. For non-Gaussian backgrounds, see Drasco and Flanagan (2003), Seto
(2009), Thrane (2013), Martellini and Regimbau (2014) and Cornish and Romano
(2015); for circular polarization, see Seto and Taruya (2007, 2008) and Kato and Soda
(2016); for polarization modes in alternative theories of gravity, see Lee et al. (2008),
Nishizawa et al. (2009), Chamberlin and Siemens (2012) and Gair et al. (2015); and
for the other types of signals, see Thrane et al. (2011) and Messenger et al. (2015).

8.1 Non-Gaussian backgrounds

In Sect. 2.1, we asked the question “when is a gravitational-wave signal stochastic”
to highlight the practical distinction between searches for deterministic and stochastic
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Fig. 57 Simulated toy-model signals and histograms for different duty cycles. The left two panels cor-
respond to 1 burst every 10 s (on average); the right two panels correspond to 100 bursts every second
(on average). The red curves in the bottom two panels show the best-fit Gaussian distributions to the data.
Similar to Fig. 1 from Thrane (2013)

signals. From an operational perspective, a signal is stochastic if it is best searched for
using a stochastic signal model (i.e., one defined in terms of probability distributions),
even if the signal is intrinsically deterministic, e.g., a superposition of sinusoids. This
turns out to be the case if the signals are: (i) sufficiently weak that they are individually
unresolvable in a single detector, and hence can only be detected by integrating their
correlated contribution across multiple detectors over an extended period of time, or (ii)
they are sufficiently numerous that they overlap in time-frequency space, again making
them individually unresolvable, but producing a confusion noise that can be detected
by cross-correlation methods. If the rate of signals is large enough, the confusion noise
will be Gaussian thanks to the central limit theorem. But if the rate or duty-cycle is
small, then the resulting stochastic signal will be non-Gaussian and “popcorn-like”, as
we discussed in Sect. 1.1. This is the type of signal that we expect from the population
of binary black holes that produced GW150914 and GW151226; and it is the type of
signal that we will focus on in the following few subsections.

Figure 57 illustrates the above statements in the context of a simple toy-model
signal consisting of simulated sine-Gaussian bursts (each with a width σt = 1 s)
having different rates or duty cycles. The left two panels correspond to the case where
there is 1 burst every 10 seconds (on average). The probability distribution of the
signal samples h (estimated by the histogram in the lower-left-hand panel) is far from
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Gaussian for this case. The right two panels correspond to 100 bursts every second (on
average), for which the probability distribution is approximately Gaussian-distributed,
as expected from the central limit theorem.

8.1.1 Non-Gaussian search methods: overview

There are basically two different approaches that one can take to search for non-
Gaussian stochastic signals: (i) The first is to incorporate the non-Gaussianity of the
signal into the likelihood function by marginalizing over the appropriate signal model
(Sect. 8.1.2). Then given the likelihood, one can construct frequentist detection statis-
tics and estimators from the maximum-likelihood ratio (3.24), or do Bayesian model
selection in the usual way (Sect. 3). (ii) The second approach is to construct specific
frequentist statistics that targets the higher-order moments of the non-Gaussian distri-
bution, and then use these statistics to do standard frequentist hypothesis testing and
parameter estimation. This approach is most simply cast in terms of the skewness and
(excess) kurtosis of the distribution, which are the third and fourth-order cumulants,
defined as follows: If X is a random variable with probability distribution pX (x), then
the moments are defined by (Appendix B):

μn ≡ 〈Xn〉 =
∫

dx xn pX (x), (8.1)

and the cumulants by

c1 = μ1,

c2 = μ2 − μ2
1,

c3 = μ3 − 3μ2μ1 + 2μ3
1,

c4 = μ4 − 4μ3μ1 − 3μ2
2 + 12μ2μ

2
1 − 6μ4

1,

...

(8.2)

Note that c1 and c2 are just the mean μ and variance σ 2 of the distribution. For a
Gaussian distribution, c3 = 0, c4 = 0, . . .. For a distribution with zero mean, the
above formulas simplify to c1 = 0, c2 = μ2, c3 = μ3, and c4 = μ4 − 3μ2

2. The
higher-order-moment approach requires 3rd or 4th-order correlation measurements
(Sect. 8.1.5).

8.1.2 Likelihood function approach for non-Gaussian backgrounds

Fundamentally, searching for non-Gaussian stochastic signals is no different than
searching for a Gaussian stochastic signal. In both cases one must: (i) specify a signal
model, (ii) incorporate that signal model into a likelihood function or frequentist
detection statistic/estimator, and (iii) then analyze the data to determine how likely it
is that a signal is present. It is the choice of signal model, of course, that determines
what type of signal is being searched for.
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The signal model is incorporated into the likelihood via marginalization over the
signal samples as discussed in Sect. 3.6.2. Assuming Gaussian-stationary noise 22 with
covariance matrix Cn , the probability of observing data d in a network of detectors
given signal model h̄ is (3.53):

p(d|h̄,Cn) = 1√
det(2πCn)

e− 1
2

∑
I i,J j rI i

(
C−1
n
)
I i,J j rJ j , (8.3)

where
rI i ≡ dI i − h̄ I i (8.4)

are the residuals in detector I . (The subscript i labels either a time or frequency
sample for the analysis, whichever is being used). Since one is often not interested in
the particular values of h̄, but rather the values of the parameters θh that describe the
signal, one marginalizes over h̄:

p(d|θh, θn) =
∫
dh̄ p(d|h̄,Cn)p(h̄|θh). (8.5)

This yields a likelihood function that depends on the signal and noise parameters θh ,
θn ≡ Cn . It is this likelihood function that we then use for our statistical analysis.

Several different signal priors, which have been proposed in the literature, are given
below. For simplicity, we will consider the case where the detectors are colocated and
coaligned, and have isotropic antenna patterns, so that the contribution from the signal
is the same in each detector, and is independent of direction on the sky. For real
analyses, these simplifications will need to be dropped, as is done e.g., in Thrane
(2013).

Gaussian signal prior

p(h̄|Sh) = 1

(2π Sh)N/2 e
− 1

2Sh

∑N
i=1 h̄

2
i . (8.6)

This is the standard prior that one uses for describing a Gaussian-stochastic signal, and
leads to the usual Gaussian-stochastic cross-correlation detection statistic (Sect. 4.4).

Drasco and Flanagan (2003) non-Gaussian signal prior

p(h̄|ξ, α) =
N∏
i=1

[
ξ

1√
2πα2

e−h̄2
i /2α2 + (1 − ξ) δ(h̄i )

]
. (8.7)

This prior corresponds to Gaussian bursts occuring with probability 0 ≤ ξ ≤ 1 and
with root-mean-square (rms) amplitude α.

22 What to do when the noise is non-stationary or non-Gaussian is discussed in Sects. 9.2 and 9.3.
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Mixture-Gaussian signal prior

p(h̄|ξ, α, β) =
N∏
i=1

[
ξ

1√
2πα2

e−h̄2
i /2α2 + (1 − ξ)

1√
2πβ2

e−h̄2
i /2β2

]
. (8.8)

The mixture-Gaussian signal prior is a non-Gaussian distribution, which reduces to
the Gaussian signal prior in the limit ξ → 1. It reduces to the Drasco and Flanagan
signal prior in the limit β → 0.

Martellini and Regimbau (2014) non-Gaussian signal prior

p(h̄|ξ, α) =
N∏
i=1

[
ξ pNG(h̄i ) + (1 − ξ) δ(h̄i )

]
, (8.9)

where

pNG(h̄i )

= 1√
2πα2

e−h̄2
i /2α2

[
1 + c3

6α3 H3

(
h̄i
α

)
+ c4

24α4 H4

(
h̄i
α

)
+ c2

3

72α6 H6

(
h̄i
α

)]

(8.10)

is the 4th-order Edgeworth expansion (Martellini and Regimbau 2014) of a non-
Gaussian distribution with third and fourth-order cumulants c3 and c4. (Hn(x) denotes
a Hermite polynomial of order n). The Edgeworth expansion is referenced off a Gaus-
sian probability distribution, and is thus said to be a semi-parametric representation
of a non-Gaussian distribution. This prior reduces to the Drasco and Flanagan signal
prior when c3 = 0, c4 = 0.

Multi-sinusoid signal prior

p(h̄|θh) = δ
(
h̄ − h̄(θh)

)
,

h̄i (θh) =
M∑
I=1

AI cos(2π f I ti − ϕI ).
(8.11)

This is a deterministic signal prior, corresponding to the superposition of M sinu-
soids with unknown amplitudes, frequencies, and phases, θh = {AI , f I , ϕI |I =
1, 2, . . . , M}. This was one of the signal models used in Cornish and Romano (2015)
to investigate the question of when is a signal stochastic.

Superposition of finite-duration deterministic signals

p(h̄|θh) = δ
(
h̄ − h̄(θh)

)
,

h̄i (θh) =
M∑
I=1

AIT (ti − tI |θT ).
(8.12)
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Here, T (t |θT ) is a normalized waveform (template) for some deterministic signal
(e.g., a chirp from an inspiralling binary, a sine-Gaussian burst, a ringdown signal,
. . .) described by parameters θT (e.g., chirp mass, correlation time, frequency, . . .).
AI is the amplitude of the I th signal and tI is its arrival time. Note that these signal
waveforms can be extended in time, having a characteristic duration τ . Thus, this
signal model is intermediate between the single-sample burst and multi-sinusoid signal
models.

Generic likelihood for unresolvable signals
In Thrane (2013), Thrane writes down a generic likelihood function for a non-Gaussian
background formed from the superposition of signals which are individually unresolv-
able in a single detector. The likelihood function:

p(ρ̂|ξ, θh, θn) =
∏
i

[
ξ S(ρ̂i |θh) + (1 − ξ) B(ρ̂i |θn)

]
(8.13)

is defined for a pair of detectors I , J , and takes as its fundamental data vector estimates
of the signal-to-noise ratio of the cross-correlated power in the two detectors:

ρ̂i ≡ ρ̂(t; f ) = √
τδ f

ĈI J (t; f )√
PnI (t; f )PnJ (t; f )

, (8.14)

where

ĈI J (t; f ) ≡ 2

τ
d̃I (t; f )d̃∗

J (t; f ). (8.15)

Here τ is the duration of the short-term Fourier transforms and δ f is the frequency
resolution. (Note that δ f can be greater than 1/τ if one averages together neighboring
frequency bins). The product over i is over time-frequency pixels t f . The functions S
and B are probability distributions for ρ̂i for the signal and noise models, respectively.
These distributions are generic in the sense that they are to be estimated using Monte
Carlo simulations with injected signals for the signal model S, and via time-slides on
real data for the noise model B. They need not be Gaussian for either the signal or
the detector noise. The vectors θh and θn denote parameters specific to the signal and
noise models. Although the above likelihood function was not obtained by explicitly
marginalizing over h̄, mathematically there is some signal prior and noise model which
yields this likelihood upon marginalization.

8.1.3 Frequentist detection statistic for non-Gaussian backgrounds

As discussed in Sect. 3.4, given likelihood functions for the signal-plus-noise and
noise-only models, we can construct a frequentist detection statistic from either the
maximum-likelihood ratio ΛML(d) given by (3.24), or twice its logarithm, Λ(d) ≡
2 ln(ΛML(d)), which has the interpretation of being the squared signal-to-noise ratio
of the relevant data. For a white Gaussian stochastic signal in white Gaussian detector
noise (assuming a pair of colocated and coaligned detectors), we showed in Sect. 4.4:
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ΛG
ML(d) =

[
1 − Ŝ2

h

Ŝ1 Ŝ2

]−N/2

, ΛG(d) ≈ Ŝ2
h

Ŝn1 Ŝn2/N
, (8.16)

where N is the number of samples, and where the last approximate equality assumes
that the gravitational-wave signal is weak compared to the detector noise. We have
added the superscript G to indicate that this is for a Gaussian-stochastic signal model.

We can perform exactly the same calculations, making the same assumptions,
for the likelihood functions constructed from any of the non-Gaussian signal pri-
ors given above (in Sect. 8.1.2). These calculations have already been done for the
Drasco–Flanagan and Martellini–Regimbau signal priors (Drasco and Flanagan 2003;
Martellini and Regimbau 2014). The expressions that they find for the maximum-
likelihood ratios ΛNG

ML(d) for their non-Gaussian signal models are rather long and
not particularly informative, so we do not bother to write them down here (inter-
ested readers should see (1.8) in Drasco and Flanagan 2003, and the last equation in
Martellini and Regimbau 2014). The values of the parameters that maximize the like-
lihood ratio are estimators of ξ , α, Sn1 , Sn2 for the Drasco and Flanagan signal model,
and estimators of ξ , α, c3, c4, Sn1 , Sn2 for the Martellini and Regimbau signal model.

To illustrate the performance of a non-Gaussian detection statistic, we plot in Fig. 58
the minimum value of Ωgw (Sh in the notation above) necessary for detection as a
function of the duty cycle ξ . (The signal becomes Gaussian as ξ → 1). The solid line
is the theoretical prediction for the Drasco and Flanagan non-Gaussian maximum-
likelihood statistic, while the dashed line is the theoretical prediction for the standard
Gaussian-stochastic cross-correlation statistic. The dotted line is the theoretical pre-
diction for a single-detector burst statistic, which is just the maximum of the absolute
value of the data samples in e.g., detector 1: ΛB(d) = maxi |d1i |. The false alarm and
false dismissal probabilities were both chosen to equal 0.01 for this calculation. From
the figure one sees that for ξ �10−3, the Gaussian-stochastic cross-correlation statistic
performs best. For smaller values of ξ , the non-Gaussian statistic is better. In particular,
for ξ ∼ 10−4. there is a factor of ∼2 improvement in the minimum detectable signal
amplitude if one uses the non-Gaussian maximum-likelihood detection statistic.

Figure 59 is taken from Thrane (2013) and shows posterior distributions for the duty
cycle ξ calculated for Monte Carlo simulations corresponding to pure background
ξ = 0 (dash-dot blue), pure signal ξ = 1 (solid red), and an even mixture ξ = 0.5
(dashed green). These curves illustrate that the formalism in Thrane (2013) can provide
estimates of the duty cycle ξ of the non-Gaussian background. See Thrane (2013) for
more details.

8.1.4 Bayesian model selection

As an alternative to using frequentist detection statistics and estimators to search for
potentially non-Gaussian signals, one can use Bayesian model selection to compare
the noise-only model M0 to different signal-plus-noise models M1,M2, . . .. This is
a general procedure for Bayesian inference, which was discussed in Sect. 3.3.3. As
shown there, the posterior odds ratio between two different models Mα and Mβ can
be written as
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Fig. 58 The minimum detectable value of Ωgw as a function of the duty cycle ξ . The solid line is the
theoretical prediction for the Drasco and Flanagan non-Gaussian maximum-likelihood statistic; the dashed
line is for the standard Gaussian-stochastic cross-correlation statistic; and the dotted line is for a single-
detector burst statistic. The number of data points used was N = 109, and the false alarm and false dismissal
probabilities were both chosen to equal 0.01. Image reproduced with permission from Drasco and Flanagan
(2003), copyright by APS

Fig. 59 Posterior distributions
for the duty cycle ξ calculated
for Monte Carlo simulations
having ξ = 0 (dash-dot blue),
ξ = 1 (solid red), and ξ = 0.5
(dashed green). Image
reproduced with permission
from Thrane (2013), copyright
by APS

Oαβ(d) = p(Mα|d)

p(Mβ |d)
= p(Mα)

p(Mβ)

p(d|Mα)

p(d|Mβ)
, (8.17)

where the first ratio on the right-hand side is the prior odds for the two models, while
the second term is the Bayes factor:

Bαβ(d) = p(d|Mα)

p(d|Mβ)
, (8.18)
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which is a ratio of model evidences:

p(d|Mα) =
∫

p(d|θα,Mα)p(θα|Mα) dθα, (8.19)

and similarly for p(d|Mβ). If one assumes equal prior odds, then the posterior odds
ratio is just the Bayes factor, and we can use its value to rule in favor of one model or
another (see Table 3).

The idea of using Bayesian model selection in the context of searches for non-
Gaussian stochastic backgrounds was proposed by us in Cornish and Romano (2015).
We considered a simple toy-problem consisting of simulated data in two colocated
and coaligned detectors, having uncorrelated white Gaussian detector noise plus a
gravitational-wave signal formed from the superposition of sinusoids having ampli-
tudes drawn from an astrophysical population of sources. Such a signal is effectively
the frequency-domain version of the short-duration time-domain bursts discussed in
the previous subsections. Five different models were considered:

– M0: noise-only model, consisting of uncorrelated white Gaussian noise in two
detectors with unknown variances σ 2

1 , σ 2
2 .

– M1: noise plus the Gaussian-stochastic signal model defined by (8.6).
– M2: noise plus the mixture-Gaussian stochastic signal model defined by (8.8).
– M3: noise plus the deterministic multisinusoid model defined by (8.11).
– M4: noise plus the deterministic multisinusoid signal model plus the Gaussian-

stochastic signal model. This is ahybrid signal model that allows for both stochastic
and deterministic components for the signal.

Simulated data were generated by coadding sinusoidal signals with amplitudes drawn
from an astrophysical model (Sesana 2013), and phases and frequencies drawn uni-
formly across the range spanned by the data. Gaussian-distributed white noise for the
two detectors were then added to the signal data. The amplitude of the signals were
scaled so as to produce a specified matched filter signal-to-noise ratio per frequency
bin. Markov Chain Monte Carlo analyses were run to compare the noise-only model
M0 to each of the four signal-plus-noise models M1, . . . ,M4. Quantile intervals for
the Bayes factors were estimated from 256 independent realizations of the simulated
data for each set of parameter values. These intervals capture the fluctuation in the
Bayes factors that come from different realizations of the data; they are not uncertain-
ties in the Bayes factors associated with different Monte Carlo simulations for a single
realization, which were �10%.

Figure 60 is a representative plot taken from Cornish and Romano (2015), compar-
ing the different models. The left panel shows the Bayes factors for the four different
signal-plus-noise models relative to the noise-only model plotted as a function of the
average number of sources per bin. The right panel shows the fraction of time that the
different models had the largest Bayes factor for the different simulations. The total
number of bins was set to 32 for these simulations and the SNR per bin was fixed at 2.
From these and other similar plots in Cornish and Romano (2015), one can draw the
general conclusion that deterministic models are generally favored for small source
densities, a non-Gaussian stochastic model is preferred for intermediate source densi-
ties, and a Gaussian-stochastic model is preferred for large source densities. Given the
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Fig. 60 Left panel Bayes factor 80% quantile intervals for the four different signal-plus-noise models
relative to the noise-only model as a function of the number of sources per bin. Right panel Fraction of time
that the different models had the largest Bayes factor for the different simulations. Image reproduced with
permission from Cornish and Romano (2015), copyright by APS

large fluctuations in the Bayes factors associated with different signal realizations, the
boundaries between these three regimes is rather fuzzy. The hybrid model, which has
a deterministic component for the bright signals and a Gaussian-stochastic component
for the remaining confusion background, is the best model for the majority of cases.

8.1.5 Fourth-order correlation approach for non-Gaussian backgrounds

In this section, we briefly describe a fourth-order correlation approach for detecting
non-Gaussian stochastic signals, originally proposed in Seto (2009). The key idea is
that by forming a particular combination of data from 4 detectors (the excess kurtosis),
one can separate the non-Gaussian contribution to the background from any Gaussian-
distributed component. This approach requires that the noise in the four detectors be
uncorrelated with one another, but it does not require that the noise be Gaussian. Here
we sketch out the calculation for 4 colocated and coaligned detectors, which we will
assume have isotropic antenna patterns, so that the contribution from the gravitational-
wave signal is the same in each detector, and is independent of direction on the sky.
These simplifying assumptions are not essential for this approach; the calculation for
separated and misalinged detectors with non-isotropic response functions can also be
done (Seto 2009).

Let’s begin then by denoting the output of the four detectors I = 1, 2, 3, 4 in the
Fourier domain by

d̃I = ñ I + h̃, h̃ = g̃ +
n∑

i=1

b̃i , (8.20)

where ñ I denotes the noise in detector I and h̃ denotes the total gravitational-wave
contribution, which has a Gaussian-stochastic component g̃, and a non-Gaussian
component formed from the superposition of short-duration burst signals b̃i , i =
1, 2, . . . , n. We assume that the noise in the detectors are uncorrelated with one another
and with the gravitational-wave signals, and that the individual gravitational-wave sig-
nals are also uncorrelated amongst themselves. The (random) number of bursts present
in a particular segment of data is determined by a Poisson distribution

123



Living Rev Relativ  (2017) 20:2 Page 133 of 223  2 

P(n) = λne−λ

n! , (8.21)

where

λ = 〈n〉 =
∞∑
n=0

nP(n), (8.22)

is the expected number of bursts in segment duration Tseg. The 4th-order combination
of data that we consider is

K ≡ 〈d̃1d̃2d̃
∗
3 d̃

∗
4 〉 − 〈d̃1d̃2〉〈d̃∗

3 d̃
∗
4 〉 − 〈d̃1d̃

∗
3 〉〈d̃2d̃

∗
4 〉 − 〈d̃1d̃

∗
4 〉〈d̃2d̃

∗
3 〉, (8.23)

where angle brackets 〈 〉 can be thought of as either expectation value (i.e., ensemble
average) or as an average over the Fourier components of the data, i.e., as an estimator
of the expected correlations. Since the noise in the detectors are uncorrelated with
everything, the only contributions to K will come from expectation values of products
of h̃ = g̃ + ∑

i b̃i with itself. Calculating the quadratic terms that enter (8.23), we
find:

〈d̃I d̃J 〉 = 〈g̃g̃〉 + λ〈b̃b̃〉,
〈d̃I d̃∗

J 〉 = 〈g̃g̃∗〉 + λ〈b̃b̃∗〉, (8.24)

where we used 〈∑
i

∑
j

b̃i b̃ j

〉
=
〈∑

i

b̃i b̃i

〉
= λ〈b̃b̃〉, (8.25)

which assumes that all the bursts have the same mean-square value, 〈b̃i b̃i 〉 ≡ 〈b̃b̃〉.
For the 4th-order term, we find:

〈d̃1d̃2d̃
∗
3 d̃

∗
4 〉 = 〈g̃g̃g̃∗g̃∗〉 + λ2

[
|〈b̃b̃〉|2 + 2〈b̃b̃∗〉2

]

+ λ
[
〈b̃b̃b̃∗b̃∗〉 + 〈g̃g̃〉〈b̃b̃〉∗ + 〈g̃g̃〉∗〈b̃b̃〉 + 4〈g̃g̃∗〉〈b̃b̃∗〉

]
.

(8.26)

Substituting these results back into expression (8.23) yields:

K = λ〈b̃b̃b̃∗b̃∗〉, (8.27)

where we used
〈g̃g̃g̃∗g̃∗〉 − |〈g̃g̃〉|2 − 2〈g̃g̃∗〉2 = 0, (8.28)

for the Gaussian-stochastic signal component g̃. Thus, both the detector noise and the
Gaussian-stochastic component of the signal have dropped out of the expression forK,
leaving only the contribution from the non-Gaussian component of the background.

As mentioned already, the above calculation can be extended to the case of sepa-
rated and misaligned detectors (Seto 2009). In so doing, one obtains expressions for
generalized (4th-order) overlap functions, which are sky-averages of the product of
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the response functions for four different detectors. The expected value of the 4th-order
detection statistic for this more general analysis involves generalized overlap functions
for both the (squared) overall intensity and circular polarization components of the
non-Gaussian background. We will discuss circular polarization in the following sec-
tion, but in the simpler context of Gaussian-stationary isotropic backgrounds. Readers
should see Seto (2009) for more details regarding circular polarization in the context
of non-Gaussian stochastic signals discussed above.

8.2 Circular polarization

Up until now, we have only considered unpolarized stochastic backgrounds. That is,
we have assumed that the gravitational-wave power in the + and × polarization modes
are equal (on average) and are statistically independent of one another (i.e., there are
no correlations between the + and × polarization modes). It is possible, however, for
some processes in the early Universe to give rise to parity violations (Alexander et al.
2006), which would manifest themselves as an asymmetry in the amount of right and
left circularly polarized gravitational waves. Following Seto and Taruya (2007, 2008),
we now describe how to generalize our cross-correlation methods to look for evidence
of circular polarization in a stochastic background.

8.2.1 Polarization correlation matrix

Let us start by writing down the quadratic expectation values for the Fourier com-
ponents hab( f, n̂) of the metric perturbations hab(t, �x) for a polarized anisotropic
Gaussian-stationary background. (We will restrict attention to isotropic backgrounds
later on). It turns out that these expectation values can be written in terms of the Stokes’
parameters I , Q,U , and V , which are defined for a monochromatic plane gravitational
wave in Appendix A. If we expand hab( f, n̂) in terms of the linear polarization basis
tensors eAab(n̂), where A = {+,×}, we have

〈hA( f, n̂)h∗
A′( f ′, n̂′)〉 = 1

2
SAA′
h ( f, n̂)δ( f − f ′)δ2(n̂, n̂′), (8.29)

where

SAA′
h ( f, n̂) = 1

2

[
I ( f, n̂) + Q( f, n̂) U ( f, ĥ) − iV ( f, n̂)

U ( f, n̂) + iV ( f, n̂) I ( f, n̂) − Q( f, n̂)

]
. (8.30)

If instead we expand hab( f, n̂) in terms of the circular polarization basis tensors
eCab(n̂), where C = {R, L}, then

〈hC ( f, n̂)h∗
C ′( f ′, n̂′)〉 = 1

2
SCC

′
h ( f, n̂)δ( f − f ′)δ2(n̂, n̂′), (8.31)
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where

SCC
′

h ( f, n̂) = 1

2

[
I ( f, n̂) + V ( f, n̂) Q( f, ĥ) − iU ( f, n̂)

Q( f, n̂) + iU ( f, n̂) I ( f, n̂) − V ( f, n̂)

]
. (8.32)

This second representation of the polarization correlation matrix is sometimes more
convenient when one is searching for evidence of circular polarization in the back-
ground, as V is a measure of a possible asymmetry between the right and left circular
polarization components:

〈hR( f, n̂)h∗
R′( f ′, n̂′)〉 − 〈hL( f, n̂)h∗

L ′( f ′, n̂′)〉 = 1

2
V ( f, n̂)δ( f − f ′)δ2(n̂, n̂′).

(8.33)
The factor of 1/2 on the right-hand side of the above equation, as compared to (A.16),
is for one-sided power spectra.

As discussed in Appendix A, the Stokes’ parameters I and V are ordinary scalar
(spin 0) fields on the sphere, while Q andU transform like spin 4 fields under a rotation
of the unit vectors {l̂, m̂} tangent to the sphere. Thus, I and V can be written as linear
combinations of the ordinary spherical harmonics Ylm(n̂):

I ( f, n̂) =
∞∑
l=0

l∑
m=−l

Ilm( f )Ylm(n̂),

V ( f, n̂) =
∞∑
l=0

l∑
m=−l

Vlm( f )Ylm(n̂),

(8.34)

while Q ± iU can be written as linear combination of the spin-weighted ±4 spherical
harmonics ±4Ylm(n̂):

Q( f, n̂) ± iU ( f, n̂) =
∞∑
l=4

l∑
m=−l

C±
lm( f ) ±4Ylm(n̂). (8.35)

Note that the expansions for Q ± iU start at l = 4, which means that the Q, U
components of the polarization correlation matrix vanish if the background is isotropic
(i.e., has only a contribution from the monopole l = 0, m = 0). So for simplicity, we
will restrict our attention to polarized isotropic backgrounds, for which the circular
polarization correlation matrix becomes diagonal and the quadratic exprectation values
reduce to:

〈hC ( f, n̂)h∗
C ′( f ′, n̂′)〉 = 1

8π
SCh ( f )δCC ′δ( f − f ′)δ2(n̂, n̂′), (8.36)

where

SR
h ( f ) ≡ 1

2
(I ( f ) + V ( f )),

SLh ( f ) ≡ 1

2
(I ( f ) − V ( f )).

(8.37)
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Note that
SR
h ( f ) + SLh ( f ) = I ( f ) ≡ Sh( f ), (8.38)

which is just the total strain power spectral density for the gravitational-wave back-
ground.

8.2.2 Overlap functions

Given (8.36), we are now in a position to calculate the expected value of the product of
the Fourier transforms of the response of two detectors I and J to such a background.
Similar to (5.9), we can write the response of detector I as

h̃ I ( f ) =
∫

d2Ωn̂

(
RR( f, n̂)hR( f, n̂) + RL( f, n̂)hL( f, n̂)

)
, (8.39)

where R, L label the right and left circular polarization states for both the Fourier
components and the detector response functions. Writing down a similar expression
for the response of detector J , and using (8.36) to evaluate the expected value of the
product of the responses, we find

〈h̃ I ( f )h̃
∗
J ( f

′)〉 = 1

2
δ( f − f ′)

[



(I )
I J ( f )I ( f ) + 


(V )
I J ( f )V ( f )

]
, (8.40)

where



(I )
I J ( f ) ≡ 1

8π

∫
d2Ωn̂

[
RR
I ( f, n̂)RR∗

J ( f, n̂) + RL
I ( f, n̂)RL∗

J ( f, n̂)
]
,



(V )
I J ( f ) ≡ 1

8π

∫
d2Ωn̂

[
RR
I ( f, n̂)RR∗

J ( f, n̂) − RL
I ( f, n̂)RL∗

J ( f, n̂)
]
,

(8.41)

are the overlap functions for the I and V Stokes parameters for a polarized isotropic
stochastic background. Using

RR = 1√
2

(
R+ + i R×),

RL = 1√
2

(
R+ − i R×),

(8.42)

we can also write the above overlap functions as



(I )
I J ( f ) ≡ 1

8π

∫
d2Ωn̂

[
R+
I ( f, n̂)R+∗

J ( f, n̂) + R×
I ( f, n̂)R×∗

J ( f, n̂)
]
,



(V )
I J ( f ) ≡ i

8π

∫
d2Ωn̂

[
R+
I ( f, n̂)R+∗

J ( f, n̂) − R×
I ( f, n̂)R×∗

J ( f, n̂)
]
.

(8.43)

Note that 

(I )
I J ( f ) is identical to the ordinary overlap function 
I J ( f ) for an isotropic

background (5.36).
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Fig. 61 Normalized overlap
functions for the I and V
Stokes’ parameters for the LIGO
Hanford-LIGO Livingston
detector pair (top panel); for the
LIGO Hanford-Virgo detector
pair (middle panel); for the
LIGO Livingston-Virgo detector
pair (bottom panel). The I
overlap functions are shown in
blue; the V overlap functions are
shown in red. Note the change in
scale of the vertical axes

Figure 61 show plots of the I and V overlap functions for the LIGO-Virgo detector
pairs, using the small-antenna limit for the strain response functions. The overlap
functions have been normalized (5.40) so that γ (I )

I J ( f ) = 1 for colocated and coaligned
detectors. Similar plots can be made for other interferometer pairs, by simply using
the appropriate response functions for those detectors.

Note that for pulsar timing, one can show that 

(V )
I J ( f ) = 0 for any pair of

pulsars. This means that one cannot detect the presence of a circularly polarized
stochastic background using a pulsar timing array if one restricts attention to just the
isotropic component of the background. One must include higher-order multipoles in
the analysis—i.e., do an anisotropic search as discussed in Sect. 7. Such an analysis
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for anisotropic polarized backgrounds using pulsar timing arrays is given in Kato and
Soda (2016). In that paper, they extend the analysis of Mingarelli et al. (2013) to
include circular polarization. See Kato and Soda (2016) for additional details.

8.2.3 Component separation: ML estimates of I and V

As shown in Seto and Taruya (2007, 2008), in order to separate the I ( f ) and V ( f )
contributions to a polarized isotropic background at each frequency f , we will need
to analyze data from at least two independent baselines (so three or more detec-
tors). In what follows, we will use the notation α = 1, 2, . . . , Nb to denote the
individual baselines (detector pairs) and α1, α2 to denote the two detectors that
constitute that baseline. The formalism we adopt here is similar to that for con-
structing maximum-likelihood estimators of gravitational-wave power for unpolarized
anisotropic backgrounds (Sect. 7.3). For a general discussion of component separation
for isotropic backgrounds, see Parida et al. (2016).

As usual, we begin by cross-correlating the data from pairs of detectors for the
independent baselines:

Ĉα( f ) ≡ 2

T
d̃α1( f )d̃

∗
α2

( f ), (8.44)

where
d̃αI ( f ) = h̃αI ( f̃ ) + ñαI ( f ), I = 1, 2, (8.45)

are the Fourier transforms of the time-domain data dαI (t), and T is the duration of
the data. Assuming that the noise in the individual detectors are uncorrelated with one
another, we can easily calculate the expected value of Ĉα( f ) using our previous result
(8.40). The result is

〈Ĉα( f )〉 = 
(I )
α ( f )I ( f ) + 
(V )

α ( f )V ( f ). (8.46)

We will write this equation abstractly as a matrix equation

〈Ĉ〉 = MS, (8.47)

where

Ĉ =

⎡
⎢⎢⎢⎣

Ĉ1

Ĉ2
...

ĈNb

⎤
⎥⎥⎥⎦ , M ≡

⎡
⎢⎢⎢⎢⎣



(I )
1 


(V )
1



(I )
2 


(V )
2

...
...



(I )
Nb



(V )
Nb

⎤
⎥⎥⎥⎥⎦ , S ≡

[
I
V

]
. (8.48)

In this notation, Ĉ is an N f Nb × 1 data vector, M is an N f Nb × 2N f detector
network response matrix, and S is an 2N f ×1 vector containing the unknown Stokes’
parameters, which we want to estimate from the data.23

23 At times it will be convenient to think of M as an N f × N f block diagonal matrix with Nb × 2 blocks,
one for each frequency. At other times, it will be convenient to think of M as an Nb × 2 block matrix with
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We also need an expression for the noise covariance matrix N for the cross-
correlated data Ĉ . In the weak-signal limit, the covariance matrix is approximately
diagonal with matrix elements

Nαα′( f, f ′) ≡ 〈Ĉα( f )Ĉ∗
α′( f ′)〉 − 〈Ĉα( f )〉〈Ĉ∗

α′( f ′)〉
≈ δαα′δ f f ′ Pnα1

( f )Pnα2
( f ),

(8.49)

where PnαI
( f ) are the one-sided power spectral densities of the noise in the detec-

tors. If we treat the noise power spectra as known quantities (or if we estimate the
noise power spectra from the auto-correlated output of each detector), we can write
down a likelihood function for the cross-correlated data given the signal model (8.47).
Assuming a Gaussian-stationary distribution for the noise, we have

p(Ĉ |S) ∝ exp

[
−1

2
(Ĉ − MS)†N−1(Ĉ − MS)

]
. (8.50)

This likelihood has exactly the same form as that in (7.32), so the maximum-likehood
estimators for the Stokes’ parameters S = [I, V ]T also have the same form:

Ŝ = F−1X, (8.51)

where
F ≡ M†N−1M, X ≡ M†N−1Ĉ, (8.52)

with M and N given above. As before, inverting F may require some sort of reg-
ularization, e.g., using singular-value decomposition (Sect. 7.3.5). If that’s the case
then F−1 should be replaced in the above formula by its pseudo-inverse F+. The
uncertainty in the maximum likelihood recovered values is given by the covariance
matrix

〈ŜŜ†〉 − 〈Ŝ〉〈Ŝ†〉 ≈ F−1, (8.53)

where we are again assuming the weak-signal limit.

8.2.4 Example: component separation for two baselines

As an explicit example, we now write down the maximum-likelihood estimators for
the Stokes’ parameters S = [I, V ]T for a detector network consisting of two baselines
α and β. For this case, the detector network response matrix M is a square 2N f ×2N f

matrix, which we assume has non-zero determinant. Then it follows simply from the
definitions (8.52) of F and X that

Ŝ = F−1X = M−1Ĉ, (8.54)

Footnote 23 Continued
diagonal N f × N f blocks. The calculations we need to do usually determine which representation is most

appropriate. (Similar statements can be made for the vectors Ĉ and S).
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for which

Î ( f ) =
(

(I )

α 

(V )
β − 


(I )
β 
(V )

α

)−1 [



(V )
β Ĉα − 
(V )

α Ĉβ

]
,

V̂ ( f ) =
(

(I )

α 

(V )
β − 


(I )
β 
(V )

α

)−1 [−

(I )
β Ĉα + 
(I )

α Ĉβ

]
.

(8.55)

The marginalized uncertainties in these estimates are obtained by taking the diagonal
elements of the inverse of the Fisher matrix:

σ 2
Î

= (F−1)I I = Nα (

(V )
β )2 + Nβ (


(V )
α )2

(



(I )
α 


(V )
β − 


(I )
β 


(V )
α

)2 ,

σ 2
V̂

= (F−1)VV = Nα (

(I )
β )2 + Nβ (


(I )
α )2

(



(I )
α 


(V )
β − 


(I )
β 


(V )
α

)2 ,

(8.56)

where Nα , Nβ , defined by Nα( f ) ≡ Pnα1
( f )Pnα2

( f ) (and similarly for Nβ ), is a
diagonal element of the noise covariance matrix N (8.49).

8.2.5 Effective overlap functions for I and V for multiple baselines

The above expressions for the uncertainties in the estimates of I and V can easily
be extended to the case of an arbitrary number of baselines α = 1, 2, . . . , Nb. For
multiple baselines with noise spectra Nα( f ) ≡ Pnα1

( f )Pnα2
( f ), one can show that

F =
[ ∑

α N−1
α (


(I )
α )2 ∑

α N−1
α 


(I )
α 


(V )
α∑

α N−1
α 


(V )
α 


(I )
α

∑
α N−1

α (

(V )
α )2

]
. (8.57)

Let us assume that the determinant of the 2 × 2 matrices for each frequency (which
we will denote by F̄) are not equal to zero. Then

σ 2
Î

= (F̄−1)I I = 1

det(F̄)

∑
α

N−1
α (
(V )

α )2,

σ 2
V̂

= (F̄−1)VV = 1

det(F̄)

∑
α

N−1
α (
(I )

α )2.

(8.58)

Following Seto and Taruya (2008), we can now define effective overlap functions for
I and V associated with a multibaseline detector network by basically inverting the
above uncertainties. For simplicity, we will assume that the noise power spectra for
the detectors are equal to one another so that Nα ≡ N can be factored out of the above
expressions. We then define
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Fig. 62 Effective overlap
functions for I and V for the
multibaseline network formed
from the LIGO Hanford, LIGO
Livingston, and Virgo detectors.



(I )
eff ( f ) is shown in blue;



(V )
eff ( f ) is shown in red



(I )
eff ( f ) ≡ √

Nσ−1
Î

=
(

N 2 det(F̄)∑
α(


(V )
α )2

)1/2

,



(V )
eff ( f ) ≡ √

Nσ−1
V̂

=
(
N 2 det(F̄)∑

α(

(I )
α )2

)1/2

.

(8.59)

These quantities give us an indication of how sensitive the multibaseline network
is to extracting the I and V components of the background. Plots of 


(I )
eff ( f ) and



(V )
eff ( f ) are shown in Fig. 62 for the multibaseline network formed from the LIGO

Hanford, LIGO Livingston, and Virgo detectors. Recall that the overlap functions for
the individual detectors pairs are shown in Fig. 61. Dips in sensitivity correspond to
frequencies where the determinant of F̄ is zero (or close to zero).

8.3 Non-GR polarization modes: preliminaries

In a general metric theory of gravity, there are six possible polarization modes: The
standard + and × tensor modes predicted by general relativity (GR); two vector
(or “shear”) modes, which we will denote by X and Y ; and two scalar modes: a
“breathing” mode B and a pure longitudinal mode L (see, e.g., Nishizawa et al. 2009).
The tensor and breathing modes are transverse to the direction of propagation, while
the two vector modes and the scalar longitudinal mode have longitudinal components
(parallel to the direction of propagation). See Fig. 63.

In terms of the orthonormal vectors {n̂, l̂, m̂} defined by (2.4), the polarization basis
tensors for the six different polarization modes are:

e+
ab(n̂) = l̂a l̂b − m̂am̂b, e×

ab(n̂) = l̂am̂b + m̂al̂b.

eXab(n̂) = l̂a n̂b + n̂al̂b, eYab(n̂) = m̂an̂b + n̂am̂b,

eBab(n̂) = l̂a l̂b + m̂am̂b, eLab(n̂) = √
2 n̂a n̂b.

(8.60)
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(a) (b)

(c) (d)

(e) (f)

Fig. 63 Graphical representation of the six different polarization modes. The circle with a cross or arrow
represents the direction of propagation of the gravitational wave. The solid and dotted circles and ellipses
denote deformations to a ring of particles 180◦ out of phase with one another. Adapted from Fig. 1 in
Nishizawa et al. (2009).

We will denote these collectively as eAab(n̂), where A = {+,×, X,Y, B, L}. In a

coordinate system where n̂ points along the z-axis, and l̂ and m̂ point along the x and
y axes, the polarization tensors can be represented by the following 3 × 3 matrices:

e+
ab =

⎡
⎣ 1 0 0

0 −1 0
0 0 0

⎤
⎦, e×

ab =
⎡
⎣0 1 0

1 0 0
0 0 0

⎤
⎦,
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eXab =
⎡
⎣0 0 1

0 0 0
1 0 0

⎤
⎦, eYab =

⎡
⎣0 0 0

0 0 1
0 1 0

⎤
⎦,

eBab =
⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦, eLab =

⎡
⎣0 0 0

0 0 0
0 0

√
2

⎤
⎦. (8.61)

8.3.1 Transformation of the polarization tensors under a rotation about n̂

We have already seen (Appendix A) that under a rotation of the unit vectors {l̂, m̂} by
an angle ψ around n̂, the polarization tensors e+

ab(n̂), e×
ab(n̂) transform to:

ε+
ab(n̂, ψ) = cos 2ψ e+

ab(n̂) + sin 2ψ e×
ab(n̂),

ε×
ab(n̂, ψ) = − sin 2ψ e+

ab(n̂) + cos 2ψ e×
ab(n̂).

(8.62)

This reflects the spin 2 nature of the tensor modes +, × in general relativity. Similarly,
under the same rotation, the polarization tensors eXab(n̂), eYab(n̂) transform to:

εXab(n̂, ψ) = cos ψ eXab(n̂) + sin ψ eYab(n̂),

εYab(n̂, ψ) = − sin ψ eXab(n̂) + cos ψ eYab(n̂),
(8.63)

while eBab(n̂), eLab(n̂) are left unchanged:

εBab(n̂, ψ) = eBab(n̂),

εLab(n̂, ψ) = eLab(n̂).
(8.64)

These last two transformations correspond to the spin 1 nature of the vector modes X ,
Y , and the spin 0 nature of the scalar modes B, L .

8.3.2 Polarization and spherical harmonic basis expansions

For the tensor modes +, ×, we found (Sect. 2.2.2) that it was convenient to expand the
Fourier components hab( f, k̂) of the metric perturbations hab(t, �x) in terms of either
the polarization basis tensors:

hab( f, n̂) = h+( f, n̂)e+
ab(n̂) + h×( f, n̂)e×

ab(n̂), (8.65)

or the gradient and curl tensor spherical harmonics:

hab( f, n̂) =
∞∑
l=2

l∑
m=−l

[
aG(lm)( f )Y

G
(lm)ab(n̂) + aC(lm)( f )Y

C
(lm)ab(n̂)

]
. (8.66)
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Recall that YG and YC are related to spin-weight ±2 spherical harmonics as described
in Appendices G and E. For the vector and scalar modes we can perform similar
expansions, provided we use appropriately defined tensor spherical harmonics, which
transform properly under rotations. For the vector modes X , Y , we need to use the
vector-gradient and vector-curl spherical harmonics Y VG , Y VC , which are defined in
terms of spin-weight ±1 spherical harmonics (Appendices F and E). For the scalar
modes, we can use

Y B
(lm)ab(n̂) ≡ 1√

2
Ylm(n̂)eBab(n̂), Y L

(lm)ab(n̂) ≡ 1√
2
Ylm(n̂)eLab(n̂), (8.67)

which are defined in terms of ordinary (scalar) spherical harmonics. In terms of these
definitions, we can write the expansions in compact form

hab( f, n̂) =
∑
A

hA( f, n̂)eAab(n̂), (8.68)

or
hab( f, n̂) =

∑
P

∑
(lm)

aP
(lm)( f )Y

P
(lm)ab(n̂), (8.69)

where A = {+,×, X,Y, B, L} and P = {G,C, VG , VC , B, L} or some subsets
thereof. Note that

∑
(lm) is shorthand for

∞∑
l=2

l∑
m=−l

,

∞∑
l=1

l∑
m=−l

,

∞∑
l=0

l∑
m=−l

, (8.70)

for the tensor, vector, and scalar modes, respectively.

8.3.3 Detector response

The detector response functions corresponding to the above two expansions (8.68)
and (8.69) are:

RA( f, n̂) = Rab( f, n̂)eAab(n̂), (8.71)

and

RP
(lm)( f ) =

∫
d2Ωn̂ Rab( f, n̂)Y P

(lm)ab(n̂). (8.72)

In terms of these response functions, the detector response (in the frequency domain)
to a gravitational-wave background (2.1) is:

h̃( f ) =
∫

d2Ωn̂

∑
A

RA( f, n̂)hA( f, n̂), (8.73)

or
h̃( f ) =

∑
P

∑
(lm)

RP
(lm)( f )a

P
(lm)( f ). (8.74)
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8.3.4 Searches for non-GR polarizations using different detectors

Evidence for non-GR polarization modes can show up in searches for either determin-
istic or stochastic gravitational-wave signals. Whether these alternative polarization
modes are first discovered from the observation of gravitational waves from a resolv-
able source (like a binary black hole merger) or from a stochastic background depends
in part on the type and number of detectors making the observations. For example,
individual binary black holes mergers (GW150914 and GW151226) have already
been observed by advanced LIGO. But it was not possible to extract information
about the polarization of the waves, since the two LIGO interferometers are effec-
tively co-aligned (and hence see the same polarization). Adding Virgo, KAGRA, and
LIGO-India to the global network will eventually allow for the extraction of this
polarization information. Pulsar timing arrays, on the other hand, are expected to first
detect a stochastic background from the inspirals of SMBHBs in the centers of distant
galaxies (Rosado et al. 2015). So if evidence of alternative polarization modes are
discovered by pulsar timing, it will most-likely first come from stochastic background
observations.

In the following sections, we describe stochastic background search methods for
non-GR polarization modes using both ground-based interferometers (Sect. 8.4) and
pulsar timing arrays (Sect. 8.5). We will calculate antenna patterns, overlap functions,
and discuss component separation for the tensor, vector, and scalar polarization modes.
For ground-based interferometers, our discussion will be based on Nishizawa et al.
(2009). For pulsar timing arrays, see Lee et al. (2008), Chamberlin and Siemens (2012)
and Gair et al. (2015).

8.4 Searches for non-GR polarizations using ground-based detectors

We now describe cross-correlation searches for non-GR polarization modes using a
network of ground-based laser interferometers. For additional details, see Nishizawa
et al. (2009).

8.4.1 Response functions

For ground-based interferometers in the small antenna limit, the strain response func-
tions RA( f, n̂) for the different polarization modes A = {+,×, X,Y, B, L} are given
by

RA( f, n̂) � 1

2
(uaub − vavb)eAab(n̂), (8.75)

where û, v̂ are unit vectors pointing in the direction of the arms of the interferometer,
and where we have chosen the origin of coordinates to be at the vertex of the inter-
ferometer. Note that there is no frequency dependence of the response function in the
small-antenna limit. Assuming a 90◦ opening angle between the interferometer arms,
and choosing a coordinate system such that û and v̂ point in the x̂ and ŷ direction, we
find
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R+(n̂) = 1

2
(1 + cos2 θ) cos 2φ, R×(n̂) = − cos θ sin 2φ,

RX (n̂) = sin θ cos θ cos 2φ, RY (n̂) = − sin θ sin 2φ,

RB(n̂) = −1

2
sin2 θ cos 2φ, RL(n̂) = 1√

2
sin2 θ cos 2φ,

(8.76)

where we used (2.4) for our definition of {n̂, l̂, m̂}.
From these expressions, we see that the response functions for the breathing and

longitudinal modes differ only by a constant multiplicative factor of −√
2. This degen-

eracy means that we will not be able to distinguish these two polarization modes using
ground-based interferometers. Plots of the antenna patterns |RA(n̂)| for the six differ-
ent polarization modes are shown in Fig. 64. Note that the overall magnitude of the
response gets smaller as one moves from tensor, to vector, to scalar polarization modes.
In Fig. 65, we plot the “peanut” antenna patterns for the response to unpolarized grav-
itational waves for the tensor, vector, and scalar modes, respectively. By unpolarized
we simply mean that the incident gravitational waves have equal power in the + and
× polarizations for the tensor modes; equal power in the X and Y polarizations for
the vector modes, and equal power in the B and L polarizations for the scalar modes.

8.4.2 Overlap functions

Similar to what we did in Sect. 8.2.2, let us assume that the stochastic background
is independently polarized, but is otherwise Gaussian-stationary and isotropic. This
means that the quadratic expectation values of the Fourier components of the metric
perturbations can be written as

〈hA( f, n̂)h∗
A′( f ′, n̂′)〉 = 1

8π
SA
h ( f )δAA′δ( f − f ′)δ2(n̂, n̂′), (8.77)

where A = {+,×, X,Y, B, L}. The functions SA
h ( f ) are such that

S(T )
h ( f ) = S+

h ( f ) + S×
h ( f ),

S(V )
h ( f ) = SX

h ( f ) + SYh ( f ),

S(S)
h ( f ) = SB

h ( f ) + SLh ( f ),

(8.78)

are the one-sided strain spectral densities for the tensor, vector, and scalar modes
individually. For simplicity, we will also assume that the tensor, vector, and scalar
modes are individually unpolarized so that S+

h ( f ) = S×
h ( f ), SX

h ( f ) = SYh ( f ), etc.
All of these assumptions together define the stochastic signal model for this example.

The above expectation values (8.77) can now be used to calculate the expected
value of the correlated response of two detectors to such a background. Writing the
response of detector I as

h̃ I ( f ) =
∫

d2Ωn̂

∑
A

RA
I ( f, n̂)hA( f, n̂), (8.79)
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Fig. 64 Antenna patterns for Michelson interferometer strain response |RA(n̂)| evaluated in the small-
antenna limit, f = 0. The top two plots correspond to the two tensor modes, A = +,×. The middle two
plots correspond to the two vector modes, A = X, Y . The bottom two plots correspond to the two scalar
modes, A = B, L . The interferometer arms point in the x̂ and ŷ directions

it follows (as we have done many times before) that

〈h̃ I ( f )h̃
∗
J ( f

′)〉 = 1

2
δ( f − f ′)

[



(T )
I J ( f )S(T )

h ( f ) + 

(V )
I J ( f )S(V )

h ( f ) + 

(S)
I J ( f )S(S)

h ( f )
]
,

(8.80)

123



 2 Page 148 of 223 Living Rev Relativ  (2017) 20:2 

Fig. 65 Antenna patterns for Michelson interferometer strain response to unpolarized gravitational waves
for tensor (left plot), vector (middle plot), ans scalar modes (right plot), evaluated in the small antenna limit,
f = 0. The interferometer arms point in the x̂ and ŷ directions

where



(T )
I J ( f ) ≡ 1

8π

∫
d2Ωn̂

[
R+
I ( f, n̂)R+∗

J ( f, n̂) + R×
I ( f, n̂)R×∗

J ( f, n̂)
]
,



(V )
I J ( f ) ≡ 1

8π

∫
d2Ωn̂

[
RX
I ( f, n̂)RX∗

J ( f, n̂) + RY
I ( f, n̂)RY∗

J ( f, n̂)
]
,



(S)
I J ( f ) ≡ 1

8π

∫
d2Ωn̂

[
RB
I ( f, n̂)RB∗

J ( f, n̂) + RL
I ( f, n̂)RL∗

J ( f, n̂)
]
,

(8.81)

are the corresponding overlap functions for the tensor, vector, and scalar modes
{T, V, S}. Note that 


(T )
I J ( f ) is identical to the ordinary overlap function 
I J ( f )

for an isotropic background (5.36).
Figure 66 show plots of the tensor, vector, and scalar overlap functions for the three

different LIGO-Virgo detector pairs. The overlap functions have been normalized so
that they equal 1 for colocated and coaligned detectors. This requires multiplying

I J ( f ) by a factor of 5 for the tensor and vector overlap functions (5.40), but by a
factor of 10 for the scalar overlap functions.

8.4.3 Component separation: ML estimates of S(T )
h , S(V )

h , and S(S)
h

Proceeding along the same lines as in Sect. 8.2.3, we now describe a method for
separating the tensor, vector, and scalar contributions to the total strain spectral density.
As shown in Nishizawa et al. (2009), we will need to analyze data from at least
three independent baselines (so at least three detectors) to separate the tensor, vector,
and scalar contributions at each frequency f . As before, we will adopt the notation
α = 1, 2, . . . , Nb to denote the individual baselines (detector pairs) and α1, α2 to
denote the two detectors that constitute that baseline.
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Fig. 66 Normalized overlap
functions for unpolarized tensor,
vector, and scalar modes for the
LIGO Hanford-LIGO
Livingston detector pair (top
panel); for the LIGO
Hanford-Virgo detector pair
(middle panel); and for the
LIGO Livingston-Virgo detector
pair (bottom panel). The tensor
overlap functions are shown in
blue; the vector overlap
functions are shown in red; the
scalar overlap functions are
shown in green. These overlap
functions were calculated in the
small-antenna limit

Our starting point is again the cross-correlated data from pairs of detectors in the
network:

Ĉα( f ) ≡ 2

T
d̃α1( f )d̃

∗
α2

( f ), (8.82)

where
d̃αI ( f ) = h̃αI ( f̃ ) + ñαI ( f ), I = 1, 2. (8.83)

Assuming that the noise in the individual detectors are uncorrelated with one another,
it follows that

〈Ĉα( f )〉 = 
(T )
α ( f )S(T )

h ( f ) + 
(V )
α ( f )S(V )

h ( f ) + 
(S)
α ( f )S(S)

h ( f ). (8.84)
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In addition,
Nαα′( f, f ′) ≡ 〈Ĉα( f )Ĉ∗

α′( f ′)〉 − 〈Ĉα( f )〉〈Ĉ∗
α′( f ′)〉

≈ δαα′δ f f ′ Pnα1
( f )Pnα2

( f ),
(8.85)

where PnαI
( f ) are the one-sided power spectral densities of the noise in the detectors,

and where we have assumed again that the gravitational-wave signal is weak compared
to the detector noise. As we did in Sect. 8.2.3 we can write down a likelihood function
for the cross-correlated data given the signal model (8.84):

p(Ĉ |A) ∝ exp

[
−1

2
(Ĉ − MA)†N−1(Ĉ − MA)

]
. (8.86)

Here we have adopted the matrix notation:

M ≡

⎡
⎢⎢⎢⎢⎣



(T )
1 


(V )
1 


(S)
1



(T )
2 


(V )
2 


(S)
2

...
...

...



(T )
Nb



(V )
Nb



(S)
Nb

⎤
⎥⎥⎥⎥⎦ , A ≡

⎡
⎢⎣
S(T )
h

S(V )
h

S(S)
h

⎤
⎥⎦ . (8.87)

Since A enters quadratically in the exponential, we have the usual expression for the
maximum-likehood estimators:

Â = F−1X, (8.88)

where
F ≡ M†N−1M, X ≡ M†N−1Ĉ, (8.89)

with M andN given above, and with the standard proviso about possibly having to use
singular-value decomposition to invert F . The uncertainty in the maximum-likelihood
recovered values is given by the covariance matrix

〈ÂÂ†〉 − 〈Â〉〈Â†〉 ≈ F−1, (8.90)

which we will use below to define effective overlap functions for the tensor, vector,
and scalar modes for a multibaseline network of detectors.

8.4.4 Effective overlap functions for multiple baselines

For a multibaseline network of detectors, one has

F =
⎡
⎢⎣
∑

α N−1
α (


(T )
α )2 ∑

α N−1
α 


(T )
α 


(V )
α

∑
α N−1

α 

(T )
α 


(S)
α∑

α N−1
α 


(V )
α 


(T )
α

∑
α N−1

α (

(V )
α )2 ∑

α N−1
α 


(V )
α 


(S)
α∑

α N−1
α 


(S)
α 


(T )
α

∑
α N−1

α 

(S)
α 


(V )
α

∑
α N−1

α (

(S)
α )2

⎤
⎥⎦ , (8.91)

where Nα( f ) ≡ Pnα1
( f )Pnα2

( f ). Let us assume that the determinant of the 3 × 3

matrices for each frequency (which we will denote by F̄) are not equal to zero. Then
the uncertainties in the estimators of S(T )

h , S(V )
h , and S(S)

h can be written as
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σ 2
T̂

= (F̄−1)T T

= 1

det(F̄)

⎛
⎝∑

α

N−1
α (
(V )

α )2
∑
α′

N−1
α′ (


(S)

α′ )2 −
(∑

α

N−1
α 
(S)

α 
(V )
α

)2
⎞
⎠ ,

σ 2
V̂

= (F̄−1)VV

= 1

det(F̄)

⎛
⎝∑

α

N−1
α (
(T )

α )2
∑
α′

N−1
α′ (


(S)

α′ )2 −
(∑

α

N−1
α 
(S)

α 
(T )
α

)2
⎞
⎠ ,

σ 2
Ŝ

= (F̄−1)SS

= 1

det(F̄)

⎛
⎝∑

α

N−1
α (
(T )

α )2
∑
α′

N−1
α′ (


(V )

α′ )2 −
(∑

α

N−1
α 
(V )

α 
(T )
α

)2
⎞
⎠ .

(8.92)

Following Nishizawa et al. (2009), we can now define the effectiveoverlap functions for
the tensor, vector, and scalar modes, associated with a multibaseline detector network.
As we did in Sect. 8.2.5, we will assume for simplicity that the noise power spectra
for the detectors are equal to one another so that Nα ≡ N can be factored out of the
above expressions. We then define



(T )
eff ( f ) ≡ σ−1

T̂

√
N =

⎛
⎜⎝ N 3 det(F̄)

∑
α(


(V )
α )2

∑
α′(


(S)

α′ )2 −
(∑

α 

(S)
α 


(V )
α

)2

⎞
⎟⎠

1/2

,



(V )
eff ( f ) ≡ σ−1

V̂

√
N =

⎛
⎜⎝ N 3 det(F̄)

∑
α(


(T )
α )2

∑
α′(


(S)

α′ )2 −
(∑

α 

(S)
α 


(T )
α

)2

⎞
⎟⎠

1/2

,



(S)
eff ( f ) ≡ σ−1

Ŝ

√
N =

⎛
⎜⎝ N 3 det(F̄)

∑
α(


(T )
α )2

∑
α′(


(V )

α′ )2 −
(∑

α 

(V )
α 


(T )
α

)2

⎞
⎟⎠

1/2

.

(8.93)
Plots of 


(T )
eff ( f ), 


(V )
eff ( f ), and 


(S)
eff ( f ) are shown in Fig. 67 for the multibaseline

network formed from the LIGO Hanford, LIGO Livingston, and Virgo detectors. Dips
in sensitivity correspond to frequencies where the determinant of F̄ is zero (or close
to zero).

8.5 Searches for non-GR polarizations using pulsar timing arrays

As discussed in Sect. 8.3.4 it is also possible to search for non-GR polarizations
using a pulsar timing array. Although the general concepts are the same as those for
ground-based interferometers, there are some important differences, as the vector and
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Fig. 67 Effective overlap

functions for S(T )
h , S(V )

h , S(S)
h ,

for the multibaseline network
formed from the LIGO Hanford,
LIGO Livingston, and Virgo

detectors. 

(T )
eff ( f ) is shown in

blue; 

(V )
eff ( f ) is shown in red;



(S)
eff ( f ) is shown in green

scalar longitudinal polarization modes require keeping the pulsar term in the response
functions to avoid possible singularities. We shall see below that the sensitivity to the
vector and scalar longitudinal modes increases dramatically when cross-correlating
data from pairs of pulsars with small angular separations. For additional details, see
Lee et al. (2008), Chamberlin and Siemens (2012) and Gair et al. (2015).

8.5.1 Polarization basis response functions

For pulsar timing, the response functions for Doppler frequency measurements for the
different polarization modes A = {+,×, X,Y, B, L} are given by

RA( f, n̂) = 1

2

p̂a p̂b

1 − n̂ · p̂ e
A
ab(n̂)

[
1 − e− i2π f L

c (1−n̂· p̂)] , (8.94)

where p̂ points in the direction to the pulsar and L is its distance from Earth (see
Sect. 5.2.1 with p̂ = −û). Without loss of generality, we have assumed that the
location of the measurement is at the origin of coordinates. Note that we have kept the
pulsar term (the second term in the square brackets) since, as we shall see below, it is
needed to get finite expressions for the response and overlap functions for the vector
and scalar longitudinal modes.

Choosing our coordinate system so that ẑ points along p̂, we find:

R+( f, n̂) = 1

2
(1 + cos θ)

[
1 − e− i2π f L

c (1−cos θ)
]
,

R×( f, n̂) = 0,

RX ( f, n̂) = − sin θ cos θ

1 − cos θ

[
1 − e− i2π f L

c (1−cos θ)
]
,

RY ( f, n̂) = 0,
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RB( f, n̂) = 1

2
(1 + cos θ)

[
1 − e− i2π f L

c (1−cos θ)
]
,

RL( f, n̂) = 1√
2

cos2 θ

1 − cos θ

[
1 − e− i2π f L

c (1−cos θ)
]
, (8.95)

where we used (2.4) for our definitions of {n̂, l̂, m̂}. Note that the response functions
for the breathing mode B and the tensor + mode have the same form for our particular
choice of {l̂, m̂}. This is not a problem, however, as we can still distinguish these modes
due to their different behavior under rotations. The difference between the breathing
and tensor modes becomes more apparent in terms of the spherical harmonic basis
response functions RB

(lm)( f ) and RG
(lm)( f ), which are given in (8.98).

If we did not include the pulsar terms in the above expressions, then the response
functions for both the vector and scalar longitudinal modes would become singular at
θ = 0 (i.e., cos θ = 1).24 The factor of sin θ in the numerator for RX ( f, n̂) “softens”
the (1 − cos θ)−1 singularity to (1 − cos θ)−1/2, so that it becomes integrable when
calculating the vector longitudinal overlap functions (Lee et al. 2008; Chamberlin and
Siemens 2012; Gair et al. 2015). (We will discuss this in more detail in Sect. 8.5.3).
By keeping the pulsar term we remove these singularities as can be seen by expanding
the full expressions in (8.95) for θ � 1:

R+( f, n̂) ≈ iyθ2/2,

R×( f, n̂) = 0,

RX ( f, n̂) ≈ −iyθ,

RY ( f, n̂) = 0,

RB( f, n̂) ≈ iyθ2/2,

RL( f, n̂) ≈ iy/
√

2,

(8.96)

where y ≡ 2π f L/c, and we have assumed that yθ2 is also sufficiently small that
we could Taylor expand the exponential. Since the typical distance to a pulsar is a
few kiloparsecs and f = 3 × 10−9 Hz for 10 yr of observation, we have y ∼ 104,
which means θ � 10−2 for the above expansions to be valid. Thus, for small angular
separations between the direction to the pulsar and the direction to the gravitational
wave, the response to the scalar-longitudinal modes will be more than an order-of-
magnitude larger than that for the vector modes, and several orders-of-magnitude
larger than that for both the tensor and breathing modes. This increased sensitivity of
the scalar longitudinal and vector longitudinal modes will also become apparent when
we calculate the overlap functions for a pair of pulsars (see Sect. 8.5.3; Fig. 68).

24 This corresponds to the direction to the pulsar and the direction to the source of the gravitational wave
being the same. For this case, the radio pulse from the pulsar and the gravitational wave travel in phase with
one another from the pulsar to Earth. It is as if the radio pulse “surfs” the gravitational wave (Chamberlin
and Siemens 2012).
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8.5.2 Spherical harmonic basis response functions

It is also interesting to calculate the Doppler-frequency response functions for the
tensor spherical harmonic components P = {G,C, VG , VC , B, L}. The general
expression is given by:

RP
(lm)( f ) =

∫
d2Ωn̂

1

2

p̂a p̂b

1 − n̂ · p̂ Y
P
(lm)ab(n̂)

[
1 − e− i2π f L

c (1−n̂· p̂)] . (8.97)

As shown in Gair et al. (2015), the above integral can be evaluated and then simplified
by taking the limit y � 1, which as we mentioned above is valid for typical pulsars.
The final results (taken from that paper) are:

RG
(lm)( f ) ≈ 2π (2)NlYlm( p̂), l = 2, 3, . . . ,

RC
(lm)( f ) ≈ 0, l = 2, 3, . . . ,

RVG
(lm)( f ) ≈ 2π (1)Nl

[
1 − 2

3
δl1

]
Ylm( p̂), l = 1, 2, . . . ,

RVC
(lm)( f ) ≈ 0, l = 1, 2, . . . ,

RB
(lm)( f ) ≈ 2π

1√
2

[
δl0 + 1

3
δl1

]
Ylm( p̂), l = 0, 1, . . . ,

RL
(lm)( f ) ≈ 2π

[
−δl0 − 1

3
δl1 + 1

2
H̄l(y)

]
Ylm( p̂), l = 0, 1, . . . ,

(8.98)

where (1)Nl and (2)Nl are constants defined by (F.3) and (G.2), and

H̄l(y) ≡
∫ 1

−1
dx

1

(1 − x)
Pl(x)

[
1 − e−iy(1−x)

]
. (8.99)

There are several important features to highlight about these expressions: (i) All of
the response functions depend in the same way on the angular position of the pulsar,
which is simply Ylm( p̂). (ii) Just as we saw earlier (5.23) that the response to the
tensor curl mode is zero, so too is the response to the vector curl mode. Thus, pulsar
timing arrays are also insensitive to the curl component of the vector-longitudinal
modes. (iii) In the limit y � 1, only the response to the scalar-longitudinal mode has
frequency dependence (via y). (iv) The response to the breathing mode has non-zero
contributions only from l = 0 and l = 1. In terms of power (which is effectively the
square of the response), this means that pulsar timing observations will be insensitive
to anisotropies in power in the breathing mode beyond quadrupole (i.e., l = 2).

8.5.3 Overlap functions

To calculate the overlap functions for non-GR polarization modes for pulsar timing
arrays, we will proceed as we did in Sect. 8.4.2, assuming that the stochastic back-
ground is independently polarized, but is otherwise Gaussian-stationary and isotropic.
(Extensions toanisotropicbackgrounds will be briefly mentioned in Sect. 8.5.4. Details
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can be found in Gair et al. 2015). Making these assumptions, the quadratic expectation
values of the Fourier coefficients hA( f, n̂) take the form

〈hA( f, n̂)h∗
A′( f ′, n̂′)〉 = 1

8π
SA
h ( f )δAA′δ( f − f ′)δ2(n̂, n̂′), (8.100)

where SA
h ( f ) are the one-sided strain spectral densities for the individual polarization

modes. The overlap functions can then be calculated in the usual way, leading to

〈h̃ I ( f )h̃
∗
J ( f

′)〉 = 1

2
δ( f − f ′)

∑
A


A
I J ( f )S

A
h ( f ), (8.101)

where


A
I J ( f ) ≡ 1

4π

∫
d2Ωn R

A
I ( f, n̂)RA∗

J ( f, n̂). (8.102)

Note the factor of 1/4π as compared to 1/8π in (8.81), and that there is no summation
over A on the right-hand side of this expression.

For simplicity we will also assume as before that the tensor modes {+,×} and the
vector-longitudinal modes {X,Y } are unpolarized, so that

S+
h ( f ) = S×

h ( f ) ≡ 1

2
S(T )
h ( f ),

SX
h ( f ) = SYh ( f ) ≡ 1

2
S(V )
h ( f ).

(8.103)

Then we can define:



(T )
I J ( f ) ≡ 1

8π

∫
d2Ωn̂

[
R+
I ( f, n̂)R+∗

J ( f, n̂) + R×
I ( f, n̂)R×∗

J ( f, n̂)
]
,



(V )
I J ( f ) ≡ 1

8π

∫
d2Ωn̂

[
RX
I ( f, n̂)RX∗

J ( f, n̂) + RY
I ( f, n̂)RY∗

J ( f, n̂)
]
,

(8.104)

for the unpolarized tensor and vector-longitudinal components. But we will keep the
breathing and scalar-longitudinal overlap functions separate:


B
I J ( f ) ≡ 1

4π

∫
d2Ωn̂ RB

I ( f, n̂)RB∗
J ( f, n̂),


L
I J ( f ) ≡ 1

4π

∫
d2Ωn̂ RL

I ( f, n̂)RL∗
J ( f, n̂),

(8.105)

given the complications that arise when trying to explicitly calculate 
L
I J ( f ).

As noted in Sect. 5.4.3, the overlap function for the tensor modes can be calculated
analytically (Hellings and Downs 1983), without needing to include the pulsar term
in the response functions:
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(T )
I J = 1

3

[
3

2

(
1 − cos ζI J

2

)
ln

(
1 − cos ζI J

2

)
− 1

4

(
1 − cos ζI J

2

)
+ 1

2

]
,

(8.106)

where ζI J is the angle between two Earth-pulsar baselines, i.e., cos ζI J = p̂I · p̂J .
The above expression differs from (5.53) by an overall normalization. The overlap
functions for the breathing mode and for the vector longitudinal modes can be also
be calculated analytically, again without needing to include the pulsar term in the
response. For the breathing mode we have


B
I J = 2

3

[
3

8
+ 1

8
cos ζI J

]
. (8.107)

For the vector-longitudinal modes we have (Lee et al. 2008; Gair et al. 2015)



(V )
I J = 1

3

[
3

2
ln

(
2

1 − cos ζI J

)
− 2 cos ζI J − 3

2

]
, (8.108)

where we have assumed here that the angular separation ζI J is not too small. In the
limit ζI J → 0, the above expression for 


(V )
I J diverges, which means that we need to

include the pulsar terms in the response functions to handle that case. Doing so results
in an expression that is finite, but depends on the frequency f via the distances to the
pulsars, 2π f L I /c and 2π f L J/c. (See Appendix J of Gair et al. (2015) for an analytic
expression for 


(V )
I J ( f ) in the limit ζI J → 0.)

Finally, for the scalar longitudinal overlap function 
L
I J ( f ), there is no known

analytic expression for the integral in (8.105), except in the limit of codirectional
(ζI J = 0) and anti-directional (ζI J = π ) pulsars (Lee et al. 2008; Chamberlin and
Siemens 2012; Gair et al. 2015). The pulsar terms need to be included in the scalar-
longitudinal response functions for all cases to obtain a finite result, which again
depend on the frequency f via the distances to the pulsars. A semi-analytic expression
for 
L

I J ( f ) is derived in Gair et al. (2015), which is valid in the 2π f L/c � 1 limit.
The semi-analytic expression effectively replaces the double integral over directions
on the sky n̂ = (θ, φ) with just a single numerical integration over θ . See Gair et al.
(2015) for additional details regarding that calculation.

Plots of the normalized overlap functions for the tensor, vector-longitudinal, breath-
ing and scalar-longitudinal modes are shown in Fig. 68, plotted as functions of the
angular separation ζ between pairs of pulsars. The normalization is the same for each
overlap function, chosen so that the tensor overlap function agrees with the normal-
ized Hellings and Downs curve (5.53). The plots for the tensor, vector-longitudinal,
and breathing modes are all real and do not depend on frequency; the plot for the
scalar-longitudinal modes has both real and imaginary components (imaginary shown
in red), and depends on frequency via the distances to the pulsars. For the scalar-
longitudinal overlap function, we chose y1 = 1000 and y2 = 2000 for all pulsar
pairs, where y ≡ 2π f L/c, and we did the integration numerically over both θ and
φ. Note the different vertical scales for the vector-longitudinal and scalar-longitudinal
overlap functions, compared to those for the tensor and breathing modes. For small
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Fig. 68 Normalized overlap functions for the tensor (upper left), vector-longitudinal (upper right), breath-
ing (lower left), and scalar-longitudinal (lower right) polarization modes, plotted as functions of the angular
separation between pairs of pulsars. The blue and red curves in the lower right-hand plot correspond to
the real and imaginary parts of the scalar-longitudinal overlap function. Note the different vertical scales
for the vector-longitudinal and scalar-longitudinal overlap functions, compared to those for the tensor and
breathing modes

angular separations, the sensitivity to vector-longitudinal modes is roughly an order of
magnitude larger than that for the tensor and breathing modes, while the sensitivity to
the scalar-longitudinal mode is several orders-of-magnitude larger. This is consistent
with what we found for the response functions, as discussed at the end of Sect. 8.5.1.

8.5.4 Component separation and anisotropic backgrounds

As shown in Gair et al. (2015), the above calculations for non-GR polarization modes
can be extended to anisotropic stochastic backgrounds. The spherical harmonic com-
ponents of the overlap functions


A
lm( f ) = 1

4π

∫
d2Ωn̂ Ylm(n̂)RA

I ( f, n̂)RA∗
J ( f, n̂) (8.109)

can be calculated analytically for the tensor, vector, and breathing polarization modes
for all values of l and m, while the components of the scalar longitudinal overlap
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function admit only semi-analytic expressions. (This is similar to what we described
in the previous section in the context of an isotropic background). Plots of the first few
spherical harmonics components, as a function of the angular separation ζI J between
a pair of pulsars, are given in Figures 1, 5, 2, and 3 of Gair et al. (2015).

The ability to separate the contributions to the background from the different polar-
ization modes depends crucially on the form of the spherical harmonic basis response
functions RP

(lm)( f ), where P = {G,C, VG , VC , B, L}. These were defined in (8.97)
and have the y ≡ 2π f L/c � 1 limiting expressions given in (8.98). Recall that the
(lm) indices here correspond to an expansion of the Fourier components of the metric
perturbations in terms of tensor (spin 2), vector (spin 1), and scalar (spin 0) spherical
harmonics:

hab( f, n̂) =
∑
P

∑
(lm)

aP
(lm)( f )Y

P
(lm)ab(n̂), (8.110)

for which
h̃ I ( f ) =

∑
P

∑
(lm)

RP
I (lm)( f )a

P
(lm)( f ) (8.111)

is the response of pulsar I to the background. The expansion coefficients aP
(lm)( f ) give

the contributions of the different polarization modes to the background, and RP
I (lm)( f )

are the response functions for those particular coefficients. For an angular resolution
of order 180◦/ lmax, the total number of modes that are (in principle) accessible to a
pulsar timing array with a sufficient number of pulsars is

Nm = 3(lmax + 1)2 − 1. (8.112)

This expression uses the result that the response to the curl modes for both the tensor
and vector components are identically zero, as is the response to the breathing modes
for l ≥ 2. Since a pulsar timing array having Np pulsars can measure at most 2Np

real components of the background (as discussed in Sect. 7.5.4), we see that at least
Np = Nm pulsars are required to measure the Nm (complex) components.

But as noted in Sect. 8.5.2, all of the response functions RP
(lm)( f ) depend on the

direction p̂ to the pulsar in exactly the same way, being proportional to Ylm( p̂). This
degeneracy complicates the extraction of the different polarization modes. For the
tensor and breathing modes, the degeneracy is broken since pulsar timing arrays typ-
ically operate in a regime where y � 1, for which the pulsar term can be ignored
in the response functions for these modes. In that limit, a pulsar timing array is only
sensitive to breathing modes with l = 0, 1, while the tensor modes are non-zero only
for l ≥ 2. On the other hand, the scalar-longitudinal and vector-longitudinal modes
can only be distinguished from the tensor and breathing modes if there are multiple
pulsars along the same line of sight, or if there is a known correlation between the
expansion coefficients aP

(lm)( f ) at different frequencies, e.g., a power-law spectrum.
For either of these two cases, we can exploit the frequency dependence of the pulsar
term, which is more significant for the longitudinal modes of the background. Keeping
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all of the frequency-dependent terms (Gair et al. 2015):

RL
(lm)( f ) = 2π(−1)l

{
− δl0 + 1

3
δl1 + (−i)le−iy

[(
1 − i

l

y

)
jl(y) + i jl+1(y)

]

+ 1

2
Hl(y)

}
Ylm( p̂), (8.113)

and

RVG
(lm)( f ) = π(−1)l (1)Nl

{
4

3
δl1 + 2(−i)le−iy

[(
1 − il

y

)
(l + 1) jl(y)

− (y − i(2l + 3)) jl+1(y) − iy jl+2(y)

]}
Ylm( p̂), (8.114)

for the scalar-longitudinal and vector-longitudinal response functions, where jl(y)
denotes a spherical Bessel functions of order l and y ≡ 2π f L/c. If we take the y � 1
limit of these equations, we recover the approximate expressions given in (8.98). But
to separate the various components of the background, we need to use these more
complicated expressions to break the angular-direction degeneracy.

A quantitative analysis of the sensitivity of a phase-coherent mapping search
(Sect. 7.5) to the different components aP

(lm)( f ) of a stochastic background is given
in Gair et al. (2015). The results of that analysis are summarized in Table 7, which
is taken from that paper. The entries in the table show how the uncertainties in our
measurements change as we search for: (i) only the tensor modes, (ii) both tensor and
breathing modes, (iii) tensor, breathing, and scalar-longitudinal modes, and (iv) all
possible modes. The uncertainties were obtained by taking the square root of the diag-
onal elements of the inverse of the Fisher matrix, following the general prescription
described in Sect. 7.5.1. For this calculation, 30 pulsars were distributed randomly
on the sky, with distances chosen at random, uniformly between 1 and 10 kpc. There
was only a single frequency component, f0 = 3 × 10−9 Hz, and the measurement
uncertainty (associated with pulse time of arrivals) was assumed to be the same for
all the pulsars in the array. The background was also assumed to contain modes with
equal intrinsic amplitudes up to lmax = 2, so that the total number of modes Nm = 26
was less than the number of pulsars in the array. This gave a fully-determined system
of equations that needed to be solved.

The entries in the table reflect our expectations for recovering the different modes
of the background. Namely, there is little change in our ability to recover the tensor
modes when the breathing modes are also included in the analysis. This is because the
tensor modes are non-zero only for l ≥ 2, while the response to the breathing modes is
non-zero only for l = 0, 1. Adding the scalar-longitudinal modes to the analysis wors-
ens the recovery of the tensor and breathing modes by about an order of magnitude, as
the scalar-longitudinal modes can also have non-zero values for all values of l. (There
are simply more parameters to recover). But one is still able to break the degeneracy
as the response to the scalar-longitudinal modes depends strongly on the distances to
the pulsars. The uncertainity in the recovery of the scalar-longitudinal modes is about

123



 2 Page 160 of 223 Living Rev Relativ  (2017) 20:2 

Table 7 Relative uncertainties for the tensor, breathing, scalar-longitudinal, and vector-longitudinal polar-
ization modes searched for separately or in various combinations for lmax = 2 and Np = 30 pulsars

(l,m) mode

(0, 0) (1, −1) (1, 0) (1, 1) (2, −2) (2, −1) (2, 0) (2, 1) (2, 2)

Tensor − − − − 0.44 0.38 0.32 0.38 0.44

Tensor − − − − 0.49 0.39 0.37 0.39 0.49

Breathing 0.16 0.53 0.46 0.53 − − − − −
Tensor − − − − 16.2 10.5 11.4 10.5 16.2

Breathing 4.36 16.1 14.1 16.1 − − − − −
Longitudinal 0.71 0.96 0.84 0.96 1.21 0.78 0.86 0.78 1.21

Tensor − − − − 1.4e5 5.4e4 8.0e4 5.4e4 1.4e5

Breathing 18.4 9.4e4 6.2e4 9.4e4 − − − − −
Longitudinal 3.08 11.5 8.68 11.5 20.9 7.51 11.9 7.52 20.9

Vector − 6.6e4 4.4e4 6.6e4 7.0e4 2.7e4 4.0e4 2.7e4 7.0e4

This table is adapted from Table II in Gair et al. (2015)

an order of magnitude less than that for the tensor and breathing modes, since the
analysis assumes equal intrinsic amplitudes for all the modes, while the correlated
response to the scalar-longitudinal modes is much larger for small angular separa-
tions between the pulsars (Sect. 8.5.3; Fig. 68). Finally, adding the vector-longitudinal
modes to the analysis weakens the recovery of the scalar-longitudinal modes by about
an order of magnitude, again because more parameters need to be recovered. However,
it severely worsens the recovery of all the other modes, because of the degeneracy in
the response on the angular direction to the pulsars. There is some dependence on
frequency for the vector-longitudinal response, as indicated in (8.114), but it is much
weaker than the frequency dependence of the scalar-longitudinal modes. So the degen-
eracy is not broken nearly as strongly for these modes. See Gair et al. (2015) for more
details.

8.6 Other searches

It is also possible to use the general cross-correlation techniques described in Sect. 4
to search for signals that don’t really constitute a stochastic gravitational-wave back-
ground. Using a stochastic-based cross-correlation method to search for such signals is
not optimal, but it still gives valid results for detection statistics or estimators of signal
parameters, with error bars that properly reflect the uncertainty in these quantities. It
is just that these error bars are larger than those for an optimal (minimum variance)
search, which is better “tuned” for the signal. Below we briefly describe how the
general cross-correlation method can be used to search for (i) long-duration unmod-
elled transients and (ii) persistent (or continuous) gravitational waves from targeted
sources.
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8.6.1 Searches for long-duration unmodelled transients

The Stochastic Transient Analysis Multi-detector Pipeline (Thrane et al. 2011)
(STAMP for short) is a cross-correlation search for unmodelled long-duration tran-
sient signals (“bursts”) that last on order a few seconds to several hours or longer.
The duration of these transients are long compared to the typical merger signal from
inspiralling binaries (tens of milliseconds to a few seconds), but short compared to
the persistent quasi-monochromatic signals that one expects from e.g., rotating (non-
axisymmetric) neutron stars. STAMP was developed in the context of ground-based
interferometers, but the general method, which we briefly describe below, is also valid
for other types of gravitational-wave detectors.

STAMP is effectively an adapted gravitational-wave radiometer search (Sect. 7.3.6),
which cross-correlates data from pairs of detectors (7.6), weighted by the inverse of
the integrand of the overlap function γI J (t; f, n̂) for a particular direction n̂ on the
sky:

s̃I J (t; f, n̂) ≡ 2

τ

d̃I (t; f )d̃∗
J (t; f )

γI J (t; f, n̂)
, (8.115)

where τ is the duration of the segments defining the short-term Fourier transforms.
The weighting by the inverse of γI J (t; f, n̂) is used so that the expected value of
s̃I J (t; f, n̂) is just the gravitational-wave power in pixel (t; f ) for a point source in
direction n̂, which follows from (7.7). The data s̃I J (t; f, n̂) for a single direction
n̂ define a time-frequency map. For a typical analysis using the LIGO Hanford and
LIGO Livingston interferometer, a single map has a frequency range from about 50 to
∼1000 Hz, and a time duration of a couple hundred seconds (or whatever the expected
duration of the transient might be). A strong burst signal shows up as cluster or track
of bright pixels in the time-frequency map, which stands out above the noise. The data
analysis problem thus becomes a pattern recognition problem.

The procedure for deciding whether or not a signal is present in the data can be
broken down into three steps: (i) determine if a statistically significant clump or track
of bright pixels is present in a time-frequency map, which requires using some form of
pattern-recognition or clustering algorithm (see Thrane et al. 2011 and relevant refer-
ences cited therein); (ii) calculate the value of the detection statistic Λ, obtained from
a weighted sum of the power in the pixels for each cluster determined by the previous
step; (iii) compare the observed value of the detection statistic to a threshold value Λ∗,
which depends on the desired false alarm rate. This threshold is typically calculated by
time-shifting the data to empirically determine the sampling distribution of Λ in the
absence of a signal. If Λobs > Λ∗, then reject the null hypothesis and claim detection
as discussed in 3.2.1. (Actually, in practice, this last step is a bit more complicated, as
one typically does follow-up investigations using auxiliary instrumental and environ-
mental channels, and data quality indicators. This provides additional confidence that
the gravitational-wave candidate is not some spurious instrumental or environmental
artefact.)

Figure 69 is an example of a time-frequency map with a simulated long-duration
gravitational-wave signal injected into simulated initial LIGO detector noise. This par-
ticular signal is an accretion disk instability waveform, based on a model by van Putten
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Fig. 69 Time-frequency maps for an injected long-duration transient gravitational-wave signal in noise.
Left panel signal-to-noise ratio map before processing. Right panel signal-to-noise ratio map after applying
a clustering algorithm. Note that the noise fluctuations have effectively been eliminated in the second plot.
Images provided by Tanner Prestegard

(2001); van Putten and Levinson (2003); van Putten (2008). The signal is a (inverse)
“chirp” in gravitational radiation having an exponentially decaying frequency. (The
magnitude of the signal increases with time as the frequency decreases.) The injected
signal is strong enough to be seen by eye in the raw time-frequency map (left panel).
After applying a clustering algorithm, the fluctuations in the detector noise have been
noticeably reduced (right panel).

Readers should see Thrane et al. (2011) for many more details regarding STAMP,
and Abbott et al. (2016c) and Aasi et al. (2013) for results from analyses of LIGO
data taken during their 5th and 6th science runs—the first paper describes an all-sky
search for long-duration gravitational-wave transients; the second, a triggered-search
for long-duration gravitational-transients coincident with long duration gamma-ray
bursts.

8.6.2 Searches for targeted-sources of continuous gravitational waves

The gravitational-wave radiometer method (Sect. 7.3.6) can also be used to look for
gravitational waves from persistent (continuous) sources at known locations on the sky,
e.g., the galactic center, the location of SN 1987A, or from low-mass X-ray binaries
like Sco X-1 (Abadie et al. 2011; Messenger et al. 2015; Abbott et al. 2016a). For
example, Sco X-1 is expected to emit gravitational waves from the (suspected) rotating
neutron star at its core, having non-axisymmetric distortions produced by the accretion
of matter from the low-mass companion. The parameters of this system that determine
the phase evolution of the gravitational radiation are not well-constrained: (i) Since
the neutron star at the core has not been observed to emit pulsations in the radio or
any electromagnetic band, the orbital parameters of the binary are estimated instead
from optical observations of the low-mass companion (Steeghs and Casares 2002;
Galloway et al. 2014). These observations do not constrain the orbital parameters as
tightly as being able to directly monitor the spin frequency of the neutron star. (ii) The
intrinsic spin evolution of the neutron star also has large uncertainties due to the high
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rate of accretion from the low-mass companion star. Both of these features translate
into a large parameter space volume over which to search, making fully-coherent
matched-filter searches for the gravitational-wave signal computationally challenging
(Messenger et al. 2015).

Nonetheless, for such sources, one can perform a narrow-band, targeted radiometer
search, cross-correlating data from a pair of detectors with a filter function proportional
to the integrand γI J (t; f, n̂0) of the overlap function evaluated at the direction n̂0 to
the source on the sky:

ĈI J ( f ) = 2

τ

∑
t

d̃I (t; f )d̃∗
J (t; f )

NI J ( f )γI J (t; f, n̂0)

PnI (t; f )PnJ (t; f )
, (8.116)

where

NI J ( f ) ≡
[∑

t

γ 2
I J (t; f, n̂0)

PnI (t; f )PnJ (t; f )

]−1

. (8.117)

The search is narrow-band in the sense that one doesn’t integrate over the whole
frequency band of the detectors, but looks instead for evidence of a gravitational wave
in narrow frequency bins that span the sensitive band of the detector. The weighted
cross-correlations are summed over time, to build up signal-to-noise ratio, since the
source is assumed to be persistent. The frequentist detection statistic is the squared
signal-to-noise ratio of the cross-correlated power contained in each narrow frequency
band:

Λ(d) = |ĈI J ( f )|2
Var[ĈI J ( f )]

≈ |ĈI J ( f )|2
NI J ( f )

, (8.118)

where we used the result that the variance of the cross-correlation estimator ĈI J ( f )
equals the normalization factor NI J ( f ) in the weak-signal limit. This modified
radiometer search is robust in the sense that it makes minimal assumptions about
the source. The detection efficiency of the search could be improved if one had addi-
tional information about the signal (e.g., if one knew that the radiation was circularly
polarized), which could then be included in the stochastic signal model.

9 Real-world complications

Experience with real-world data, however, soon convinces one that both
stationarity and Gaussianity are fairy tales invented for the amusement of under-
graduates. D.J. Thompson (Thomson 1994)

The analyses described in the previous sections assumed that the instrument noise is
stationary, Gaussian distributed, and uncorrelated between detectors. The analyses also
implicitly assumed that the data were regularly sampled and devoid of gaps, facilitating
an easy transition between the recorded time series and the frequency domain where
many of the analyses are performed. In practice, all of these assumptions are violated
to varying degrees, and the analyses of real data require additional care. Analyses that
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assume stationary, Gaussian noise can produced biased results when applied to more
complicated real-world data sets.

9.1 Observatory-specific challenges

To begin the discussion, we highlight some of the challenges associated with real-world
data, which are specific to the different observational domains—e.g., ground-based
detectors, space-based detectors, and pulsar timing. Then, in the following subsections,
we discuss the complications in more detail, and suggest ways to deal with or mitigate
these problems.

9.1.1 Ground-based interferometers

Analysis of data from the first and second generation ground-based interferometers
have shown that the data are neither perfectly stationary nor Gaussian. The non-
stationarity can be broadly categorized as having two components: slow, adiabatic
drifts in the noise spectrum with time; and short-duration noise transients, referred to as
glitches (Blackburn et al. 2008), which have compact support in time-frequency. These
glitches are also the dominant cause of non-Gaussianity in the noise distributions,
giving rise to long “tails” (large amplitude events with non-negligible probability),
which extend past a core distribution that is well described as Gaussian. The data are
evenly sampled by design, though there are often large gaps between data segments
due to “loss of lock” (the interferometer being knocked out of data-taking mode due to
an environmental disturbance or instrumental malfunction), scheduled maintenance,
etc.

An analysis of LIGO-Virgo data that assumes the noise spectrum is constant over
days or weeks would produce biased results. In practice, the data is analyzed using
∼1 min-long segments. Glitches, on the other hand, do not pose a significant problem
for stochastic searches as they are rarely coherent between detectors. Glitches are a
more serious problem for searches that target short duration, deterministic signals.

9.1.2 Pulsar timing arrays

Pulsar timing data are, in many ways, far more challenging to analyze (Haasteren and
Levin 2010). The lack of dedicated telescope facilities, and the practical constraints
associated with making the observations, result in data that are irregularly sampled.
Moreover, the very long observation timelines (years to decades) and the mixture of
facilities yield data sets that have been collected using a variety of receivers, data
recorders, and pulse folding schemes. The heterogeneity of the observations causes
the data to be non-stationary. In addition, the characteristic period of the gravitational
waves searched for is of order the duration of the observations. Thus, Fourier domain
methods for pulsar timing analyses have, at best, limited formal utility.

An additional complication for pulsar timing analyses is that a complicated deter-
ministic timing model that predicts the time of arrival of each pulse has to be subtracted
from the data to produce the timing residuals used in the gravitational-wave analyses.

123



Living Rev Relativ  (2017) 20:2 Page 165 of 223  2 

The timing model includes a pulsar spindown model and a detailed pulse propagation
model that accounts for the relative motion of the Earth and pulsar. Many of the pulsars
are in binary systems, so the timing model has to include relativistic orbital motion, and
propagation effects such as the Shapiro time delay. Since errors in the timing model are
strongly correlated with the gravitational-wave signal, subtracting the timing model
unfortunately removes part of the signal as well. Subtraction of the timing model also
introduces non-stationarity into the data (Haasteren and Levin 2013), again making
time-domain analyses the only possibility (van Haasteren et al. 2009).

9.1.3 Space-based detectors

For future space detectors we can only guess at the nature of the noise. Results from
the LISA Pathfinder mission provide some insight (Armano et al. 2016), but only for
a subset of the detector components, and for somewhat different flight hardware. The
data will be regularly sampled, but data gaps are expected due to re-pointing of the
communication antennae and orbit adjustments. Possible sources of non-stationarity
include variations in the solar wind, thermal variations, and tidal perturbations from
the Earth and other solar system bodies. The plans for the first space interferometers
envision a single array of 3 spacecraft with 6 laser links. From these links three noise-
orthogonal signal channels can be synthesized, but these combinations are also signal
orthogonal, and so cross-correlation cannot be used to detect a signal.

9.2 Non-stationary noise

Data from existing gravitational-wave detectors, including bars, interferometers, and
pulsar timing, exhibit various degrees of non-stationarity. Here we give examples
relevant to ground-based interferometers, but the situation is similar for the other
detection techniques.

Non-stationary behavior can manifest itself in many forms, and there are no
doubt many factors that contribute to the non-stationarity seen in interferometer data.
Nonetheless, a simple two-part model does a good job of capturing the bulk of the
non-stationary features. The two-part model consists of a slowly-varying noise spec-
tral density Sn(t; f ), and localized noise transients or “glitches”. The slow drift in the
spectrum can be modeled as a locally-stationary noise process (Dahlhaus 2011), which
has the nice feature that for small enough time segments, the data in each segment can
be treated as stationary. The glitch contribution to the non-stationarity poses more of
a challenge, as the non-stationarity persists even for short data segments.

9.2.1 Local stationarity

To illustrate the two-component description of non-stationary data, we begin with a
toy model of a locally-stationary red noise process. Later we will add a model for the
impulsive, glitch component (Sect. 9.2.2). Consider an auto-regressive AR(1) process
of the form:

xt = q(t)xt−1 + ε(t)δ, (9.1)
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(a) (b)

Fig. 70 Spectra for the locally-stationary AR(1) model. Panel a shows the smoothed spectrum computed
using the full data set compared to the time average of the theoretical spectrum. Panel b shows smoothed
spectra from the 1st, 8th, 16th, 24th and 32nd time segments compared to the theoretical S(t; f ) computed
at the central time for each segment

where δ ∼ N (0, 1) is a unit-variance Gaussian deviate, and q(t) and ε(t) are slowly-
varying functions of time. The local power spectrum S(t; f ) for this process has the
form

S(t; f ) = ε2(t)

1 + q2(t) − 2q(t) cos(π f/ fN)
, (9.2)

where fN is the Nyquist frequency. For a data segment of duration T with N samples,
fN = N/(2T ) = 1/(2Δt). Figure 70 shows the average and local spectra for T =
1024 seconds of data sampled at 1024 Hz with

q(t) = q0
(1 + α cos(2π t/T ))

(1 + α)
, ε(t) = ε0(1 + t/T ), (9.3)

and q0 = 0.95, α = 0.4, and ε0 = 1. The local spectra are computed using 32-second
segments of data that are smoothed and compared to the predicted spectra (9.2). The
smoothed average spectrum is computed using the full data set and compared to the
theoretical average spectrum

S( f ) = 1

T

∫ T

0
S(t; f ) dt. (9.4)

The high degree of non-stationarity is clearly apparent from the several orders of
magnitude variation in the spectra across different segments of data. In LIGO stochastic
background analyses, a “delta sigma” cut is used to discard segments of data that
exhibit significant non-stationarity. The square-root of the variance (6.33) of the cross-
correlation statistic is compared between three consecutive short segments of data
(each typically 60 seconds long), and if the levels differ by more than 20%–30% those
segments are not used in the analysis (Abbott et al. 2005, 2007).

The degree of non-stationarity can be measured from the auto-correlation of the

whitened Fourier coefficients x̄ f = x̃ f /

√
Ŝ( f ), where Ŝ( f ) is estimated from the
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(a) (b)

Fig. 71 Autocorrelation of the whitened Fourier coefficients as a function of lag for stationary and locally-
stationary AR(1) models. Panel a is a comparison for the full data sets, and panel b is for each of the 32
sub-segments. The locally-stationary data show clear departures from stationarity in the full data set, but
are consistent with stationarity in the shorter sub-segments of data

smoothed power spectra. The auto-correlation at lag k is defined by

c(k) ≡ 1

2N

N∑
i=1

(x̄i x̄
∗
i+k + x̄∗

i x̄i+k). (9.5)

For stationary, Gaussian noise in the large-N limit, c(k) for k > 0 is Gaussian dis-
tributed with zero mean and variance σ 2 = 1/N (Dwivedi and Subba Rao 2009).
It is convenient to use the scaled auto-covariance C(k) ≡ √

Nc(k), which has unit
variance for stationary, Gaussian noise. Figure 71 compares C(k) computed for the
locally-stationary AR(1) model shown in Fig. 70, and a stationary AR(1) model with
q(t) = q0 and ε(t) = ε0. The locally-stationary model shows clear departures from
stationarity when the auto-correlation is computed using the full data set (as evi-
denced by the large autocorrelations for small lags), while the data in each of the 32
sub-segments shows no signs of non-stationarity.

One note of caution in using the Fourier autocorrelation C(k) as an indicator of
non-stationarity is that any window that is applied to the time-domain data to lessen
spectral leakage in the Fourier transform necessarily makes the data non-stationary.
Choosing a window function (Appendix D.2) that is unity across most of the samples,
such as a Tukey window (D.14), lessens the taper-induced non-stationarity, but does
not eliminate the effect. The solution is to apply a correction to the autocorrelation that
accounts for the window. Figure 72 shows the impact that a Tukey window has on the
mean and variance of the Fourier autocorrelation C(k). In this simulation N = 32768
samples were used with a Tukey window that is constant across the central 90% of
the samples. By subtracting the mean and scaling by the square-root of the variance
caused by the Tukey window, the non-stationarity caused by the filter can be corrected
for.

9.2.2 Glitches

To model the second form of non-stationarity caused by short-duration noise tran-
sients, we add Gaussian-enveloped noise bursts to stationary AR(1) data. The bursts
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(a) (b)

Fig. 72 Panel a shows the mean and variance of the autocorrelation for stationary, Gaussian noise caused
by a Tukey window. Panel b shows the raw and corrected autocorrelation for a stationary, Gaussian noise
process

are simulated by generating white noise in the time domain, that is then multiplied by
a Gaussian window centered at time t0 with width σt . The data is then Fourier trans-
formed, and the Fourier coefficients are multiplied by a Gaussian window centered
at f0 with width σ f . In the simulation, the central times were drawn from a Poisson
process with a rate of 0.5 Hz, and the central frequencies were drawn from a uniform
distribution U [0, fN]. The duration and bandwidth were also drawn from uniform
distributions: σt ∼ U [0.01 s, 0.05 s], σ f ∼ U [2 Hz, 50 Hz]. The signal-to-noise ratio
of the bursts was drawn from the distribution

p(SNR) = SNR

2 SNR2∗
(

1 + SNR
2 SNR∗

)3 . (9.6)

This form for the SNR distribution is used by the BayesWave algorithm (Cornish and
Littenberg 2015) as a prior on the amplitude of glitches. The truncated power-law form
for p(SNR) is motivated by the distribution of glitches seen in real data. Figure 73
shows a 32-second segment of simulated data, and the dramatic effect that the glitches
have on the autocorrelation of the Fourier transform. Unlike the locally-stationary
noise process, which only introduced correlations for small lags, the glitches produce
a much larger deviation from stationarity that extends to large lags.

9.3 Non-Gaussian noise

Gaussian noise processes are ubiquitous in nature, and provide a remarkably
good model for the data seen in gravitational-wave detectors. Properly whitened
gravitational-wave data typically have a Gaussian core that accounts for the bulk of
the samples, along with a small number of outliers in the tails of the distribution. Even
these small departures can severely impact analyses that assume perfectly Gaussian
distributions.

Gauss developed the least-squares (maximum-likelihood) data analysis technique
in an effort to determine the orbit of the newly discovered dwarf planet Ceres. Gauss
showed that if measurement errors are: (i) more likely small than large, (ii) symmetric,
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(b)

(a)

Fig. 73 Panel a shows simulated stationary AR(1) data with non-stationary noise transients, or glitches,
highlighted in red. The upper panel is the raw data, while the lower panel has been whitened by the estimated
amplitude spectral density. Panel b shows the autocorrelation for the stationary AR(1) data without glitches
in blue, and with glitches in red

and (iii) have zero mean, then they follow a normal distribution (first described by de
Moivre in 1733). Gauss’ proof relied on the law of large numbers: he assumed that
under repeated measurements the most-likely value of a quantity is given by the mean
of the measured values. The assumptions used in Gauss’ derivation were placed on
a firmer footing by Laplace, who derived the central-limit theorem, which states that
the arithmetic mean of a sufficiently large number of independent random deviates
will be approximately normally distributed, regardless of the underlying distributions
the deviates are drawn from, so long as the distributions have finite first and sec-
ond moments. The central limit theorem is often invoked to explain the ubiquity of
Gaussian measurement errors. While the classic central limit theorem applies to noise
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(b)(a)

Fig. 74 Histograms of the whitened data samples for the simulated data shown in Fig. 73. A reference
N (0, 1) Gaussian distribution is shown as a red line. The light red band denotes the 3-sigma confidence
interval for the finite number of samples used to produce the histograms. Panel a uses the whitened Fourier
coefficients, while panel b uses the whitened time-domain samples. While the non-Gaussianity is most
apparent in the time domain, both distributions fail the Anderson–Darling test for Gaussianity

contributions that are fundamentally stochastic (such as those with a quantum origin),
a variant of the central limit theorem also applies to the sum of a large number of
deterministic effects, so long as the deterministic processes obey certain conditions
(Imkeller and von Storch 2001).

Since gravitational-wave data typically have highly-colored spectra, one cannot
simply compare the distribution of samples in time or frequency to a Gaussian distri-
bution. The data first have to be whitened. This can be done by dividing the Fourier
coefficients by the square-root of an estimate of the power spectra, and inverse Fourier
transforming the result to arrive at a whitened time series. Figure 74 shows histograms
of the whitened Fourier-domain and time-domain samples for the simulated data
shown in Fig. 73. By eye, the frequency-domain samples appear fairly Gaussian,
while the time-domain samples show clear departures from Gaussianity. Applying
the Anderson–Darling test (Anderson and Darling 1954) to both sets of samples
indicates that the Gaussian hypothesis is rejected in both cases, with a p-value of
p = 2.6 × 10−5 for the Fourier-domain samples and p < 10−20 for the time-domain
samples. Applying the same analysis to the locally-stationary AR(1) model generated
using 32 seconds of data (i.e., setting T = 32 s in the model for q(t) and ε(t)), we
find that the whitened Fourier coefficients generally pass the Anderson-Darling test,
while the whitened time-domain samples do not. Overall, glitches cause much larger
departures from Gaussianity than adiabatic variation in the noise levels.

To-date, there have been no detailed studies of the effects of non-stationary and
non-Gaussian noise on stochastic background analyses beyond the theoretical investi-
gations in Allen et al. (2002), Allen et al. (2003) and Himemoto et al. (2007). However,
a variety of checks have been applied to the LIGO-Virgo analyses using time-shifted
data and hardware and software signal injections, and the results were found to be
consistent with the performance expected for stationary, Gaussian noise (Abbott et al.
2005, 2007). In particular, the distribution of the residuals of the cross-correlation
detection statistic, formed by subtracting the mean and scaling by the square root of
the variance, have been shown to be Gaussian distributed (Abbott et al. 2007).
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9.4 Gaps and irregular sampling

Data gaps and irregular sampling do not significantly impact the analyses of interfer-
ometer data, but pose a major challenge to pulsar timing analyses.

9.4.1 Interferometer data

Interferometer data are regularly sampled, and gaps in the data pose no great challenge
since the non-stationarity already demands that the analysis be performed on short
segments of coincident data. The main difficulty working with short segments of data
is accounting for the filters that need to be applied to suppress spectral leakage (Abbott
et al. 2005; Lazzarini and Romano 2004).

9.4.2 Pulsar timing data

The collection of pulsar timing data is constrained by telescope, funding, and per-
sonnel availability. A large number of pulsars are now observed fairly regularly, with
observations occurring every 2–3 weeks. Older data sets are less regularly sampled,
and often have gaps of months or even years (Arzoumanian et al. 2015). Moreover,
the sensitivity of the instruments varies significantly over time, making the data highly
non-stationary, thus obviating the benefit of performing the analyses in the frequency
domain. For these reasons, modern pulsar timing analyses are conducted directly in
the time domain (van Haasteren et al. 2009).

Noise modeling for pulsar timing has become increasingly more sophisticated
(Lentati et al. 2014; Arzoumanian et al. 2015), but in broad strokes, the two main
terms in the noise model are: (i) measurement errors σi in each time-of-arrival mea-
surement, which are assumed to be uncorrelated between time samples i and j , and
(ii) a stationary red noise component Si j that depends on the lag |i − j | (van Haasteren
et al. 2009). These contribute to the time-domain noise correlation matrix Cn , which
appears in the Gaussian likelihood (3.51):

(Cn)i j = σ 2
i δi j + Si j . (9.7)

The data gaps and irregular sampling imply that the time lags |i − j | take on a wide
range of values, and do not come in multiples of a fixed sample rate Δt . Inverting the
large noise matrix Cn to compute the likelihood can be very expensive unless clever
tricks are used (Haasteren and Vallisneri 2014, 2015).

9.5 Advanced noise modeling

The traditional approach to noise modeling has been to assume a simple model, such as
the noise being stationary and Gaussian, and then measure the consequences this has
on the analyses using Monte Carlo studies of time-shifted data and simulated signals.
An alternative approach is to develop more flexible noise models that can account for
various types of non-stationarity and non-Gaussianity.
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Fig. 75 Panel a shows a 1-second sample of LIGO S6 data. The upper plot shows the raw data and the lower
plot shows the data whitened by the median BayesLine spectra with glitch subtraction by the BayesWave
algorithm. The solid aqua line is the data before glitch removal, and the dotted black line is after glitch
removal. Panel b shows the median and 90% credible bands for the spectral model with (blue) and without
(red) glitch subtraction. The grey line shows the power spectra of the data after glitch removal. Images
provided by Tyson Littenberg

One such approach is the BayesWave/BayesLine algorithm, which uses a two-part
noise model composed of a stationary, Gaussian component S( f ), and short dura-
tion glitches, g(t), modeled as Gaussian-enveloped sinusoids (Cornish and Littenberg
2015; Littenberg and Cornish 2015). The spectral model S( f ) is based on a cubic-
spline with a variable number of control points to model the smoothly-varying part
of the spectrum, and a collection of truncated Lorentzians to model sharp line fea-
tures. The optimal number and placement of the control points and Lorentizians is
determined from the data using a trans-dimensional Markov Chain Monte Carlo tech-
nique. The same technique is used to determine the number of sine-Gaussian glitches
and their parameters (central time and frequency, duration, etc.). This approach has
been applied to both LIGO data (Cornish and Littenberg 2015; Littenberg and Cor-
nish 2015) and pulsar timing data (Ellis and Cornish 2016). Figure 75 demonstrates
the application of the BayesWave and BayesLine algorithms to data from the LIGO
Hanford detector during the S6 science run of the initial LIGO detectors. Removing
the glitches has a significant impact on the inferred power spectra. Figure 76 displays
histograms of the whitened Fourier coefficients for the data shown in Fig. 75 with and
without glitch removal.

Additional models for non-stationary and non-Gaussian noise have been considered
by several authors. The detection of deterministic and stochastic signals was considered
in Allen et al. (2002), Allen et al. (2003) and Himemoto et al. (2007) for a variety
of non-Gaussian noise models, including exponential and two-component Gaussian
models. The two-component Gaussian model combined with a non-stationary glitch
model was studied in Littenberg and Cornish (2010). Student’s t-distribution was
considered in Rover (2011). A non-stationary and non-Gaussian noise model was
derived in Principe and Pinto (2008) based on a Poisson distribution of sine-Gaussian
glitches.
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Fig. 76 Histograms of the whitened time-domain data shown in Fig. 75. Panela is without glitch subtraction,
while panel b is with glitch subtraction. Images provided by Tyson Littenberg

9.6 Correlated noise

The standard cross-correlation statistic for detecting stochastic backgrounds relies on
the noise in each detector being uncorrelated. If we return to the simple model for
colocated and coaligned detectors, with white Gaussian noise and a white Gaussian
signal (Sect. 4.3.1), but now introduce a correlated noise component Sn12 , then the
correlation matrix for the signal-plus-noise model becomes

C =
[

(Sn1 + Sh)1N×N (Sh + Sn12)1N×N

(Sh + Sn12)1N×N (Sn2 + Sh)1N×N

]
, (9.8)

yielding the maximum likelihood solution

Ŝh ≡ 1

N

N∑
i=1

d1i d2i − Sn12 ,

Ŝn1 ≡ 1

N

N∑
i=1

d2
1i − Ŝh,

Ŝn2 ≡ 1

N

N∑
i=1

d2
2i − Ŝh .

(9.9)

We see that there is a degeneracy between the estimate for the signal Ŝh and the
correlated noise Sn12 , with no way to separate the two components. Correlated noise
with the same spectrum as the signal presents a fundamental limit to the detection of
stochastic signals.

If the spectral shape of either, or preferably both, the signal and the correlated noise
are known, then it is possible to separate the contributions using techniques similar to
those that are used to separate the primordial cosmic-microwave-background signal
from foreground contamination (Bennett et al. 2003). When the cause of the correlated
noise is not fully understood, or when searching for signals with arbitrary spectral
shapes, spectrum-based component separation will not be possible.
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Several sources of correlated noise have been hypothesized, and in some cases
observed, for both interferometer and pulsar timing analyses. Some of the correlations
are due to the electronics (Abbott et al. 2005), such as correlations between harmon-
ics of the 60 Hz AC power lines between the LIGO Hanford and LIGO Livingston
detectors, and correlations at multiples of 16 Hz from the data sampling referenced
to clocks on the Global Positioning System satellites. These narrow-band correlations
are easily removed using notch filters. Correlations in the global time standard can also
impact pulsar timing observations, as can errors in the ephemeris used in the timing
model.

9.6.1 Schumann resonances

One possible broad-band source of correlated noise for ground-based interferometers
that has received considerable attention (Thrane et al. 2013, 2014; Coughlin et al. 2016)
are Schumann resonances in the Earth’s magnetic field caused by lightning strikes.
These resonances can produce coherent oscillations over thousands of kilometers, and
have been observed to produced correlations in magnetometer readings at the LIGO
and Virgo sites (Thrane et al. 2013), as shown in panel (a) of Fig. 77. The spectrum of
the correlations induced in the detector output depend on both the spectrum of the time-
varying magnetic field, and the couplings to the instrument. The estimated spectrum
of correlated noise in the initial LIGO detectors from Schumann resonances is shown
in panel (b) of Fig. 77. The estimated spectrum lies below the initial LIGO noise
curve, but above the design noise curve for the advanced instruments. The situation is
not as dire as it looks, however, since the advanced LIGO detectors have a different
design that should have weaker coupling to magnetic fields. Nonetheless, Schumann
resonances may end up being a limiting factor for advanced LIGO stochastic searches,
and efforts are underway to model and subtract their effects (Coughlin et al. 2016).
Correlated noise is a much larger problem for colocated detectors, such as the 2 km
and 4 km initial LIGO detectors that shared the Hanford site. There it was found that
correlated noise prevented the data at frequencies below 460 Hz from being used for
stochastic background searches (Aasi et al. 2015).

Perhaps the greatest challenge comes from correlated noise sources of unknown
origin. Such noise sources may be well below the auto-correlated noise level in each
detector, and thus very hard to detect outside of the cross-correlation analysis. One
way of separating these noise sources from a stochastic signal is to build a large
number of interferometers at many locations around the world. Each pair of detectors
will then have a unique overlap function for gravitational-wave signals that will differ
from the spatial correlation pattern of the noise (unless we are incredibly unlucky!).
In principle, the difference in the frequency-dependent spatial correlation patterns of
the signal and the noise will allow the two components to be separated.

9.7 What can one do with a single detector (e.g., LISA)?

The discovery of the cosmic microwave background was described in a paper with
the unassuming title “A Measurement of Excess Antenna Temperature at 4080 Mc/s”
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(a) (b)

Fig. 77 Panel a shows the cross-correlation of magnetometer readings between the LIGO-Hanford and
LIGO-Livingston sites (HL), and also the LIGO-Hanford and Virgo sites (HV). The peaks indicated by
black dots are due to Schumann resonances. The green dots mark peaks that are due to correlations caused
by the electronics. Panel b shows the amplitude spectra of the initial and advanced LIGO detectors compared
to the estimated level of the correlated noise due to Schumann resonances. The correlated noise level in
advanced LIGO should be lower due to differences in the design (notably the lack of magnets attached to
the mirrors). Images reproduced with permission from Thrane et al. (2013), copyright by APS

(Penzias and Wilson 1965). Penzias and Wilson used a single microwave horn, and
announced the result after convincing themselves that no instrumental noise sources,
including pigeon droppings, could be responsible for the excess noise seen in the data.
In principle, the same approach could be used to detect a stochastic gravitational-wave
signal using a single instrument.

Single-detector detection techniques will be put to the test when the first space-based
gravitational-wave interferometer is launched, since (unless the funding landscape
changes dramatically) the instrument will be a single array of 3 spacecraft. Assuming
that pairs of laser links operate between each pair of spacecraft, it will be possible to
synthesize multiple interferometry signals from the phase readouts (Estabrook et al.
2000). One particular combination of the phase readouts, called the T channel, cor-
responds to a Sagnac interferometer, and is relatively insensitive to low-frequency
gravitational waves, forming an approximate null channel (see Sect. 4.7 for a discus-
sion of null channels). Other combinations, such as the so-called A and E channels
(Prince et al. 2002), are much more sensitive to gravitational-wave signals. Using the
Sagnac T to measure the instrument noise, the relative power levels in the {A, E, T }
channels can be used to separate a stochastic signal from instrument noise (Tinto et al.
2001).

LISA-type observatories operate as synthetic interferometers by forming gravita-
tional-wave observables in post-processing using different combinations of the
phasemeter readouts from each inter-spacecraft laser link. The combinations synthe-
size effective equal-path-length interferometers to cancel the otherwise overwhelming
laser frequency noise. These combinations have to account for the unequal and time-
varying distances between the spacecraft.

In the conceptually simpler equal-arm-length limit, the Michelson-type signal
extracted from vertex 1 (see panel (a) of Fig. 78) is given by
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Fig. 78 Panel a shows the geometry of a LISA-like space interferometer and the laser paths for the synthetic
Michelson interferometers X, Y, Z . Panelb shows sensitivity curves for the A, E, T interferometry variables
compared to a scale-invariant background, Ωgw( f ) = Ω0 = const, with Ω0 = 10−10. The Sagnac-like
T channel is far less sensitive than the Michelson-like A, E channels, and can be used to measure the
instrumental noise levels. (Panel b is adapted from Adams and Cornish (2010))

X (t) = M1(t) − M1(t − 2L), (9.10)

where
M1(t) = �12(t − L) + �21(t) − �13(t − L) − �31(t), (9.11)

and �i j (t) is the readout from the phasemeter on spacecraft j that receives light from
spacecraft i . Permuting the spacecraft labels {1, 2, 3} yields equivalent expressions for
the Michelson observables Y and Z , as shown in panel (a) of Fig. 78. The phasemeter
readouts �i j (t) are impacted by acceleration noise Sai j and position noise S p

i j . When
the noise levels in each spacecraft are equal, there exist noise-orthogonal combinations
(Prince et al. 2002; Adams and Cornish 2010):

A ≡ 1

3
(2X − Y − Z),

E ≡ 1√
3
(Z − Y ),

T ≡ 1

3
(X + Y + Z).

(9.12)

Note that these variables are only noise-orthogonal in the symmetric noise limit. For
example, the position noise contribution to the cross-spectra 〈AE〉 is given by

〈AE〉 = − 4

3
√

3
sin2

(
f

f∗

)(
2 cos

(
f

f∗

)
+ 1

)(
S p

13 − S p
12 + S p

31 − S p
21

)
, (9.13)

which vanishes when {S p
13, S

p
12, S

p
31, S

p
21} are equal, but not otherwise (Adams and Cor-

nish 2010). The synthetic interferometers A, E are rotated by 45 degrees with respect
to each other, and provide instantaneous measurements of the + and × polarization
states. The Sagnac-like T channel is relatively insensitive to gravitational waves for
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frequencies below the transfer frequency f∗ ≡ c/(2πL). The T channel can be used
to infer the instrument noise level, so that any excess in the A, E channels can then
be confidently attributed to gravitational waves (Tinto et al. 2001). For frequencies
f � f∗ the {A, E, T } channels have uncorrelated responses to unpolarized, isotropic
stochastic gravitational-wave signals.

There are some subtleties associated with using the T channel as a noise reference
as the noise combinations in T differ from those in A, E . For example, the acceleration
noise appears in T as (Adams and Cornish 2010):

〈T T 〉 = 16

9
sin2

(
f

f∗

)(
1 − cos

(
f

f∗

))2(
Sa12 + Sa13 + Sa31 + Sa32 + Sa23 + Sa21

)
,

(9.14)
while the acceleration noise appears in A and E as

〈AA〉 = 16

9
sin2

(
f

f∗

){
cos

(
f

f∗

)[
4
(
Sa12 + Sa13 + Sa31 + Sa21

)− 2
(
Sa23 + Sa32

)]

+ cos

(
2 f

f∗

)[
1

2
(Sa12 + Sa13 + Sa23 + Sa32) + 2(Sa31 + Sa21)

]

+9

2
(Sa12 + Sa13) + 3(Sa31 + Sa21) + 3

2
(Sa23 + Sa32)

}
, (9.15)

and

〈EE〉 = 16

3
sin2

(
f

f∗

){
Sa23 + Sa32 + Sa21 + Sa31 + 2 cos

(
f

f∗

)(
Sa23 + Sa32

)

+ cos2
(

f

f∗

)(
Sa23 + Sa32 + Sa12 + Sa13

)}
. (9.16)

In the ideal case where the noise levels are the same in each link, T provides a
measurement of the average noise, which can then be used as an estimator for the noise
in A, E . An analysis that assumes common noise levels will overstate the sensitivity to
a signal. A more conservative approach is allow for unequal noise levels and to infer
the individual contributions from the data. For example, if one link is particularly
noisy, it will dominate the noise in T , and enter unequally in A and E , making it
possible to identify the bad link and account for it in the analysis.

Bayesian inference is ideally suited to the task of jointly inferring the signal and
noise levels using models that fold in prior knowledge of the signals and instrument
components (Adams and Cornish 2010). The separation is aided by the difference in
the transfer functions for the signal and the noise. Analytic expressions for the signal
transfer or auto-correlated response functions (which are proportional to 
I I from
Sect. 5.3.4) can be derived in the low-frequency limit f � f∗:

RT T = 4 sin2
(

f

f∗

)[
1

12096

(
f

f∗

)6

− 61

4354560

(
f

f∗

)8

+ · · ·
]
, (9.17)
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and

RAA = REE = 4 sin2
(

f

f∗

)[
3

10
− 169

1680

(
f

f∗

)2

+ 85

6048

(
f

f∗

)4

− 178273

159667200

(
f

f∗

)6

+ 19121

24766560000

(
f

f∗

)8

+ · · ·
]
. (9.18)

Note that these signal transfer functions are very different from the acceleration noise
transfer functions given in (9.14), (9.15), (9.16). The difference in the transfer func-
tions, combined with priors on the functional form of the power spectral density of
the noise and signal, allows for the detection of signals that are significantly below
the noise level, even when there are not enough links to form the T channel (Adams
and Cornish 2010). The sensitivity decreases for less informative priors. In the limit
that the priors allow for arbitrarily complicated functional forms for the noise and
signal spectra—forms so contrived that they can compensate for the differences in the
transfer functions—it becomes impossible to separate signal from noise. In practice,
a combination of pre-flight and on-board testing, combined with physical modeling,
will hopefully constrain the noise model sufficiently to inform the analysis and allow
for component separation.

An additional complication for space interferometers operating in the mHz
frequency range are the millions of astrophysical signals that can drown-out a
cosmologically-generated stochastic background. While the brightest signals from
massive black hole mergers, stellar captures, and galactic binaries can be identified
and subtracted, a large number of weaker overlapping signals will remain, creating a
residual confusion noise. The largest source of confusion noise is expected to come
from millions of compact white-dwarf binaries in our galaxy. The annual modulation
of the white-dwarf confusion noise due to the motion of the LISA spacecraft (see
Fig. 40) will allow for this component to be separated from an isotropic stochastic
background, though at the cost of reduced sensitivity to the background (Adams and
Cornish 2014).

10 Prospects for detection

It’s tough to make predictions, especially about the future. Yogi Berra

The detection of the binary black hole merger signals GW150914 and GW151226
give us confidence that stochastic gravitational waves will be detected in the not-
to-distant future. Not only do they show that our basic measurement principles are
sound, they also point to the existence of a much larger population of weaker signals
from more distant sources that will combine to form a stochastic background that
may be detected by 2020 (Abbott et al. 2016h). Indeed, a confusion background from
the superposition of weaker signals eventually becomes the limiting noise source for
detecting individual systems (Barack and Cutler 2004). As a general rule of thumb,
individual bright systems will be detected before the background for transient signals
(those that are in-band for a fraction of the observation time), while the reverse is true
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for long-lived signals, such as the slowly evolving supermassive black-hole binaries
targeted by pulsar timing arrays (Rosado et al. 2015). The prospects for detecting more
exotic stochastic signals, such as those from phase transitions in the early Universe or
inflation, are much less certain, but are worth pursing for their high scientific value.
In this section we begin with a brief review of detection sensitivities curves across the
gravitational-wave spectrum, followed by a review of the current limits and prospects
for detection in each observational window.

10.1 Detection sensitivity curves

Detector sensitivity curves provide a useful visual indicator of the sensitivity of an
instrument to potential gravitational-wave sources. A good pedagogical description
of the various types of sensitivity curve in common use can be found in Moore et al.
(2015a). Here we provide a more condensed summary.

The simplest type of sensitivity curve is a plot of the power spectral density of
the detector noise Pn( f ), or its amplitude spectral density

√
Pn( f ). (Recall that the

mean-squared noise in the band [ f1, f2] is just the integral of Pn( f ) over that band).
But plots of Pn( f ) or

√
Pn( f ) can be misleading since they do not take into account

the frequency-dependent response to gravitational waves seen in Fig. 33. A better
quantity to plot is the sky and polarization-averaged amplitude spectral density

heff( f ) ≡ √
Sn( f ) = √

Pn( f )/R( f ), (10.1)

which has units of strain/
√

Hz, or the corresponding (dimensionless) characteristic
strain noise

hn( f ) ≡ √
f Sn( f ), (10.2)

where R( f ) ≡ 
I I ( f ) is the transfer function defined in (5.41) and (5.42). Figure 79
shows the construction of a LISA sensitivity curve from Pn( f ) and R(u), where
u = f/ f∗ and f∗ = c/(2πL). Note that for LIGO the factor R( f ) is usually not
included in sensitivity plots since f∗ � 12 kHz, and R( f ) is effectively constant
across the LIGO band.

The amplitude spectral density sensitivity curve heff( f ) has to be interpreted with
some care, as simply comparing this curve to the amplitude spectral density of a signal
does not immediately convey how detectable the signal is, as the likelihood function
and detection statistics derived from the likelihood function involve integrals over
frequency. The problem is compounded by the necessity to plot the sensitivity curves
on a log–log scale, where “integration-by-eye” misses the increase in the number of
frequency bins per logarithmic frequency interval. Rather than plot the raw signals, it
is more informative to show quantities that account for the detection techniques being
used. For example, the amplitude signal-to-noise ratio ρ for a deterministic signal
h̃( f ) is given by

ρ2 =
∫ ∞

f=0

4|h̃( f )|2
Pn( f )

d f =
∫ ∞

f=0

4 f |h̃( f )|2
Pn( f )

d(ln f ). (10.3)
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(a) (b)

(c) (d)

Fig. 79 Constructing a sensitivity curve for the LISA detector. Panel a shows the amplitude spectral
density of the noise. Panel b shows the sky and polarization-averaged response function. Panel c shows the
sensitivity curve found by dividing the noise spectral density by the response function. Panel d compares
the filtered effective signal strength

√
2 f T Sh( f ) for various signals to the LISA sensitivity curve

√
Sn( f ).

Panels a–c Image reproduced with permission from Larson et al. (2000), copyright by APS. Panel d Image
provided by M. Vallisneri

Averaging over sky location and polarization we have

ρ2 =
∫ ∞

f =0

4 f h̃2
rss( f )R( f )

Pn( f )
d(ln f ) =

∫ ∞

f =0

(2 f T )Sh( f )

Sn( f )
d(ln f ), (10.4)

where h̃2
rss( f ) ≡ |h̃+( f )|2 +|h̃×( f )|2, and Sh( f ) is the power spectral density of the

gravitational-wave signal,

Sh( f ) ≡ 2h̃2
rss( f )

T
. (10.5)

The quantity (2 f T )Sh( f )/Sn( f ) is the contribution to the square of the signal-to-
noise ratio per logarithmic frequency interval. The factor of 2 f T describes the boost
that we get by coherently integrating the signal over many cycles. For deterministic
signals the amplitude signal-to-noise ratio grows as T 1/2. Since sensitivity curves
are usually plotted in terms of the amplitude spectral density heff( f ) = √

Sn( f ),
it is natural to plot signals in terms of the square-root of the numerator of (10.4).
Representative LISA sources are represented in this way in panel (d) of Fig. 79. An
alternative choice is to plot both of these quantities multiplied by the square-root of

123



Living Rev Relativ  (2017) 20:2 Page 181 of 223  2 

Fig. 80 Examples of detector sensitivity curves compared to potential gravitational-wave signals, compar-
ing the characteristic strain signal hc( f ) to the characteristic strain noise hn( f ). Image reproduced with
permission from Janssen et al. (2015), copyright by the authors

the frequency, which yield the characteristic strain for the signal, hc( f ), as well as
for the noise, hn( f ). Examples of characteristic strain sensitivity curves are shown in
Fig. 80.

For isotropic stochastic signals, the sky location and polarization-averaged signal-
to-noise ratio ρ is

ρ2 = 2T
∫ ∞

f =0
d f

M∑
I=1

M∑
J>I


2
I J ( f )S

2
h( f )

PnI ( f )PnJ ( f )
=
∫ ∞

f =0

(2 f T )S2
h( f )

S2
net( f )

d(ln f ), (10.6)

where

Snet( f ) ≡
[

M∑
I=1

M∑
J>I


2
I J ( f )

PnI ( f )PnJ ( f )

]−1/2

. (10.7)

Note that for stochastic signals, ρ is a power signal-to-noise ratio. Similar to the
amplitude signal-to-noise ratio for deterministic signals, the power signal-to-noise
ratio for stochastic signals grows as T 1/2. (This assumes we are in the weak-signal
limit, and that the effective low-frequency cutoff does not change with time. See
Siemens et al. (2013) for a more complicated scaling that occurs for pulsar timing
arrays). Following the same logic as was applied to deterministic signals, it would
be natural to plot (2 f T )1/4√Sh( f ) against sensitivity curves defined by

√
Snet( f ).

Unfortunately, such conventions are not uniformly applied, and the factor of (2 f T )1/4

is often applied to
√
Snet( f ) instead:

heff( f ) ≡ 1

(2T f )1/4

√
Snet( f ). (10.8)
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(a) (b)

Fig. 81 Panel a compares heff ( f ) for an isotropic stochastic background for a single LISA detector to that
for a pair of LISA detectors arranged in a crossed-star configuration using an observation time of 1 year. Panel
b compares the per-frequency-bin (Δ f = 1/T ) upper limits on an isotropic stochastic background derived
from the NANOGrav 9-year data set (solid black line) to three astrophysical models for the signal from
supermassive black hole binaries. The upturn in the bound at low frequencies and the spike at f = 1/year
are due to the timing model acting as a filter on the signal. Images reproduced with permission from Cornish
(2002), copyright by APS (Panel a); and from Arzoumanian et al. (2016), copyright by AAS (Panel b)

A plot of heff( f ), averaged over a logarithmic frequency interval Δ f = f/10, for a
crossed pair of LISA-like detectors is shown in Fig. 81. Also shown in this figure are
the related per-frequency-bin upper bounds that are quoted by pulsar timing groups
using fixed frequency intervals Δ f = 1/T .

The most common form of sensitivity curve for stochastic backgrounds compares
predictions of the gravitational-wave energy density Ωgw( f ) to the equivalent noise
energy density Ωn( f ) ≡ 2π2 f 3Sn( f )/(3H2

0 ). These plots have the advantage of
being easy to produce and explain, but they do not fully capture the boost that comes
from integrating over frequencies. An alternative form of sensitivity curve that better
represents the analysis procedure uses the envelope of limits that can be placed on
power-law stochastic backgrounds (Thrane and Romano 2013; Moore et al. 2015b).
This method has the advantage of incorporating the integrated nature of the detection
statistic. Examples for advanced LIGO and PTAs are shown in Fig. 82.

10.2 Current observational results

10.2.1 CMB isotropy

The cosmic microwave background (CMB) provides a snapshot of the Universe
≈400, 000 years after the big bang. During this epoch, the dense, hot plasma that
filled the early Universe dilutes and cools to the point where electrons and ions com-
bine to form a neutral gas that is transparent to photons. Maps of the CMB contain a
record of the conditions when the CMB photons were last scattered.

Gravitational waves propagating through the early Universe, referred to as ten-
sor perturbations in the CMB literature, can leave an imprint in the temperature and
polarization pattern when CMB photons scatter off the tidally-squeezed plasma. The
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(a) (b)

Fig. 82 Panel a shows the sensitivity of the advanced LIGO Hanford–Livingston detector pair in terms
of gravitational-wave energy density Ωgw( f ) using a variety of methods. The blue line is the sensitivity
to isotropic stochastic signals with power-law spectra, formed from the envelope of backgrounds with a
wide range of spectral slopes (shown as straight black lines). Also shown as a black curve is the noise
spectral density of a single LIGO detector converted to units of Ω( f ). The red and green lines are variants
of heff ( f ), again converted to units of Ω( f ). The lower green curve is for an observation time of 1 year
and Δ f = 0.25 Hz. Panel b shows the characteristic strain sensitivity for a hypothetical pulsar timing array
formed from the envelope of a large number of power law models. The red lines show a subset of the power
law models used. The upper and lower frequency limits to the sensitivity are set by the observation cadence
and the observation time, respectively. Images reproduced with permission from Thrane and Romano (2013),
copyright by APS (Panel a); and from Moore et al. (2015b), copyright by IOP (Panel b)

challenge is to separate out the contributions from primordial scalar, vector, and tensor
perturbations, and to separate these primordial contributions from subsequent scatter-
ing by dust grains and hot gas.

Observations by the COBE, WMAP and Planck missions, along with a host of
ground-based and ballon-borne experiments, have provided strong evidence in support
for the inflation paradigm, where the Universe undergoes a short period of extremely
rapid expansion driven by some, as yet unknown, inflaton field. To keep the discussion
brief, we focus our review on the standard single-field “slow-roll” inflation model, and
direct the reader to more extensive CMB-focused reviews, e.g., Kamionkowski and
Kovetz (2015), that cover more exotic models.

The rapid expansion of some small patch of the very early Universe will erase
any initial anisotropy and inhomogeneity, allowing the patch to be modeled by a flat
Friedmann–Lemaître–Robertson–Walker (FLRW) metric with scale factor a(t). The
Einstein equations for a FLRW Universe containing an inflaton field φ with potential
V (φ) are given by 25

25 For our discussion of inflation, we will work inparticle physics unitswhere both c = 1 and h̄ = 1. In place
of using Newton’s gravitational constant G, we will use the reduced Planck mass MPl ≡ (h̄c/8πG)1/2 =
2.435 × 1018 GeV/c2. In these units M2

Pl = 1/8πG, which simplifies several of the formulae. If you want
to reinstate all of the relevant factors of h̄ and c, note that the inflaton field φ has dimensions of energy and
the inflaton potential V (φ) has dimensions of energy density.
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H2 =
(
ȧ

a

)2

= 1

3M2
Pl

(
1

2
φ̇2 + V (φ)

)
, (10.9)

and
φ̈ + 3H φ̇ + V,φ = 0. (10.10)

In the slow-roll regime, the kinetic energy of the inflaton field 1
2 φ̇2 is assumed to

be much smaller than the potential energy V (φ), with φ having reached “terminal
velocity”, such that φ̈ � H φ̇. Thus,

3H φ̇ � −V,φ and H2 � V

3M2
Pl

. (10.11)

Necessary conditions for these approximations to hold can be expressed in terms of a
Taylor-series expansion of the inflaton potential, leading to conditions on the first and
second derivatives of the potential:

εV ≡ M2
PlV

2
,φ

2V 2 � 1, ηV ≡ M2
PlV,φφ

V
� 1. (10.12)

The solution of the Einstein equations for slow-roll inflation is well-approximated by
an exponentially de Sitter Universe. Quantum fluctuations in the otherwise smooth
inflaton field and gravitational field give rise to scalar and tensor perturbations, which
leave their imprint in the CMB. On large scales the power spectra for the scalar and
tensor fluctuations can be written as

Ps(k) = As

(
k

k∗

)ns (k)−1

and Pt (k) = At

(
k

k∗

)nt (k)

, (10.13)

where the reference wavenumber k∗ = 2π/λ∗ is typically chosen to correspond to
wavelengths λ∗ ∼ 100 Mpc. The spectral indices ns(k) and nt (k) are usually written
in terms of a power-series expansion in ln k:

ns(k) = ns + 1

2

dns
d ln k

ln

(
k

k∗

)
+ 1

6

d2ns
d ln k2 ln

(
k

k∗

)2

+ · · · . (10.14)

The amplitude and spectral indices are related to the energy scale for inflation, V , and
the slow-roll parameters εV and ηV :

As � V

24π2M4
PlεV

and At � 2V

3π2M4
Pl

, (10.15)

and
ns � 1 + 2ηV − 6εV and nt � −2εV . (10.16)
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Measuring As , At , and ns fixes the energy scale of inflation, V , and the two leading
terms in the Taylor-series expansion of the inflaton potential, V,φ and V,φφ . Addition-
ally measuring nt would provide a consistency check for the slow-roll model.

One challenge in measuring Ps(k) and Pt (k) is that the scalar and tensor pertur-
bations both source temperature and polarization anisotropies in the CMB radiation.
Another challenge is that foreground gas and dust can also contribute to the temper-
ature and polarization anisotropies. The various components can be teased apart by
observing a wide range of CMB energies across a wide range of angular scales.

The primordial contribution to the CMB follows a black-body spectrum, while the
dominant foreground contribution from gas and dust have very different spectra. By
observing at multiple CMB wavelengths the primordial and foreground contributions
can be separated. Separating the scalar and tensor contributions to the primordial
component of the temperature anisotropies can be achieved by making maps that cover
a wide range of angular scales, while separating their contributions to the polarization
anisotropies can be achieved by decomposing the signal into curl-free E-modes and
divergence-free B-modes, and using measurements made on a wide range of angular
scales. For a more in-depth description, see Chapter 27 of the Review of Particle
Physics (Olive et al. 2014).

The scalar and tensor contributions to the large-scale temperature anisotropy can be
computed using linear perturbation theory. The anisotropy due to tensor fluctuations
arises solely from the gravitational potential differences on the last-scattering surface,
while the anisotropy due to scalar fluctuations is more complicated, and include contri-
butions from the excitation of sound waves in addition to variations in the gravitational
potential. As the co-moving horizon grows, tensor modes that have wavelengths shorter
than the horizon size redshift and lose energy. Consequently, the tensor contribution
to the CMB anisotropy drops by roughly two orders of magnitude between angular
scales � = 2 and � = 200, while the scalar contribution, after an initial dip, grows until
reaching the first acoustic peak at � � 220. Plots of the predicted scalar and tensor
contributions to the temperature (TT ) power spectra using the best fit ΛCDM model
from Planck are shown in panel (a) of Fig. 83. By comparing the CMB anisotropy at
very large scales (� ∼ 2–10) and degree scales (� ∼ 200), it is possible to constrain
the tensor-to-scalar ratio (Knox and Turner 1994):

r ≡ At

As
. (10.17)

In practice, a more sophisticated joint analysis is performed using all available CMB
data (often combined with other data sets, such as maps of large-scale structure, weak
lensing, and measurements of the expansion history), simultaneously fitting for a
large number of cosmological parameters. The Planck temperature map, combined
with weak lensing data, provide a precise measurement for the amplitude and spectral
index of the scalar perturbations:

ln As = −19.928 ± 0.057, ns = 0.9603 ± 0.0073, (10.18)

and a bound on the tensor-to-scalar ratio:
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(a) (b)

Fig. 83 Panel a shows the theoretical predictions for the temperature and polarization cross-spectra from
scalar and tensor perturbations for the best fit ΛCDM model from Planck, assuming a tensor-to-scalar ratio
of r = 0.1. The curves are labeled by type: T T labels the temperature power spectrum, while T E labels the
temperature-E-mode cross spectrum and so on. Panel b compares recent measurements of the BB spectrum
to the theoretical prediction. Images reproduced with permission from Olive et al. (2014), copyright by UC
Regents

r < 0.12 (95% confidence), (10.19)

using a pivot scale of k∗ = 0.002 Mpc−1. The Planck bound on r is the most stringent
possible using CMB temperature data (Knox and Turner 1994). (In fact, it beats the
theoretical limit slightly since the analysis also used weak lensing and WMAP polar-
ization data). In order to improve on this bound, or to detect the tensor contribution,
CMB polarization data must also be used.

The Planck bound on r can be mapped into constraints on the gravitational-wave
energy density via (Turner et al. 1993; Lasky et al. 2016):

Ωgw( f ) = 3r AsΩr

128

(
f

f∗

)nt
[

1

2

(
feq

f

)2

+ 16

9

]
, (10.20)

where f = ck/(2π), feq ≡ √
2H0Ωm/(2π

√
Ωr ) is the frequency of a horizon-

scale mode when matter and radiation have the same density, and Ωm and Ωr are the
matter and radiation density today, in units of the critical density. The projectedPlanck
bound from the B-mode power spectrum, along with existing and projected bounds
from pulsar timing and aLIGO are shown in Fig. 84, which is taken from Lasky et al.
(2016). Also shown are curves for theoretical models with a large tensor-to-scalar ratio
(r = 0.11) and a range of spectral tilts nt .

Coherent motion in the primordial plasma can polarize the CMB photons through
Thomson scattering. Scalar perturbations source curl-free E-mode polarization
anisotropies, while the tensor perturbations source divergence-free B-mode polar-
ization anisotropies, in addition to E-modes. In principle, by decomposing the
polarization into E and B components, and using observations across a range of
angular scales, it should be possible to separate the scalar and tensor contributions.
In practice, the measurements are extremely challenging due to the weakness of the
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Fig. 84 Current and projected bounds on Ωgw( f ) from CMB measurements, pulsar timing observations,
and ground based interferometers. The curve marked “CMB” shows the projected sensitivity of the Planck
satellite to primordial B-mode polarization anisotropies. The black star marked “PTA” is the current 95%
upper limit from the Parkes pulsar timing array. The LIGO and aLIGO sensitivity curves were produced
using the power-law envelope method (Thrane and Romano 2013). The curve labeled “indirect bounds”
was produced by converting bounds on the total gravitational-wave energy density from CMB temperature
and polarization power spectra, weak lensing, baryon acoustic oscillations, and Big Bang nucleosynthesis
to bounds on the energy density per logarithmic frequency interval using power-law models. The colored
lines are theoretical predictions for the primordial background assuming r = 0.11 and for spectral slopes
nt = 0.68 (orange curve), nt = 0.54 (blue), nt = 0.36 (red), and nt = 0.34 (magenta). The prediction
for the simple slow-roll inflation model discussed in this section, nt = −r/8, is shown in green. Image
reproduced with permission from Lasky et al. (2016), copyright by the authors

signals (nano-Kelvin or smaller polarization fluctuations as compared to micro-Kelvin
temperature fluctuations) and foreground noise. The main noise contributions come
from gravitational lensing, which converts a fraction of the much larger E-mode
anisotropy into B-modes, and scattering by dust grains, which can convert unpolar-
ized CMB radiation into E and B modes. Both of these potential noise sources have
recently been detected (Hanson et al. 2013; Ade et al. 2015c). The detection of B-mode
polarization on large angular scales by BICEP2 was originally interpreted as having a
primordial origin (Ade et al. 2014), but a joint analysis using Planck dust maps (Ade
et al. 2015c) showed the signal to be consistent with foreground noise.

While detecting the primordial B-mode contribution is very challenging, the pay-
off is very large, as measuring the amplitude of the tensor perturbations, At , fixes the
energy scale of inflation, and can be used to strongly constrain models of inflation.

10.2.2 Pulsar timing

Pulsar timing observations have made tremendous progress in the past 10 years and are
now producing limits that seriously constrain astrophysical models for supermassive
black hole mergers. The current observations are most sensitive at f ∼ 10−8 Hz, so
we choose a reference frequency of fref = 10−8 Hz, and quote the latest bounds on
Ωgw( f ) = Ωβ( f/ fref)

β in terms of bounds on Ωβ for a Hubble constant value of
H0 = 70 km s−1 Mpc−1.
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For a scale invariant (nt = 0) cosmological background, β = 0. The most recent
95% confidence limits on such a background are (Lentati et al. 2015; Arzoumanian
et al. 2016; Shannon et al. 2015; Lasky et al. 2016):

Ω0 < 1.2 × 10−9 (EPTA),

Ω0 < 8.5 × 10−10 (NANOGrav),

Ω0 < 2.1 × 10−10 (PPTA).

(10.21)

For a stochastic background from a population of black hole binaries on quasi-circular
orbits driven by gravitational-wave emission, β = 2/3. The most recent 95% confi-
dence limits on such a background are (Lentati et al. 2015; Arzoumanian et al. 2016;
Shannon et al. 2015):

Ω2/3 < 5.4 × 10−9 (EPTA),

Ω2/3 < 1.3 × 10−9 (NANOGrav),

Ω2/3 < 6.0 × 10−10 (PPTA).

(10.22)

10.2.3 Spacecraft Doppler tracking

Spacecraft Doppler tracking (Armstrong 2006) operates on the same principles as pul-
sar timing, with a precision on-board clock and radio telemetry replacing the regular
lighthouse-like radio emission of a pulsar. The ∼1–10 AU Earth-spacecraft separa-
tion places spacecraft Doppler tracking between pulsar timing and future LISA-like
missions in terms of baseline and gravitational-wave frequency coverage. In principle,
a fleet of spacecraft each equipped with accurate clocks and high-power radio trans-
mitters could be used to perform the same type of cross-correlation analysis used in
pulsar timing, but to-date the analyses have been limited to single spacecraft studies.

The most stringent bounds come from using the Cassini spacecraft, and place a
bound on the strength of a stochastic gravitational-wave background at frequencies of
order one over the transit time to the spacecraft (Abbate et al. 2003):

Ωgw( f ) < 0.027 for 10−6 < f < 10−3 Hz. (10.23)

10.2.4 Interferometer bounds

Data from the initial LIGO and Virgo observation runs, and more recently, from
advanced LIGO’s first observing run (O1), have been used to place constraints
on the fractional energy density of isotropic stochastic backgrounds across multi-
ple frequency bands between 20 − 1726 Hz. The bounds are quoted in terms of
Ωgw( f ) = Ωβ( f/ fref)

β for β = 0 (flat in energy density), β = 3 (flat in strain
spectral density), and β = 2/3 (appropriate for a stochastic signal from a population
of inspiralling binaries). The β = 0 bounds are quoted for the lower frequency bands,
where the sensitivity is greatest for signals with this slope, while the β = 3 bounds
are quoted for the higher frequency bands. The β = 2/3 bound is motivated by the
detection of multiple binary black hole mergers during O1, which implies that stellar-
remnant black holes may produce a detectable stochastic signal from the superposition
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of many individually undetected sources (Abbott et al. 2016h). The bounds assume a
Hubble constant value of H0 = 68 km s−1 Mpc−1.

Initial LIGO and Virgo data
Combining the initial LIGO and Virgo data, the most stringent 95%-confidence upper
limits for β = 0 are (Aasi et al. 2014):

Ωgw( f ) < 5.6 × 10−6 for 41.5 < f < 169.25 Hz,
Ωgw( f ) < 1.8 × 10−4 for 170 < f < 600 Hz.

(10.24)

The bounds for β = 3 are (Aasi et al. 2014, 2015):

Ωgw( f ) < 7.7 × 10−4
(

f
900 Hz

)3
for 460 < f < 1000 Hz,

Ωgw( f ) < 1.0 × 100
(

f
1300 Hz

)3
for 1000 < f < 1726 Hz.

(10.25)

We note that the β = 3 bound for the 460 < f < 1000 Hz frequency band comes
from a correlation analysis using the colocated 2 km and 4 km Hanford detectors (Aasi
et al. 2015).

Advanced LIGO’s first observing run O1
The analysis of data from LIGO’s first observing run O1 improves on the above limits
for β = 0 and β = 3 at lower frequencies (Abbott et al. 2016b):

Ωgw( f ) < 1.7 × 10−7 for 20 < f < 85.8 Hz,

Ωgw( f ) < 1.7 × 10−8
(

f
25 Hz

)3
for 20 < f < 305 Hz.

(10.26)

The data was also used to place a limit on stochastic signals with spectral slope
β = 2/3, appropriate for stochastic signals from inspiralling binaries (Abbott et al.
2016b):

Ωgw( f ) < 1.3 × 10−7
(

f
25 Hz

)2/3
for 20 < f < 98.2 Hz. (10.27)

10.2.5 Bounds on anisotropic backgrounds

Constraints on anisotropic backgrounds have also been set using data from both initial
and advanced LIGO (Abadie et al. 2011; Abbott et al. 2016a) and from the European
Pulsar Timing Array (Taylor et al. 2015). The corresponding upper-limit maps for
advanced LIGO’s first observing run (O1) and from the EPTA data are shown in
Figs. 85 and 86, respectively.

The upper-limit maps shown in Fig. 85 are for advanced LIGO’s first observational
run (Abbott et al. 2016a). The maps were constructed using both the spherical har-
monic decomposition method (left column) and the radiometer method (right column).
(These methods are described in Sect. 7.3.6). The three rows correspond to anisotropic
backgrounds having spectral indices β = 0, 2/3, and 3, respectively. The spherical
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Fig. 85 90% confidence-level upper-limit maps on gravitational-wave power for anisotropic backgrounds
having spectral indices β = 0, 2/3, and 3 (first, second, and third row, respectively). The data analyzed
were from advanced LIGO’s first observational run O1 (Abbott et al. 2016a). Left column UL maps on
the fractional energy density Ωβ(n̂) expressed in units of sr−1, constructed using the spherical harmonic
decomposition method out to lmax = 3, 4, and 16.Right columnUL maps on the energy flux Fβ,n̂0

expressed

in units of erg cm−2 s−1 Hz−1, constructed using the radiometer method, which assumes a point-source
signal model. Figure adapted from Abbott et al. (2016a)

harmonic decomposition maps have lmax = 3, 4, and 16, respectively, and the upper
limits are on

Ωβ(n̂) ≡ 2π2

3H2
0

f 3
refP(n̂), P(n̂) =

lmax∑
l=0

l∑
m=−l

PlmYlm(n̂), (10.28)

expressed in units of fractional energy density per sterardian, sr−1. These limits can
be used, for example, to put a constraint on the integrated fractional energy density:

Ωgw( f ) =
∫
d2Ωn̂ Ωβ(n̂)

(
f

fref

)β

. (10.29)

The radiometer maps give upper limits on the energy flux

Fβ,n̂0 ≡ c3π

4G
f 2
refPn̂0 , P(n̂) = Pn̂0 δ2(n̂, n̂0), (10.30)
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Fig. 86 95% confidence-level
upper-limit map on the
characteristic strain amplitude
for an anisotropic background
having spectral index
α = −2/3. The white stars show
the location of the EPTA pulsars
used for the analysis. Image
reproduced with permission
from Taylor et al. (2015),
copyright by APS

expressed in units of erg cm−2 s−1 Hz−1. Here, G is Newton’s gravitational constant,
and Pn̂0 is the signal power of a single point source in direction n̂0 (which is the
radiometer signal model).26 The reference frequency for all the maps is fref = 25 Hz,
corresponding to the most sensitive part of the frequency band for a stochastic search
at advanced LIGO design sensitivity. All the searches include frequencies 20 < f <

500 Hz, which more than cover the regions of 99% sensitivity for each spectral index.
The upper-limit map shown in Fig. 86 is for the 2015 European Pulsar Timing

Array data (Taylor et al. 2015). The map shows the 95% confidence-level upper limits
on the (dimensionless) amplitude Ah of the characteristic strain (2.23):

hc( f ) = Ah

(
f

yr−1

)−2/3

, (10.31)

for ∼2 < f < 90 nHz. The spectral index α = −2/3 is appropriate for a stochas-
tic background formed from the superposition of gravitational-wave-driven, circular,
inspiraling supermassive black-hole binaries, which is an expected source at the nano-
Hz frequencies probed by pulsar timing arrays. The corresponding spectral index for
the fractional energy density in gravitational waves, Ωgw( f ), is β = 2/3 (Sect. 2.5).
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A Freedom in the choice of polarization basis tensors

A.1 Linear polarization

In the main text, we chose the A = +,× polarization basis tensors to be

e+
ab(n̂) = l̂a l̂b − m̂am̂b,

e×
ab(n̂) = l̂am̂b + m̂al̂b,

(A.1)

where n̂ is the direction to the gravitational-wave source, and l̂, m̂ are unit vectors
tangent to the sphere:

n̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ ≡ r̂ ,

l̂ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ ≡ θ̂ ,

m̂ = − sin φ x̂ + cos φ ŷ ≡ φ̂.

(A.2)

This particular choice for the vectors l̂, m̂, perpendicular to n̂ is somewhat arbitrary,
as one can rotate these vectors by an angle ψ in the plane orthogonal to n̂, preserving
the triple as a right-handed orthonormal triad. (For a gravitational-wave source with
a symmetry axis, such as a binary system or rotating neutron star, the angle ψ can be
interpreted as the polarization angle of the source). See Fig. 87. Under such a rotation,
l̂ and m̂ transform to new unit vectors

p̂ ≡ cos ψ l̂ + sin ψ m̂,

q̂ ≡ − sin ψ l̂ + cos ψ m̂,
(A.3)

leading to new polarization tensors

ε+
ab(n̂, ψ) ≡ p̂a p̂b − q̂aq̂b,

ε×
ab(n̂, ψ) ≡ p̂aq̂b + q̂a p̂b.

(A.4)

The new polarization tensors are related to the original ones via
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Fig. 87 Different choices for the unit vectors perpendicular to n̂. By rotating the unit vectors l̂, m̂ by the
angle ψ in the plane orthogonal to n̂, one obtains new unit vectors, p̂, q̂, in terms of which new polarization
basis tensors, ε+

ab(n̂, ψ), ε×
ab(n̂, ψ), are defined

ε+
ab(n̂, ψ) = cos 2ψ e+

ab(n̂) + sin 2ψ e×
ab(n̂),

ε×
ab(n̂, ψ) = − sin 2ψ e+

ab(n̂) + cos 2ψ e×
ab(n̂).

(A.5)

A.2 Circular polarization

The form of the above transformation suggests a more convenient basis of polarization
tensors. Namely, if we define the complex combinations

eRab ≡ 1√
2

(
e+
ab + i e×

ab

)
,

eLab ≡ 1√
2

(
e+
ab − i e×

ab

)
,

(A.6)

or, equivalently,

eRab ≡ 1√
2
(l̂a + i m̂a)(l̂b + i m̂b),

eLab ≡ 1√
2
(l̂a − i m̂a)(l̂b − i m̂b),

(A.7)
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then under the above rotation by ψ ,

εRab(n̂, ψ) = e−i2ψ eRab(n̂),

εLab(n̂, ψ) = ei2ψ eLab(n̂).
(A.8)

The tensors eRab, eLab correspond to right and left circularly polarized waves when

looking down on the {l̂, m̂} plane in the −n̂-direction. (The deformation ellipse
for eRab would rotate to the right, i.e., clockwise, when viewed in this direction).
The fact that the right and left circularly polarized waves transform by a simple
phase factor involving 2ψ is a manifestation of the spin-two nature of the graviton
(Weinberg 1972). Indeed, one can show that the scalar field eRab(n̂)hab( f, n̂) can be
written as a linear combination of spin-weight +2 spherical harmonics 2Ylm(n̂), while
eLab(n̂)hab( f, n̂) can be written as a linear combination of spin-weight −2 spherical har-
monics −2Ylm(n̂). (See Appendices E, F, G for more details regarding spin-weighted
and vector and tensor spherical harmonics).

The Fourier components hab( f, n̂) of the metric perturbations hab(t, �x) can be
expanded in terms of either the linear polarization basis tensors:

hab( f, n̂) = h+( f, n̂)e+
ab(n̂) + h×( f, n̂)e×

ab(n̂), (A.9)

or the circular polarization basis tensors:

hab( f, n̂) = hR( f, n̂)eRab(n̂) + hL( f, n̂)eLab(n̂). (A.10)

The expansion coefficients hR , hL are related to h+, h× via:

hR = 1√
2

(h+ − ih×) ,

hL = 1√
2

(h+ + ih×) .

(A.11)

Note the sign change on the right-hand side of (A.11) compared to (A.6).

A.3 Polarization matrix and Stokes’ parameters

For a single monochromatic plane wave, the expansion coefficients h+, h× or hR , hL
are (complex-valued) constants. The polarization content of the plane wave is encoded
in terms of the 2 × 2 (Hermitian) polarization matrix

JBB′ ≡ hBh
∗
B′ , (A.12)

where B labels either the linear polarization components A ≡ {+,×} or circular
polarization components C ≡ {R, L}. For linear polarization, the matrix elements
have the form

JAA′ = 1

2

[
I + Q U − iV
U + iV I − Q

]
, (A.13)
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where I , Q, U , V are the Stokes’ parameters (Jackson 1998):

I = |h+|2 + |h×|2,
Q = |h+|2 − |h×|2,
U = h+h∗× + h×h∗+,

V = i(h+h∗× − h×h∗+).

(A.14)

For circular polarization, we have

JCC ′ = 1

2

[
I + V Q − iU
Q + iU I − V

]
, (A.15)

where
I = |hR|2 + |hL |2,
Q = hRh

∗
L + hLh

∗
R,

U = i(hRh
∗
L − hLh

∗
R),

V = |hR|2 − |hL |2.

(A.16)

Note that I is the total intensity of the wave, Q is a measure of linear polariza-
tion, |h+|2 − |h×|2, and V is a measure of circular polarization, |hR |2 − |hL |2.
Since a stochastic gravitational-wave background is a linear superposition of plane
waves having different frequencies and coming from different directions on the sky,
the matrix elements of J will be replaced by quadratic expectation values, e.g.,
〈h+( f, n̂)h∗×( f ′, n̂′)〉, which will also depend on whether the background is stationary
or anisotropic, etc.

Given the transformation properties (A.8) of eRab, eLab, and the definition (A.11) of
hR , hL , it follows that hR , hL transform to

h̄ R = ei2ψhR,

h̄L = e−i2ψhL ,
(A.17)

under a rotation of the basis vectors {l̂, m̂} by ψ . From these equations and expressions
(A.16) for the Stokes parameters, we can further show that I , Q, U , V transform to

Ī = I,

V̄ = V,

Q̄ + iŪ = e−i4ψ(Q + iU ),

Q̄ − iŪ = ei4ψ(Q − iU ),

(A.18)

under a rotation by ψ . Thus, I and V are ordinary scalar (spin 0) functions on the
sphere, while Q ± iU are spin 4 fields, and can be written as linear combinations
of spin-weight ±4 spherical harmonics ±4Ylm(n̂). This has relevance for searches for
circularly or linearly polarized stochastic backgrounds, as circular polarization, V , is
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present in the isotropic component of the background, while linear polarization, Q, is
not (Seto 2008).

B Some standard results for Gaussian random variables

The statistical properties of a random variable X are completely determined by its
probability distribution pX (x). The moments of the distribution 〈X〉, 〈X2〉, 〈X3〉, . . .,
are defined by

〈Xn〉 ≡
∫ ∞

−∞
dx xn pX (x). (B.1)

The first moment 〈X〉 is the expected (or mean) value of X , and is often denoted by μ;
the second moment is related to the variance σ 2 via the formula 〈X2〉 = σ 2 + 〈X〉2.
The characteristic function of the probability distribution is defined by the Fourier
transform:

ϕX (t) ≡
∫ ∞

−∞
dx eitx pX (x). (B.2)

Note that by expanding the exponential

ϕX (t) = 1 + i t〈X〉 + i2t2

2! 〈X2〉 + · · · . (B.3)

This means that the moments 〈Xn〉 can be obtained by simply differentiating ϕX (t):

〈Xn〉 = i−n
[
dn

dtn
ϕX (t)

] ∣∣∣∣
t=0

. (B.4)

If the moments are all finite and the expansion (B.3) is absolutely convergent near the
origin, then the probability distribution pX (x) is simply the inverse Fourier transform
of ϕX (t):

pX (x) = 1

2π

∫ ∞

−∞
dt e−i t x ϕX (t). (B.5)

A similar result can be obtained for a one-sided probability distribution pX (x) (e.g.,
defined only for x ≥ 0) by working with Laplace transformations instead.

If X is a Gaussian random variable, then

pX (x) = 1√
2πσ

e− 1
2

(x−μ)2

σ2 . (B.6)

The parameters μ and σ 2 are just the mean and variance of X :

μ = 〈X〉, σ 2 = 〈X2〉 − 〈X〉2. (B.7)

A nice property of Gaussian distributions is that all third and higher-order moments
can be expressed as a sum of products of the first two moments. For example, for a
single Gaussian random variable X ,
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〈X3〉 = 3〈X〉〈X2〉 − 2〈X〉3,

〈X4〉 = 4〈X〉〈X3〉 + 3〈X2〉2 − 12〈X〉2〈X2〉 + 6〈X〉4,

...

(B.8)

More generally, for n ≥ 3 these relations can be obtained by solving the equations

[
dn

dtn
ln ϕX (t)

] ∣∣∣∣
t=0

= 0 (B.9)

for 〈Xn〉, where ϕX (t) is given by the right-hand side of (B.3). The fact that the deriva-
tives are actually equal to zero follows from the specific form for the characteristic
function for a Gaussian distribution:

ϕX (t) = exp

[
iμt − σ 2t2

2

]
. (B.10)

Since ln ϕX (t) is quadratic in t , all third and higher-order derivatives vanish.
A multivariate Gaussian distribution is a generalization of (B.6) to a set of random

variable X ≡ {X1, X2, . . . , XN }. The joint probability density function is given by

pX(x1, x2, . . . , xN ) = 1√
det(2πC)

e− 1
2

∑
i, j (xi−μi )

(
C−1

)
i j (x j−μ j ), (B.11)

where μi = 〈Xi 〉 are the mean values, and

Ci j = 〈Xi X j 〉 − 〈Xi 〉〈X j 〉 (B.12)

are the elements of the covariance matrix C . For a zero-mean multivariate Gaussian
distribution, all of the odd-ordered moments are identically zero. In addition,

〈X1X2X3X4〉 = 〈X1X2〉〈X3X4〉 + 〈X1X3〉〈X2X4〉 + 〈X1X4〉〈X2X3〉. (B.13)

We will use several of the above results repeatedly throughout the main text, as most
of the probability distributions that we work with are multivariate-Gaussian.

C Definitions and tests for stationarity and Gaussianity

Here we provide definitions of what it means for data to be stationary and Gaussian, and
highlight some tests for these properties. Ascertaining whether or not data are station-
ary and Gaussian can be challenging as the tests rely on comparison with alternative
models, and some models are better at picking up certain forms of non-stationarity
and non-Gaussianity than others.
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C.1 Definition of stationarity

A stationary stochastic process has statistical properties that do not depend on time:
the joint statistical properties of the sample {xt1 , . . . , xtk } are identical to the joint
statistical properties of the sample {xt1+τ , . . . , xtk+τ } for all τ and k. In particular, the
joint distribution of (xt , xs) depends only on the lag |t − s|, and not on t or s, and all
higher-order moments are strictly independent of time. A less restrictive, and more
practical notion, is that of weak or second-order stationarity, which asserts that the
mean and variance are constant, and that the auto-covariance cov(xt , xt+τ ) depends
only on the lag τ .

C.2 Definition of Gaussianity

A continuous random variable X is said to be a Gaussian, or normal, random variable
X ∼ N (μ, σ 2) if its probability density function is given by

pX (x) = 1√
2πσ

e− 1
2

(x−μ)2

σ2 . (C.1)

The multivariate generalization to a collection of continuous random variables X ≡
{X1, X2, . . . , XN } is given in terms of a Gaussian probability density function with
covariance matrix C :

pX(x1, x2, . . . , xN ) = 1√
det(2πC)

e− 1
2

∑
i, j (xi−μi )

(
C−1

)
i j (x j−μ j ). (C.2)

See Appendix B for additional statistical properties of Gaussian random variables.

C.3 Tests for stationarity

There exists a vast literature on tests of non-stationarity of time-series data. The sim-
plest tests for non-stationarity are qualitative in nature and involve looking at plots of
the mean, variance, and auto-correlation as a function of time (for example, by using
a sliding window of some duration to select the samples used to compute these quan-
tities). The difficulty with this approach is deciding on what constitutes acceptable
levels of variation. The concept of time-varying correlations and time-varying spec-
tral densities are well defined and useful concepts for locally-stationary processes
(Dahlhaus 2011), but less so for other forms of non-stationarity (Sect. 9.2.1).

It is unclear whether many of the more powerful quantitative tests for non-
stationarity are useful for gravitational-wave data analysis. For example, commonly
used tests, such as the augmented Dickey-Fuller test and the Phillips-Perron test, which
test to see if the data follow a “unit root” auto-regressive process, do not appear to be
particularly applicable since the noise encountered in gravitational-wave experiments
usually exhibits high auto-correlation, and thus has roots that are naturally close to
unity, which poses a challenge for these tests (Müller 2005).
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The most useful tests, at least for evenly-sampled gravitational-wave data, are those
based on evolutionary spectral estimates, or correlations in the Fourier coefficients.
The Priestley-Subba Rao test (Priestley and Rao 1969), and modern variants based on
wavelets (Nason et al. 2000), use window functions to compute spectral estimates as
a function of time. A statistical test is then used to assess if the spectral estimates are
consistent with stationarity. The second type of test is based on the fact that second-
order stationary time series produce uncorrelated Fourier series (which is why most
gravitational-wave analyses are performed in the Fourier domain). Statistical tests
can be used to decide whether the level of correlation between Fourier coefficients
indicates that the data are non-stationary (Dwivedi and Subba Rao 2009).

C.4 Tests for Gaussianity

There are a large number of tests for Gaussianity described in the literature that are in
regular use. These tests are based on different properties of the Gaussian distribution,
and the power of the tests differ depending on the nature of the non-Gaussianity.

Three of the most widely used frequentist tests are the Shapiro–Wilk test, the
Anderson–Darling test, and the Lilliefors test (a modified Kolmogorov–Smirnov test).
The Shapiro–Wilk test is a regression test that out-performs other tests on small data
sets, but is challenging to apply to the large data sets encountered in gravitational-
wave data analysis. Both the Anderson–Darling and the Lilliefors test are based on
the distance between the hypothesized cumulative distribution function (in this case,
that of a Gaussian distribution) and the cumulative distribution function of the data.
The Anderson–Darling test performs almost as well, and sometimes better, than the
Shapiro–Wilk test (Seier 2011), and can be used on large data sets.

Bayesian tests for Gaussianity can be performed by computing the Bayes factors
between competing models for the data, in this case the Gaussian distribution and
some more general alternative such as Student’s t-distribution (Spiegelhalter 1980;
Kruschke 2013). This approach has been applied to gravitational-wave data analysis
(Littenberg and Cornish 2010; Cornish and Romano 2015).

D Discretely-sampled data

In this appendix, we describe the relationship between continuous functions of time
and frequency (used throughout most of the article) and their discretely-sampled coun-
terparts. This is needed to cast a theoretical analysis into one that can be run on a digital
computer, which naturally works with a finite number of discrete samples. Although
we will focus attention on topics that are most-relevant to searches for stochastic
gravitational-wave backgrounds, much of what we say here is general and relevant to
many other signal processing applications. We refer interested readers to e.g., Oppen-
heim and Schafer (1999), Press et al. (1992) and Gregory (2005) for more thorough
discussions of these topics.
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D.1 Discretely-sampled time-series

In the majority of the text, we represented the output of a detector by a time-series,
e.g., x(t), which was a function of a continuous time parameter t . Usually, the range
of t was infinite (from −∞ to ∞), although sometimes we would restrict attention to
a finite duration, t ∈ [t0, t0 + T ], where t0 was some initial time (usually t0 = 0), and
T was the length of an analysis segment or the total duration of an observation. The
Fourier transform of x(t) (assumed to be defined for all t) was defined as

x̃( f ) ≡
∫ ∞

−∞
dt x(t) e−i2π f t , (D.1)

with inverse Fourier transform

x(t) =
∫ ∞

−∞
d f x̃( f ) ei2π f t . (D.2)

The signal power in the frequency band f to f + d f is proportional to |x̃( f )|2 d f .
In practice, any real time-series will be discretely-sampled. This means that a con-

tinuous function of time x(t) will be represented by a set of discrete values

xk ≡ x(tk), (D.3)

where
tk = t0 + kΔt, k = 0,±1,±2, . . . . (D.4)

For now we allow k to take on an infinite set of values, corresponding to time-series
having an infinite duration; shortly, we will restrict attention to a discretely-sampled
time-series having afiniteduration. Here we have assumed regularly-sampled data (i.e.,
the time interval between adjacent samples xk and xk+1 is a constant Δt), although
for some cases (e.g., pulsar timing) the data samples xk will correspond to irregularly-
spaced times. Although it is more difficult to compute power spectra for irregularly-
spaced time series, there do exist algorithms—like the Lomb–Scargle algorithm (Lomb
1976; Scargle 1982)—which can be used for this purpose. Also, to simplify the analysis
slightly in what follows, we will set t0 = 0.

A convenient way of representing a discretely-sampled time-series is to multiply
the continuous function x(t) by an infinite sum of Dirac delta functions, called the
Dirac comb:

ΔΔt (t) ≡
∞∑

k=−∞
δ(t − kΔt). (D.5)

The function

xd(t) ≡ Δt
∞∑

k=−∞
xk δ(t − kΔt) (D.6)

is a continuous time-series representation of the discretely-sampled data xk = x(kΔt).
(The multiplicative factor Δt is included so that xd(t) has the same dimensions as x(t)).
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Using the above expression, it immediately follows that the Fourier transform of xd(t)
is

x̃d( f ) = Δt
∞∑

k=−∞
xk e

−i2π f kΔt . (D.7)

Alternatively, since xd(t) is a product of two functions in the time domain, its Fourier
transform is the convolution of the Fourier transforms x̃( f ) and Δ̃Δt ( f ) in the fre-
quency domain:

x̃d( f ) = Δt
∫ ∞

−∞
d f ′ x̃( f − f ′)Δ̃Δt ( f

′). (D.8)

But since the Fourier transform of the Dirac comb is another Dirac comb,

Δ̃Δt ( f
′) = 1

Δt

∞∑
k=−∞

δ
(
f ′ − k/Δt

)
, (D.9)

it follows that

x̃d( f ) =
∞∑

k=−∞
x̃( f − k/Δt). (D.10)

This is the relation between the Fourier transforms of the continuous and discretely-
sampled time-series. Note that x̃d( f ) is periodic in f with period 1/Δt .

One can interpret (D.10) as follows: If x(t) and Δt are such that x̃( f ) = 0 outside
[− fN, fN], where fN ≡ 1/(2Δt) is the Nyquist critical frequency, then the Fourier
transform of the discretely-sampled data is identical to that of the original continuous
time-series for f ∈ [− fN, fN]. Otherwise, there is aliasing of power from outside
the Nyquist band making |x̃d( f )| > |x̃( f )| for f ∈ [− fN, fN]. In other words,
x̃d( f ) = x̃( f ) for f ∈ [− fN, fN] if and only if the following two conditions hold:

(i) x(t) is band-limited—i.e., x̃( f ) = 0 for | f | ≥ fmax, where fmax is some finite
frequency,

(ii) the sampling rate 1/Δt is sufficiently large that fmax < fN, or, equivalently,
Δt < 1/(2 fmax).

For the special case where x(t) happens to be periodic, the condition for no aliasing
is to sample at least twice per period.

For a band-limited signal sampled so that fmax < fN, we can recover the continuous
time-series x(t) from the discrete samples xk . The explicit reconstruction formula is
obtained by taking the inverse Fourier transform of x̃( f ), replacing x̃( f ) by x̃d( f )
for f ∈ [− fN, fN], and then using (D.7) to get an expression involving xk . The final
result is

x(t) =
∞∑

k=−∞
xk sinc [π(t − kΔt)/Δt] , (D.11)

where sinc (x) ≡ sin(x)/x . Note that the reconstruction formula involves a sum over
an infinite set of xk . This is a consequence of x(t) being band-limited, since a function
of compact support in the frequency domain must have infinite support in the time
domain.
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D.2 Windowing

In addition to being discretely-sampled, real-world signals are non-zero for only a
finite duration T . Mathematically, the simplest way to do this is to multiply an infinite-
duration time-series x(t) by a rectangular (or top-hat) function

w(t) ≡
{

1 0 ≤ t ≤ T
0 otherwise

, (D.12)

which simply sets x(t) to zero outside the interval [0, T ]. The rectangular function is
a special case of a more general class of so-called window functions (or tapers), all of
which set the signal to zero outside the interval [0, T ]. Other examples include:

Triangular window
w(t) ≡ 1 − |2t/T − 1|, (D.13)

Tukey window

w(t) ≡
⎧⎨
⎩

1
2

[
1 − cos

( 2π
r

t
T

)]
, 0 ≤ t

T ≤ r
2

1, r
2 ≤ t

T ≤ 1 − r
2

1
2

[
1 + cos

( 2π
r

[ t
T − (

1 − r
2

)])]
, 1 − r

2 ≤ t
T ≤ 1

, (D.14)

Hann window

w(t) ≡ 1

2
(1 − cos(2π t/T )). (D.15)

All of these windows taper the signal so that it “ramps-up” and “ramps-down” at the
start and end of the interval. (See Fig. 88, panel a). For example, the Tukey window
(D.14) is defined by a parameter r , which specifies the fraction of time that the window
ramps-up to unity and then back down to zero, with a cosine-like taper. For r = 1,
the Tukey window becomes a Hann window (D.15). Several other common window
functions are also used in signal processing applications; see e.g., Oppenheim and
Schafer (1999) and Press et al. (1992) for more details.

Given a time-series x(t) and a choice of window function w(t), we define the
windowed time-series by

xw(t) ≡ w(t)x(t). (D.16)

Since xw(t) is just a product of two functions in the time domain, its Fourier transform
x̃( f ) is the convolution of the Fourier transforms x̃( f ) and w̃( f ) in the frequency
domain:

x̃w( f ) =
∫ ∞

−∞
d f ′ x̃( f − f ′)w̃( f ′). (D.17)

Since w(t) has compact support in the time domain, w̃( f ) has infinite support in
the frequency domain, meaning that the power in the windowed time-series x̃w( f )
will contain power in x̃( f ′) from frequencies f ′ ( �= f ) as well. This smearing or
leakage of power exists for any type of window, although the extent of the leakage
depends on the shape of the window as shown in Fig. 88, panel (b). 27 The rectangular

27 The normalized leakage of a window w(t) is defined as |w̃( f )|/|w̃(0)|.
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(a) (b)

Fig. 88 Panel a Plots of window functions defined in the main text. Panel b Amplitude of spectral leakage
for different windows as a function of the offset from the bin center in units of the Nyquist frequency
fN ≡ 1/(2Δt). The dips arise because we are using a finite number of samples (N = 128) to represent the
windows

window has the largest spectral leakage of all the windows, while the Hann window
has the smallest leakage (several orders of magnitude suppression) for large frequency
offsets, due to its smooth turn-on and turn-off. In general, there is a trade-off between
spectral leakage and the loss of time-domain data due to the windowing. The Tukey
window provides a nice balance in that spectral leakage can been strongly suppressed
while only affecting a small fraction of the time domain samples. If one needs greater
suppression but cannot afford to lose more data, one can use Hann windows that
overlap by 50% (see, e.g., Lazzarini and Romano, 2004 in the context of stochastic
background searches using LIGO data).

Windowing can also be applied to a discretely-sampled time-series, leading to a
time-series which is represented by a finite number of discrete samples xk , where k =
0, 1, . . . , N −1 and T = NΔt . Similar to what we saw in the previous subsection, this
finite, discretely-sampled time-series can be conveniently represented by a continuous
time-series by multiplying by the Dirac comb. Explicitly,

xdw(t) = Δt
N−1∑
k=0

wk xk δ(t − kΔt), (D.18)

where xk = x(kΔt) and wk = w(kΔt). Note that this function can also be written as

xdw(t) = w(t)xd(t) = wd(t)x(t), (D.19)

from which it immediately follows that

x̃dw( f ) =
∫ ∞

−∞
d f ′ x̃d( f − f ′)w̃( f ′) =

∫ ∞

−∞
d f ′ x̃( f − f ′)w̃d( f

′). (D.20)
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As a specific example, let w(t) be the rectangular window defined by (D.12). Then
it is easy to show that

w̃( f ) = e−iπ f T T sinc(π f T ). (D.21)

In addition, one can show that the discretized-version of the rectangular window has
Fourier transform28

w̃d( f ) = Δt
N−1∑
k=0

e−i2π f kΔt = e−iπ(N−1) f Δt TDN ( f Δt), (D.22)

where

DN (x) ≡ 1

N

sin(Nπx)

sin(πx)
=

∞∑
k=−∞

sinc[π(x − k)N ] (D.23)

is the Dirichlet kernel (Percival and Walden 1993). Hence, for a rectangular window,
(D.20) has the explicit form

x̃dw( f ) =
∫ ∞

−∞
d f ′ x̃( f − f ′)e−iπ(N−1) f ′Δt TDN ( f ′Δt), (D.24)

which relates the Fourier transform of the infinite-duration, continuous time-series
x(t) to the Fourier transform of the finite-duration, discretely-sampled time-series
xdw(t).

D.3 Discrete Fourier transform

Just as any real-world signal processing algorithm must deal with finite-duration,
discretely-sampled time-series data xk , where k = 0, 1, . . . , N − 1, so too must
frequency-series (like x̃dw( f )) be represented by a finite set of discrete values. From
our earlier discussion (Sect. D.1) about aliasing, we know that the Nyquist frequency,
fN = 1/(2Δt), is the maximum frequency of a band-limited signal that can be faith-
fully represented with discrete samples xk taken with sampling period Δt . In addition,
the frequency resolution Δ f of the Fourier transform of a finite-duration signal is
limited to Δ f ≡ 1/T , where T is the total duration of the signal, since it is meaning-
less to talk about the Fourier components corresponding to periods greater than the
total observation time. Thus, the best we can do in practice is to evaluate the Fourier
transform of the finite set of discretely-sampled time-series data xk at the discrete
frequencies

f j ≡ jΔ f = j

NΔt
, j = −N/2,−N/2 + 1, . . . , N/2 − 1, (D.25)

which lie in the frequency band [− fN, fN − Δ f ]. If N is odd, the index j runs from
−(N − 1)/2 to (N − 1)/2. (In what follows, we will assume that N is even).

28 If the rectangular window is defined to be non-zero for t ∈ [−T/2, T/2] instead of [0, T ], then w̃d ( f ) =
TDN ( f Δt), which does not include the phase factor on the right-hand side of (D.22).
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The discrete Fourier transform (DFT) of xk , where k = 0, 1, . . . , N − 1, is defined
to be

DFT(x j ) ≡
N−1∑
k=0

xk e
−i2π jk/N , j = −N/2,−N/2 + 1, . . . , N/2 − 1. (D.26)

Note that the kernel of this transformation

Ujk ≡ 1√
N
e−i2π jk/N , (D.27)

is a unitary matrix, and thus satisfies

U−1 = U †, |det(U )| = 1, (D.28)

as a consequence of the identity

1

N

N−1∑
l=0

e−i2π( j−k)l/N = δ jk . (D.29)

The inverse transformation (from the DFT(x j ) back to xk) is thus

xk = 1

N

N/2−1∑
j=−N/2

DFT(x j ) e
2π jk/N , k = 0, 1, . . . , N − 1. (D.30)

Using the above results, one can also show that

N−1∑
k=0

|xk |2 = 1

N

N/2−1∑
j=−N/2

|DFT(x j )|2, (D.31)

which is called Parseval’s theorem. Parseval’s theorem is what tells us that the total
power in a signal is the same when calculated in either the time domain or the frequency
domain. (More on this below).

D.4 DFTs and discretely-sampled Fourier transforms

To make the connection between the DFT of a set of discrete samples xk = x(kΔt)
and the Fourier transform x̃( f ) of the underlying continuous time-series x(t), we first
define

x̃ j ≡ Δt DFT(x j ). (D.32)

The factor of Δt gives x̃ j and x̃( f ) the same units. Using (D.7), one can show that

x̃ j = x̃dw( f j ), (D.33)
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where the window function w(t) entering the definition of x̃dw( f ) is the (trivial)
rectangular window on [0, T ]. Thus, up to a factor of Δt , the DFT of a finite set of
discretely-sampled data is just the Fourier transform of the discretized, rectangular-
windowed data evaluated at the discrete frequencies f j .

An explicit relation between x̃ j and the Fourier transform x̃( f ) of the infinite-
duration, continuous time-series x(t) is more complicated than (D.33), due to the
leakage of power from x̃( f ) into x̃dw( f ), as discussed in the previous section. From
(D.24) it follows that

x̃ j =
∫ ∞

−∞
d f ′ x̃( f j − f ′)e−iπ(N−1) f ′Δt TDN ( f ′Δt). (D.34)

But since TDN ( f ′Δt) is typically well-approximated by the Dirac delta function
δ( f ′), we have the approximate relation

x̃ j � x̃( f j ). (D.35)

Finally, note that if the xk are real, as they will be if they are discrete samples of a
real-valued time-series x(t), then

x̃− j = x̃∗
j , for j = 0, 1, . . . , N/2 − 1. (D.36)

So no information is lost if we restrict attention to non-negative frequencies

f j = jΔ f = j

NΔt
, where j = 0, 1, . . . , N/2 − 1. (D.37)

D.5 Discrete power spectra

Suppose we are given N samples nk , k = 0, 1, . . . , N −1, of a real-valued, stationary
random process, e.g., detector noise or a stochastic signal. Then we define its discrete
power spectrum as

Sn j ≡ 2

T
|ñ j |2, j = 0, 1, . . . , N/2 − 1, (D.38)

where ñ j ≡ Δt DFT(n j ). The factor of 2 has been included to make it a one-sided
power spectrum, for which Parseval’s theorem (D.31) takes the form:

N/2−1∑
j=0

Δ f Sn j = 1

N

N−1∑
k=0

|nk |2. (D.39)

Using the approximate relation (D.35), it follows that Sn j � Sn( f j ), where Sn( f )
is the power spectrum of the underlying continuous time series n(t). With this corre-
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spondence, we see that (D.39) is the discretized version of

∫ fN

0
d f Sn( f ) = 1

T

∫ T

0
dt |n(t)|2, (D.40)

which is the continuous version of Parseval’s theorem. Similarly, the expectation values

〈ñ( f )ñ∗( f ′)〉 = 1

2
δ( f − f ′) Sn( f ) (D.41)

for the continuous functions become

〈ñ j ñ
∗
j ′ 〉 � T

2
δ j j ′ Sn j ′, (D.42)

where we used

δ( f j − f j ′) = δ(( j − j ′)Δ f ) = 1

Δ f
δ j j ′ = T δ j j ′ . (D.43)

D.6 Discrete and continuous probability distributions

Suppose further that the N samples nk , k = 0, 1, . . . , N − 1, are Gaussian distributed
with zero mean and covariance matrix

(Cn)kk′ ≡ 〈nknk′ 〉. (D.44)

Then the probability distribution for n ≡ (n0, n1, . . . , nN−1)
T is

p(n) = 1√
det(2πCn)

exp

[
−1

2
n†C−1

n n

]
, (D.45)

with volume element

dNn =
N−1∏
k=0

dnk . (D.46)

Using the above results, one can show that in the limit of large N , the DFT (approxi-
mately) diagonalizes the covariance matrix Cn :

UCnU
−1 � 1

2Δt
diag(Snk). (D.47)

From this, one can then show that the probability distribution for the discrete frequency
components ñ ≡ (

ñ0, ñ1, . . . , ñN/2−1
)T is given by

p(ñ) �
N/2−1∏
j=0

2

πT Sn j
exp

[
−2|ñ j |2

T Sn j

]
=

N/2−1∏
j=0

2

πT Sn j
exp

[
−1

2

(�ñ j )
2 + ("ñ j )

2

T Sn j/4

]
,

(D.48)
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with volume element

dN/2ñ ≡
N/2−1∏
j=0

d(�ñ j )d("ñ j ). (D.49)

In the continuum limit:

− 1

2
n†C−1

n n � −
N/2−1∑
j=0

2|ñ j |2
T Sn j

� −1

2
(ñ|ñ), (D.50)

where

(g̃|k̃) ≡ 2
∫ ∞

0
d f (Sn( f ))

−1
[
g̃∗( f )k̃( f ) + g̃( f )k̃∗( f )

]
(D.51)

is the noise-weighted inner product of g̃( f ), k̃( f ). See Cutler (1998) for more details
regarding the noise-weighted inner product in the continuum limit.

E Ordinary (scalar) and spin-weighted spherical harmonics

This appendix, adapted from Gair et al. (2015), summarizes some useful relations
involving spin-weighted and ordinary spherical harmonics, sYlm(n̂) and Ylm(n̂). For
more details, see e.g., Goldberg et al. (1967) and del Castillo (2003). Note that for
our analyses, we can restrict attention to spin-weighted spherical harmonics having
integral spin weight s, even though spin-weighted spherical harmonics with half-
integral spin weight do exist.

Ordinary spherical harmonics:

Ylm(n̂) ≡ Ylm(θ, φ) = Nm
l Pm

l (cos θ)eimφ, where Nm
l =

√
2l + 1

4π

(l − m)!
(l + m)! .

(E.1)
Relation of spin-weighted spherical harmonics to ordinary spherical harmonics:

sYlm(θ, φ) =
√

(l − s)!
(l + s)! ∂̌sYlm(θ, φ) for 0 ≤ s ≤ l,

sYlm(θ, φ) =
√

(l + s)!
(l − s)! (−1)s ∂̌−sYlm(θ, φ) for − l ≤ s ≤ 0,

(E.2)

where

∂̌η = −(sin θ)s
[

∂

∂θ
+ i csc θ

∂

∂φ

]
(sin θ)−sη,

∂̌η = −(sin θ)−s
[

∂

∂θ
− i csc θ

∂

∂φ

]
(sin θ)sη,

(E.3)
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and η = η(θ, φ) is a spin-s scalar field.

Complex conjugate:

sY
∗
lm(θ, φ) = (−1)m+s −sYl,−m(θ, φ). (E.4)

Relation to Wigner rotation matrices:

Dl
m′m(φ, θ, ψ) = (−1)m

′
√

4π

2l + 1
mYl,−m′(θ, φ)e−imψ, (E.5)

or [
Dl

m′m(φ, θ, ψ)
]∗ = (−1)m

√
4π

2l + 1
−mYl,m′(θ, φ)eimψ. (E.6)

Parity transformation:

sYlm(π − θ, φ + π) = (−1)l −sYlm(θ, φ). (E.7)

Orthonormality (for fixed s):

∫
d2Ωn̂ sYlm(n̂) sY

∗
l ′m′(n̂) ≡

∫ 2π

0
dφ

∫ π

0
sin θ dθ sYlm(θ, φ) sY

∗
l ′m′(θ, φ) = δll ′δmm′ .

(E.8)
Addition theorem for spin-weighted spherical harmonics:

l∑
m=−l

sYlm(θ1, φ1) s′Y
∗
lm(θ2, φ2) = (−1)−s′

√
2l + 1

4π
−s′Yls(θ3, φ3)e

is′χ3 , (E.9)

where
cos θ3 = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ2 − φ1), (E.10)

and

e−i(φ3+χ3)/2 = cos 1
2 (φ2 − φ1) cos 1

2 (θ2 − θ1) − i sin 1
2 (φ2 − φ1) cos 1

2 (θ1 + θ2)√
cos2 1

2 (φ2 − φ1) cos2 1
2 (θ2 − θ1) + sin2 1

2 (φ2 − φ1) cos2 1
2 (θ1 + θ2)

,

ei(φ3−χ3)/2 = cos 1
2 (φ2 − φ1) sin 1

2 (θ2 − θ1) + i sin 1
2 (φ2 − φ1) sin 1

2 (θ1 + θ2)√
cos2 1

2 (φ2 − φ1) sin2 1
2 (θ2 − θ1) + sin2 1

2 (φ2 − φ1) sin2 1
2 (θ1 + θ2)

.

(E.11)
Addition theorem for ordinary spherical harmonics:

l∑
m=−l

Ylm(n̂1)Y
∗
lm(n̂2) = 2l + 1

4π
Pl(n̂1 · n̂2). (E.12)
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Integral of a product of spin-weighted spherical harmonics:

∫
d2Ωn̂ s1Yl1m1(n̂) s2Yl2m3(n̂) s3Yl3m3(n̂)

=
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
m1 m2 m3

)(
l1 l2 l3

−s1 −s2 −s3

)
, (E.13)

where

(
l1 l2 l3
m1 m2 m3

)
is a Wigner 3- j symbol (Wigner 1959; Messiah 1962).

F Gradient and curl rank-1 (vector) spherical harmonics

The gradient and curl rank-1 (vector) spherical harmonics are defined for l ≥ 1 by:

YG
(lm)a ≡ 1

2
(1)Nl∂aYlm = 1

2
(1)Nl

(
∂Ylm
∂θ

θ̂a + 1

sin θ

∂Ylm
∂φ

φ̂a

)
,

YC
(lm)a ≡ 1

2
(1)Nl(∂bYlm)εba = 1

2
(1)Nl

(
− 1

sin θ

∂Ylm
∂φ

θ̂a + ∂Ylm
∂θ

φ̂a

)
,

(F.1)

where θ̂ and φ̂ are the standard unit vectors tangent to the 2-sphere

θ̂ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ,

φ̂ = − sin φ x̂ + cos φ ŷ,
(F.2)

(1)Nl is a normalization constant

(1)Nl =
√

2(l − 1)!
(l + 1)! , (F.3)

and εab is the Levi-Civita anti-symmetric tensor

εab = √
g

(
0 1

−1 0

)
, g ≡ det(gab). (F.4)

Following standard practice, we use the metric tensor gab on the 2-sphere and its
inverse gab to “lower” and “raise” tensor indices—e.g., εcb ≡ gcaεab. In standard
spherical coordinates (θ, φ),

gab =
(

1 0
0 sin2 θ

)
,

√
g = sin θ. (F.5)
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The gradient and curl spherical harmonics are related to the spin-weight ±1 spherical
harmonics

±1Ylm(θ, φ) =
√

(l − 1)!
(l + 1)!

Nm
l√

1 − x2

(
±(1 − x2)

dPm
l

dx
+ mPm

l (x)

)
eimφ, (F.6)

where x = cos θ , via

YG
(lm)a ± iYC

(lm)a = ± 1√
2
(θ̂a ± i φ̂a) ∓1Ylm, (F.7)

or, equivalently,

YG
(lm)a = 1

2
√

2

[
(−1Ylm − 1Ylm) θ̂a + i (−1Ylm + 1Ylm) φ̂a

]
,

YC
(lm)a = 1

2
√

2

[
(−1Ylm − 1Ylm) φ̂a − i (−1Ylm + 1Ylm) θ̂a

]
.

(F.8)

For decompositions of vector-longitudinal backgrounds, as discussed in the main
text, it will be convenient to construct rank-2 tensor fields

Y VG
(lm)ab = YG

(lm)an̂b + YG
(lm)bn̂a,

Y VC
(lm)ab = YC

(lm)an̂b + YC
(lm)bn̂a,

(F.9)

where n̂ is the unit radial vector orthogonal to the surface of the 2-sphere:

n̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ. (F.10)

These fields satisfy the following orthonormality relations

∫
d2Ωn̂ Y

VG
(lm)ab(n̂)Y VG

(l ′m′)
ab ∗(n̂) = δll ′δmm′ ,

∫
d2Ωn̂ Y

VC
(lm)ab(n̂)Y VC

(l ′m′)
ab ∗(n̂) = δll ′δmm′ ,

∫
d2Ωn̂ Y

VG
(lm)ab(n̂)Y VC

(l ′m′)
ab ∗(n̂) = 0.

(F.11)
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G Gradient and curl rank-2 (tensor) spherical harmonics

The gradient and curl rank-2 (tensor) spherical harmonics are defined for l ≥ 2 by:

YG
(lm)ab = (2)Nl

(
Y(lm);ab − 1

2
gabY(lm);cc

)
,

YC
(lm)ab =

(2)Nl

2

(
Y(lm);acεcb + Y(lm);bcεca

)
,

(G.1)

where a semicolon denotes covariant derivative on the 2-sphere, εab is the Levi-Civita
anti-symmetric tensor (F.4), gab is the metric tensor on the 2-sphere (F.5), and (2)Nl is
a normalization constant

(2)Nl =
√

2(l − 2)!
(l + 2)! . (G.2)

Using the standard polarization tensors on the 2-sphere:

e+
ab(n̂) = θ̂a θ̂b − φ̂a φ̂b,

e×
ab(n̂) = θ̂a φ̂b + φ̂a θ̂b,

(G.3)

where θ̂ , φ̂ are given by (F.2) and n̂ by (F.10), we have (Hu and White 1997):

YG
(lm)ab(n̂) =

(2)Nl

2

[
W(lm)(n̂)e+

ab(n̂) + X(lm)(n̂)e×
ab(n̂)

]
,

YC
(lm)ab(n̂) =

(2)Nl

2

[
W(lm)(n̂)e×

ab(n̂) − X(lm)(n̂)e+
ab(n̂)

]
,

(G.4)

where

W(lm)(n̂) =
(

∂2

∂θ2 − cot θ
∂

∂θ
+ m2

sin2 θ

)
Ylm(n̂) =

(
2

∂2

∂θ2 + l(l + 1)

)
Ylm(n̂),

X(lm)(n̂) = 2im

sin θ

(
∂

∂θ
− cot θ

)
Ylm(n̂).

(G.5)
These functions enter the expression for the spin-weight ±2 spherical harmonics
(Newman and Penrose 1966; Goldberg et al. 1967):

±2Ylm(n̂) =
(2)Nl√

2

[
W(lm)(n̂) ± i X(lm)(n̂)

]
, (G.6)

which are related to the gradient and curl spherical harmonics via

YG
(lm)ab(n̂) ± iYC

(lm)ab(n̂) = 1√
2

(
e+
ab(n̂) ± ie×

ab(n̂)
)

∓2Ylm(n̂). (G.7)
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Note that the gradient and curl spherical harmonics satisfy the orthonormality relations∫
S2
d2Ωn̂ Y

G
(lm)ab(n̂)YG

(l ′m′)
ab ∗(n̂) = δll ′δmm′ ,

∫
S2
d2Ωn̂ Y

C
(lm)ab(n̂)YC

(l ′m′)
ab ∗(n̂) = δll ′δmm′ ,

∫
S2
d2Ωn̂ Y

G
(lm)ab(n̂)YC

(l ′m′)
ab ∗(n̂) = 0.

(G.8)

H Translation between n̂ and k̂ conventions

Numerous papers on detecting stochastic gravitational-wave backgrounds have
adopted the convention where the polarization tensors and detector response func-
tions are functions of the direction of propagation of the gravitational wave, k̂, where k̂
points radially outward. In this article, we have adopted instead the convention where
plane wave expansions, polarization tensors, and response functions are written in
terms of the direction to the source of the gravitational wave, n̂, where again n̂ points
radially outward. In both approaches, the unit vectors l̂ and m̂, which are perpendicular
to k̂ (or n̂) and are used to define the polarization tensors, are typically chosen to be
the standard spherical polar coordinate unit vectors θ̂ and φ̂. Thus, the polarization
tensors e+,×

ab (n̂) and e+,×
ab (k̂) are the same for both conventions. What is different is the

expression for an individual plane wave—either ei2π f (t−k̂·�x/c) or ei2π f (t+n̂·�x/c)—as
the direction of propagation of the wave is opposite the direction to the source.

In this appendix, we summarize how the expressions for the response functions
Rab( f, n̂), RA( f, n̂), and RP

(lm)( f ), given in previous sections are related to similar

quantities calculated in other papers that use the k̂-convention. For completeness, we
will write down expressions for the vector and scalar polarization modes (Section 8.3)
in addition to the standard tensor (+, × or grad and curl) modes in general relativity.
We will denote quantities calculated using the k̂-convention with an overbar, e.g.,
R̄ A( f, k̂).

H.1 General relationship between the response functions

Plane wave expansion:

hab(t, �x) =
∫ ∞

−∞

∫
d2Ωn̂ hab( f, n̂)ei2π f (t+n̂·�x/c). (H.1)

Detector response:

h(t) =
∫ ∞

−∞
dτ

∫
d3y Rab(τ, �y)hab(t − τ, �x − �y)

=
∫ ∞

−∞
d f

∫
d2Ωn̂ Rab( f, n̂)hab( f, n̂)ei2π f t ,

(H.2)
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where

Rab( f, n̂) = ei2π f n̂·�x/c
∫ ∞

−∞
dτ

∫
d3y Rab(τ, �y)e−i2π f (τ+n̂·�y/c). (H.3)

Note that compared to an expansion in terms of the direction of propagation k̂, we
have:

Rab( f, n̂) = R̄ab( f, k̂)
∣∣
k̂=−n̂ . (H.4)

This is the general relationship between the response functions for the two approaches.

H.2 Polarization basis response functions

The response functions in the polarization basis are given by:

RA( f, n̂) = Rab( f, n̂)eAab(n̂), (H.5)

where A = {+,×, X,Y, B, L} label the tensor, vector, and scalar polarization modes
(two for each). Since the polarization basis tensors eAab(n̂) are the same for the two
approaches, it follows from (H.4) that

RA( f, n̂) = R̄ab( f, k̂)eAab(n̂)
∣∣
k̂=−n̂ . (H.6)

If we further use the transformation properties of the polarization basis tensors eAab(n̂)

under a parity transformation (i.e., n̂ → −n̂) we have:

R+( f, n̂) = R̄+( f, k̂)
∣∣
k̂=−n̂,

R×( f, n̂) = −R̄×( f, k̂)
∣∣
k̂=−n̂,

RX ( f, n̂) = −R̄X ( f, k̂)
∣∣
k̂=−n̂,

RY ( f, n̂) = R̄Y ( f, k̂)
∣∣
k̂=−n̂,

RB( f, n̂) = R̄B( f, k̂)
∣∣
k̂=−n̂,

RL( f, n̂) = R̄L( f, k̂)
∣∣
k̂=−n̂ .

(H.7)

Note that in terms of standard angular coordinates (θ, φ) on the sphere, the substitution
k̂ = −n̂ corresponds to

θ → π − θ, φ → φ + π, (H.8)

for which
sin θ → sin θ,

cos θ → − cos θ,

sin φ → − sin φ,

cos φ → − cos φ.

(H.9)
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H.3 Spherical harmonic basis response functions

The response functions in the spherical harmonic basis are given by:

RP
(lm)( f ) =

∫
d2Ωn̂ Rab( f, n̂)Y P

(lm)ab(n̂), (H.10)

where P = {G,C, VG , VC , B, L} label the tensor, vector, and scalar spherical har-
monic modes. If we use the transformation properties of the spherical harmonics
Y P

(lm)ab(n̂) under a parity transformation, it follows that:

RG
(lm)( f ) = (−1)l R̄G

(lm)( f ),

RC
(lm)( f ) = (−1)l+1 R̄C

(lm)( f ),

RVG
(lm)( f ) = (−1)l R̄VG

(lm)( f ),

RVC
(lm)( f ) = (−1)l+1 R̄VC

(lm)( f ),

RB
(lm)( f ) = (−1)l R̄B

(lm)( f ),

RL
(lm)( f ) = (−1)l R̄L

(lm)( f ).

(H.11)

Thus, the curl modes (both tensor and vector) involve a factor of (−1)l+1, while all
the other modes involve a factor of (−1)l .
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