
11. Pitch & timbre
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What distinguishes one musical note from another?
• Pitch, timbre, duration, loudness (intensity), attack & decay transients


• Perfect pitch: ability to determine absolute pitch without regard to a 
reference (only 1 out of ~10,000 people have it) 


• Pitch discrimination: ability to distinguish two different pitches


• depends on whether you play the two notes sequentially or 
simultaneously


• JND: just noticeable difference (sequential; 0.5% of center 
frequency; 1/10th of a semitone)


• LFD: limit of frequency discrimination (simultaneous; 10% of 
center frequency; 2 semitones)


• Analogy with sense of touch: placing two pencil points on your 
arm
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Figure 44: Just noticeable di↵erence in frequency and comparison to the critical bands on the
cochlea. (Figure taken from “Science of Sound,” by Rossing, Moore, and Wheeler.)

12.3 Missing fundamental and second-order beats

• If a complex tone containing many harmonics—but not the fundamental—is played, a person will
identify the pitch of the sound to be that of the missing fundamental.

• The missing fundamental is inferred by the the brain from the timing of electrical impulses trig-
gered by the periodicity of the complex sound wave. (Recall that a complex sound wave containing
many harmonics—but not the fundamental—still has a period equal to the inverse of the fundamen-
tal frequency. This is true even though the sound wave does not have any power at the fundamental
frequency.)

• Demonstration: Illustrate this with the matlab routine fouriersynthesizeScript.m for wave type
‘missing’.

• The missing fundamental does not correspond to a physical wave in the ear. The missing fundamental
is an example of the periodicity theory of pitch.

• Contrast this to the place theory of pitch, which says that the pitch of a sound is determined by the
location on the basilar membrane that is excited by the sound wave. But if the sound wave doesn’t
contain power at a particular frequency, then that part of the basilar membrane won’t be excited.

• Exercise: A complex tone consists of harmonics 200 Hz, 300 Hz, 400 Hz, etc. What pitch will be heard?

• Exercise: A complex tone consists of the harmonics 300 Hz, 500 Hz, 700 Hz, etc.. What pitch will be
heard? (Hint: These are odd harmonics.)

• Answer: 100 Hz for both of the exercises.
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Where does pitch determination occur, in the ear or the brain?

• Place theory: pitch determined by the location 
on the basilar membrane excited by the 
sound wave


• Periodicity theory: pitch inferred by the brain 
from the timing of electrical impulses 
triggered by the period of the sound wave


• Missing fundamental in support of periodicity 
theory:


• 200 Hz, 300 Hz, 400 Hz, ….   —> hear 100 Hz


• 300 Hz, 500 Hz, 700 Hz, ….   —> hear ??? Hz


• https://www.youtube.com/watch?
v=AZ8qZCGg4Bk

3

                             5-5 
 
Basilar Membrane and Place Theory of Hearing 
 
A direct correlation exists between the frequency of a pure tone and the location of the maximum 
nerve cell response on the basilar membrane. 

 
 
Figure. Schematic diagram of the uncoiled basilar membrane of the cochlea in the inner ear. The 
bell shaped curve is a simplified schematic of the “critical band” and shows the region of nerve 
cells that respond to a pure sinusoidal sound. The width of the critical band at half the height of 
the maximum is about a minor third over much of the audible range in the middle. 
Note the logarithmic frequency scale in the figure, which corresponds to the arrangements of 
frequencies on the basilar membrane. 
(Adapted from Ian Johnston, Measured Tones, 3rd edition, p. 238-9, CRC Press.)   
 
Acoustic vibrations from the stirrup of the middle ear are transferred to the oval window on the 
left in the above figure and travel along the basilar membrane. The audible range extends 
logarithmically over the 35 mm long basilar membrane and contains about 30000 hair cells 
(“resonators”) over the audible range of 10 octaves. The region over which the nerve endings 
show a large response to a pure tone (sine wave) is the critical band. The notes A1 to A9 are 
spaced octaves apart.  
 
According to the place theory of hearing, the maximum response for a given note occurs at a 
specific location on the basilar membrane. This is shown in the figure by arrows for the maxima 
of the notes “A”, where A4 = 440 Hz is the “concert A”. The range of hearing spans almost 10 
octaves. The highest frequencies are sensed near the oval window, the lowest frequencies 
farthest away from it near the end of the basilar membrane (apex of the cochlea). Given the 
nearly logarithmic frequency response of the cochlea, the spacing between adjacent octaves (or 
any corresponding musical intervals) is the same, although the frequency increases 
exponentially. 

Basilar membrane (schematic)
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Aural harmonics — harmonics produced by the ear
• Ear introduces distortions which converts a pure tone to one having multiple harmonics
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x(t) = a0 + a1 p(t) + a2 p2(t) + a3 p3(t) + ⋯

• Ordinary (first-order) beats are heard when two pure tones with nearly identical frequencies f1 and f2

are played simultaneously. We hear beats at a frequency given by

fb = |f1 � f2| (12.1)

corresponding to alternating periods of constructive and destructive interference. We are sensitive to
the low frequency (< 10 Hz) amplitude modulation of a tone with frequency f̄ = (f1 + f2)/2.

• Second-order beats arise when two pure tones with frequencies that are nearly one octave apart, i.e.,
f2 ⇡ 2f1, are played simultaneously. We hear beats at a frequency given by

fb = |2f1 � f2| (12.2)

The beats are a result of periodicity processing within the brain just like for the missing fundamental.

• Demonstration: Using the matlab routine playintervalFreq.m, produce sounds with frequencies: (i)
f1 = 440 Hz and f2 = 442 Hz. Listen for beats. (ii) Repeat for f1 = 220 Hz and f2 = 442 Hz. For both
cases, we hear beats with a frequency of 2 Hz. The brain processes the periodicity of the combined
waveform.

12.4 Aural harmonics and aural combination tones

• Asymmetries in the amplitude response of the human ear cause a pure tone to be represented by a
distorted wave having harmonics of the original sine wave. These are called aural harmonics.

• Aural harmonics are not part of the original pure tone. They are created by the non-linear amplitude
response of the ear to sound pressure:

x(t) = a0 + a1p(t) + a2p
2(t) + a3p

3(t) + · · · (12.3)

where an are constants.

• Figure 45 shows a pure tone p(t) = sin(2⇡ft) with f = 1 Hz, and the non-linear output x(t) for the
special case a0 = 0, a1 = 1, a2 = 1/2, a3 = 1/3, with all higher-order an = 0. Note that x(t) is not a
simple sinusoid.
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Figure 45: Illustration of aural harmonics produced by the non-linear response of the ear. Top
two panels: pure sinusoidal input and its corresponding frequency spectrum. Bottom panels:
non-linear output and its corresponding frequency spectrum containing linear, quadratic, and
cubic contributions.
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Aural combination tones — aural harmonics for complex tones

• If two pure tones f1 and f2 are played simultaneously and sufficiently loudly, one hears sum 
and difference combination tones
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fc = |m f1 ± n f2 | ⇒ | f1 − f2 | , |2 f1 − f2 | , |3 f1 − f2 | , ⋯
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Figure 46: Same as the previous figure, but for a complex tone consisting of a sum of two
sine waves with frequencies f1 = 3 Hz and f2 = 5 Hz. From the bottom-right-hand plot
we see that the non-linear output has contributions from several di↵erent combination tones
fc = |mf1 ± nf2|, ranging from 1 Hz to 15 Hz. There is no contribution from 4, 12, or 14 Hz
for this particular example, where x(t) contains only linear, quadratic, and cubic terms.

• If two pure tones (with frequencies f1 and f2) are played su�ciently loudly, then the non-linear response
of the ear will create aural combination tones having frequencies equal to the sum and di↵erence of the
two original frequencies:

fc = |mf1 ± nf2| (12.4)

where m and n are integers.

• Figure 46 illustrates this for a complex tone made up of two sinusoids with frequencies f1 = 3 Hz and
f2 = 5 Hz.

• Combination tones exist as physical waves having power at the sum and di↵erence frequencies. The
di↵erence tones are more easily heard than the sum tones. The e↵ect is greatest when the two tones
are loud. The most easily heard di↵erence tones have frequencies given by

|f1 � f2| , |2f1 � f2| , |3f1 � f2| (12.5)

• Example: Play two notes simultaneously on a piano a fifth apart, e.g., C4 and G4. The frequencies
di↵er by (approximately) a factor of 3/2. If the two notes are played su�ciently loudly, one hears the
di↵erence tone C3, which is an octave below C4.

• The fact that one can hear bass notes from a small loudspeaker is due to a combination of (i) the aural
di↵erence tone of adjacent harmonics, and (ii) our perception of the missing fundamental.

• Application: This is an advantage for speaker manufacturers, as well as for manufacturers of pipe
organs, since to physically produce the lowest bass notes would require extremely long organ pipes.
We let the ear and the brain create the lowest bass notes from the higher-order harmonics.

12.5 Timbre

• Timbre (or tone quality) can be defined as “Any attribute that allows a listener to judge that two
sounds are disimilar using any criteria other than pitch, loudness, or duration” (Pratt and Doak,
1976).
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Attack and decay transients
• How a note starts and ends affects 

how it sounds


• Piano C4


• Piano C4 (reversed)


• Happy birthday


• Happy birthday backwards


• Happy birthday backwards (reversed)
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What makes two notes pleasing when they are played together?

• Two notes are pleasing (consonant) when they have many harmonics in common


• Two notes clash with one another (dissonant) when they have very few harmonics in 
common
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Pitch paradox — the audio equivalent of an optical illusion

• Shepard scale: never-ending scale (pitch 
seems to increase indefinitely)


• YouTube videos:


• http://www.youtube.com/watch?
v=PCs1lckF5vI


• http://vimeo.com/34749558
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• The Shepard scale is the musical analog of the optical illusion of a never-ending staircase, originally
developed by the mathematician Lionel Penrose in 1958, and subsequently used by M.C. Escher in his
1960 print ‘Ascending and Descending.’ (See Figure 47 of a never-ending staircase.)

Figure 47: Never-ending staircase.

• Demonstration: Watch the YouTube vide called the Shepard-Penrose mix
(http://www.youtube.com/watch?v=PCs1lckF5vI)

• Question: How does the Shepard scale work?

• Answer: EXTRA CREDIT, 2 points for an explanation.
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12. Auditorium & room acoustics
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Auditorium and room acoustics — overview
• What makes for a good concert hall?


• Why do you sound good when you sing in a shower?


• Difference between “direct”, “reflected”, and “reverberant” sound


• Reverberation time is the most important characteristic of a room


• YouTube video / soundfile:


• Anechoic chamber (https://www.youtube.com/watch?v=BYBSA9v8IRE)


• “Sonic wonders” sound file (listen to -32:40)
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Direct sound
• Sound received from a source in the absence of any reflections (e.g., anechoic chamber)


• Intensity:   (omni-directional);    (directional source;  is the directivity factor)I =
P

4πr2
I =

QP
4πr2

Q
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13 Auditorium and room acoustics

• This section briefly discusses issues related to the acoustical properties of rooms and auditoria.

• We will pay particular attention to the distinction between direct, reflected, and reverberant sound.
We will also learn how to calculate the reverberation time of a room.

• Demonstration: Watch the YouTube video https://www.youtube.com/watch?v=BYBSA9v8IRE about
anechoic (i.e., echo-free) chambers.

• Demonstration: For a general introduction to architectural and environmental acoustics, listen to “One
man’s quest to find the sonic wonders of the world,” on NPR’s ‘Fresh Air’ program with Terry Gross.

13.1 Direct sound

• Direct sound is the sound that is received from a source in the absence of any reflections. See Figure 48.

Figure 48: Direct sound only. No reflections.

• In an anechoic chamber (or in empty space) one hears only the direct sound from a source.

• For an omni-directional source, the power is spread out uniformly over the area of a sphere. The
intensity at a distance r from a source with power W is given by

I =
W

4⇡r2
(13.1)

(Recall: intensity is the amount of energy per unit time that passes through a unit area directed
perpendicular to the flow.)

• Exercise: Calculate the power received by the ear of a listener standing a distance of 10 m from an
omni-directional 1 watt source. Approximate the human ear as a square with side length of 5 cm.

• Answer: The area of the ear is given by Aear = (.05 m)2 = 0.0025 m2. Since the absorbed power is
equal to the intensity times the area,

Wear = IAear =
W

4⇡r2
Aear =

1

4⇡102
0.0025 = 2 ⇥ 10�6 watts (13.2)

Note that the ratio of the received power to the source power is 2⇥ 10�6 or 1/500,000, which is a very
small fraction of the radiated power.

• For a directional source, which radiates only over a portion of the sphere,

I =
QW

4⇡r2
(13.3)

where Q is the directivity factor. For a directional source, both I and Q depend on the direction from
the source.

• Example: For a source that radiates only in a hemisphere, e.g., a loudspeaker mounted to the ceiling,
Q = 2. For a source that radiates only in an octant, e.g., a loudspeaker in a corner, Q = 8.
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Reflected sound
• Hear an echo if the reflected sound is heard greater than 35 msec after the direct sound


• Recall: 


•  (reflected sound travels farther and can be partially absorbed)

v = 346 m/s ≈ 1000 ft/s = 1 ft/msec

SILreflected < SILdirect

12

13.2 Reflected sound

• Reflected sound is the sound that is received from a source after it has been reflected from one or more
surfaces.

• Recall that sound reflects according to the formula that the angle of incidence equals the angle of
reflection. The reflected sound appears to come from an image source, as shown in Figure 49.

Figure 49: Direct sound plus reflection o↵ a floor. The reflected sound appears to come from
an image source on the other side of the floor.

• Specular reflection occurs when the wavelength of sound is much larger than the length scale of the
roughness of the surface. Parallel rays in become parallel rays out.

• Di↵use reflection occurs when the wavelength of sound is of order or less than the length scale of the
roughness of the surface. Parallel rays in become non-parallel rays out.

• Since the reflected sound travels farther than the direct sound, it will arrive later than the direct sound.
(The speed of sound is approximately 340 m/s in air at room temperature. This corresponds to roughly
1000 ft/s or 1 foot per millisecond.)

• The brain interprets the reflected sound and the direct sound to be the same if the time between the
reception of the reflected and direct sound is less than ⇠35 msec. Longer delays give rise to an echo.

• A related phenomenon is the precedence e↵ect: The brain interprets the source of sound to be in the
direction from which the first sound is heard.

• Since the reflected sound travels farther than the direct sound, the sound intensity level of the reflected
sound will be less than that for the direct sound. Non-zero absorption by the reflecting wall will also
reduce the sound intensity level.

• Exercise: A listener stands 4 m in front of a 1 watt omni-directional loudspeaker. It is 1.5 m from a
reflecting wall.

(a) Calculate the time of arrival for both the direct and reflected sound.

(b) Calculate the decrease in sound intensity level for the reflected sound relative to the direct sound,
assuming perfect reflection.

(c) Calculate the decrease in sound intensity level due to a non-zero absorption coe�cient, e.g., a = 0.2.

• Answer:

(a) Using geometry, one can show that the distance that the reflected sound travels is
p

42 + 32 = 5 m:

tdirect =
4 m

346 m/s
= 12 msec , treflected =

5 m

346 m/s
= 15 msec (13.4)
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Reflected sound - example
• A listener stands 4 m in front of an omni-directional loudspeaker that is 1.5 m from a reflecting wall.


• Calculate:


• the time of arrival for both the direct and reflected sound


• the decrease in SIL for the reflected sound due to the larger distance traveled 


• the decrease in SIL for the reflected sound assuming an absorption coefficient  for the wall


• Answer:


• Reflected sound travels 5 meter: , 


• 


•

a = 0.2

tdirect =
4 m

346 m/s
= 12 msec treflected =

5 m
346 m/s

= 15 msec

ΔSIL = 10 log [1/(rreflected/rdirect)2] dB = 10 log [(4/5)2] dB = − 2 db

ΔSIL = 10 log(1 − a) dB = 10 log(1 − 0.2) dB = − 1 db

13
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Multiple reflections — floor and ceiling

14

(b) The decrease in SIL comes from the increased distance from the source for the reflected sound:

�SIL = 10 log[1/(rreflected/rdirect)
2] dB = 10 log[(4/5)2] dB = �2 dB (13.5)

(c) For a non-zero absorption coe�cient a = 0.2:

�SIL = 10 log(1 � a) dB = 10 log 0.8 dB = �1 dB (13.6)

13.3 Multiple reflections

• Since a room has multiple walls, a ceiling, and a floor, sound can undergo multiple reflections when
traveling from the source to a listener.

• Figures 50, 51, 52 show paths for multiple reflections. The situation gets complicated very quickly!!

Figure 50: Direct sound plus reflections o↵ a floor and a ceiling. The reflected sound appears
to come from image sources on the other side of the floor and the other side of the ceiling.

13.4 Reverberant sound

• Reverberant sound is the sound that is formed from multiple reflections, coming from many di↵erent
directions, and overlapping in time.

• Figure 53 is a graph showing the direct sound, early reflected sound, and reverberant sound as a
function of time. Recall that sounds separated by less than 35 msec are perceived as the same sound.

• The sound intensity level decays as function of time since the energy in the initial sound pulse is lost
by absorption to the walls, etc.

• Figure 54 shows the build-up and decay of the sound pressure level (Lp ⇡ SIL) of the reverberant
sound for a sustained source of sound.

• The reverberation time is the time for the reverberant sound intensity level to decrease by 60 dB. This
is equivalent to a drop in intensity of the reverberant sound by a factor 10�6 of its original value.
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Multiple reflections — floor and back wall

15

Figure 51: Direct sound plus reflections o↵ a floor and a back wall. The reflected sound appears
to come from image sources on the other side of the floor and the other side of the back wall.

Figure 52: Direct sound plus reflections o↵ a floor, a ceiling, and a back wall. The reflected
sound appears to come from image sources on the other sides of the floor, ceiling, and back wall.
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Multiple relfections — floor, back wall, and ceiling

16

Figure 51: Direct sound plus reflections o↵ a floor and a back wall. The reflected sound appears
to come from image sources on the other side of the floor and the other side of the back wall.

Figure 52: Direct sound plus reflections o↵ a floor, a ceiling, and a back wall. The reflected
sound appears to come from image sources on the other sides of the floor, ceiling, and back wall.
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Reverberant sound
• sound formed from multiple reflections, coming from many different directions, and 

overlapping in time
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Figure 53: A graph showing the distinction between direct, early reflected, and reverberant
sound. The sound pulse is produced at t = 0. The horizontal axis give the arrival time of the
direct and reflected pulse. The vertical axis is a measure of the sound intensity level in the direct
and reflected sounds. (Figure taken from http://hyperphysics.phy-astr.gsu.edu/.)

• The reverberation time depends on the frequency of the sound. High frequency sounds typically have
reverberation times that are less than those for low frequency sounds.

• Figure 55 is a graph of ideal reverberation times for rooms of di↵erent sizes and for various functions.

• Table 5 contains acoustical characteristics of several di↵erent concert halls.

Year Volume Number Reverberation time (sec)
built (m3) of seats Frequency (Hz)

125 500 2000
Teatro alla Scala, Milan 1778 11,245 2289 1.2
Royal Opera House 1858 12,240 2180 1.1
Royal Albert Hall 1871 86,600 6080 3.4 2.6 2.2
Carnegie Hall, New York 1891 24,250 2760 1.8 1.8 1.6
Symphony Hall, Boston 1900 18,740 2630 2.2 1.8 1.7
Royal Festival Hall 1951 22,000 3000 1.4 1.5 1.4
Philharmonic Hall, Berlin 1963 36,030 2200 2.0
St. David’s Hall, Cardi↵ 1983 22,000 2200 1.8 1.9 1.8

Table 5: Acoustical characteristics of various concert halls. (From a table in “MU1217 Lecture
Notes,” Cardi↵ University by Dr. Bernard Richardson.)

13.5 Calculating the reverberation time

• The reverberation time TR can be calculated from the following formula:

TR = 0.05
V

Ae↵
s (13.7)

where V is the total volume of the room (in ft3) and Ae↵ is the total absorption (in units of sabin).
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Figure 54: Build-up and decay of the sound pressure level (Lp ⇡ SIL) of the reverberant sound
for a sustained source of sound. D indicates the increase in power due to the arrival of the direct
sound; 1 and 2 are the same for the arrival of the first and second reflections. (Figure taken
from “Science of Sound,” by Rossing, Moore, and Wheeler.)
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• time required for the reverberant SIL to decrease by 60 dB (1/106 in intensity)


• frequency dependent (low-frequency sounds typically have larger reverberation times)

Reverberation time
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Figure 53: A graph showing the distinction between direct, early reflected, and reverberant
sound. The sound pulse is produced at t = 0. The horizontal axis give the arrival time of the
direct and reflected pulse. The vertical axis is a measure of the sound intensity level in the direct
and reflected sounds. (Figure taken from http://hyperphysics.phy-astr.gsu.edu/.)

• The reverberation time depends on the frequency of the sound. High frequency sounds typically have
reverberation times that are less than those for low frequency sounds.

• Figure 55 is a graph of ideal reverberation times for rooms of di↵erent sizes and for various functions.

• Table 5 contains acoustical characteristics of several di↵erent concert halls.

Year Volume Number Reverberation time (sec)
built (m3) of seats Frequency (Hz)

125 500 2000
Teatro alla Scala, Milan 1778 11,245 2289 1.2
Royal Opera House 1858 12,240 2180 1.1
Royal Albert Hall 1871 86,600 6080 3.4 2.6 2.2
Carnegie Hall, New York 1891 24,250 2760 1.8 1.8 1.6
Symphony Hall, Boston 1900 18,740 2630 2.2 1.8 1.7
Royal Festival Hall 1951 22,000 3000 1.4 1.5 1.4
Philharmonic Hall, Berlin 1963 36,030 2200 2.0
St. David’s Hall, Cardi↵ 1983 22,000 2200 1.8 1.9 1.8

Table 5: Acoustical characteristics of various concert halls. (From a table in “MU1217 Lecture
Notes,” Cardi↵ University by Dr. Bernard Richardson.)

13.5 Calculating the reverberation time

• The reverberation time TR can be calculated from the following formula:

TR = 0.05
V

Ae↵
s (13.7)

where V is the total volume of the room (in ft3) and Ae↵ is the total absorption (in units of sabin).
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Acoustical characteristics of various concert halls

MU1217 Fundamental Acoustics: Lecture Notes Page 43 

The intensity of this reverberant sound decreases with time, and it may well take several seconds to 
become inaudible.  The reverberance of the room adds to the feeling of loudness of a sound.  The 
persistence gives added presence.  You might think that the early sound, which consists of individual 
echoes, might be perceived as a jumble of poorly co-ordinated sounds, but as long as the early echoes 
arrive within about 35 ms of each other they are perceived as one event.  In fact, the early reflections tend 
to strengthen the feeling that a single, important event has occurred.  This is known as the precedence 
effect.  It is worth noting that sound waves travel about 12 m in 35 ms – not a large distance – so concerts 
halls must be designed carefully to ensure that the early reflections arrive in time.  Modern concert halls 
are also designed to ensure that orchestral musicians hear plenty of early reflections from other performers 
on stage to aid ensemble playing.  This sometimes requires special panels to be placed in positions to 
strengthen early reflections. 

Reverberation Time 
It is convenient to define the persistence of the reverberant sound.  This is defined through the 
reverberation time.  Formally, this is the time taken for the sound intensity to fall by 60 dB (or one millionth 
of its original value).  Reverberation time is an important criterion for concert-hall design.   

The  reverberation  time  can  be  estimated  using  Sabine’s  formula: 

𝑅𝑇 =
0.16𝑉
𝐴

  , 

where 𝑉 is the volume of the room and 𝐴 is the absorption of the walls etc.  The absorption is calculated by 
multiplying the absorption coefficient of the reflecting surface by its surface area (see later). 

 

Figure 10.2  “Ideal” reverberation times. 

Reverberation time should be chosen with regard to the function and size of the room.  For a given 
function, small rooms should have a lower reverberation time than a room of large volume.  For speech, it 
is necessary to have a fairly short reverberation time, otherwise words become unintelligible.  Most 
orchestral music requires a reverberation time in excess of one second.    Figure  10.2  summarises  “ideal” 
reverberation times. 

Figure 55: Ideal reverberation times for rooms of di↵erent sizes and for various functions. (Figure
taken from “MU1217 Lecture Notes,” Cardi↵ University by Dr. Bernard Richardson.)

• Total absorption Ae↵ is given by

Ae↵ = A1a1 + A2a2 + · · · + B1 + B2 + · · · (13.8)

where Ai and ai are the surface area (in ft2) and absorption coe�cient (dimensionless) of surface
i = 1, 2, . . . (e.g., the walls, floor, ceiling) in ft2, and Bi is the total absorption for chairs, people in the
room, etc.

• One sabin is equivalent to one square-foot of a perfectly absorbing surface—e.g., a window one square-
foot in area.

• The sabin is named after Wallace C. Sabine (1869-1937), who was the first person to systematically
study room acoustics.

• Note that an absorption coe�cient a = 0 corresponds to no absorption or total reflection. An absorption
coe�cient a = 1 corresponds to complete absorption—e.g., an open window or no reflection.

• The reverberation time depends on the frequency of the sound, since the absorption coe�cients of
di↵erent materials depend on frequency.

• Table 6 gives the absorption coe�cients for several di↵erent materials evaluated at di↵erent octave
intervals.

• Table 7 gives the absorption (in units of m2) for seats and people in the audience. To convert to
absorption in units of sabin, multiply the values in the Table by 10.8.

• Exercise: Calculate the reverberation time at 500 Hz for a room with dimensions 20 m ⇥ 15 m ⇥ 8m
(high). The walls are painted concrete, the ceiling is plaster, and the floor is carpet on pad. Also,
assume that there are 200 upholstered seats, and that they are half-filled with people.
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TR



Calculating reverberation time

• : total absorption in sabin (1 ft2 of perfectly 
absorbing surface)


•  : surface area of walls, etc. (in ft2)


•  : absorption coeffs (dimensionless, freq-
dependent) 


•  : absorption for seats, people, etc. (in sabin)

Aeff

A1 , A2 , ⋯

a1, a2, ⋯

B1, B2, ⋯

19

TR = 0.05
V

Aeff
s

Aeff = A1a1 + A2a2 + ⋯ + B1 + B2 + ⋯

V : volume in (ft3)

Frequency (Hz)
Material 125 250 500 1000 2000 4000
Concrete (painted) 0.10 0.05 0.06 0.07 0.09 0.08
Plywood panel 0.28 0.22 0.17 0.09 0.10 0.11
Plaster on lath 0.14 0.10 0.06 0.05 0.04 0.03
Gypsum board, 1/2 in. 0.29 0.10 0.05 0.04 0.07 0.09
Glass window 0.35 0.25 0.18 0.12 0.07 0.04
Curtains 0.14 0.35 0.55 0.72 0.70 0.65
Carpet (on concrete) 0.02 0.06 0.14 0.37 0.60 0.65
Carpet (on pad) 0.08 0.24 0.57 0.69 0.71 0.73
Acoustical tile, suspended 0.76 0.93 0.83 0.99 0.99 0.94

Table 6: Absorption coe�cients (dimensionless) for di↵erent materials evaluated at di↵erent
octave intervals. (Based on a similar table in “Science of Sound,” by Rossing, Moore, and
Wheeler.)

Frequency (Hz)
Material 125 250 500 1000 2000 4000
Wood or metal seat, unoccupied 0.014 0.018 0.020 0.036 0.035 0.028
Upholstered seat, unoccupied 0.13 0.26 0.39 0.46 0.43 0.41
Adult 0.23 0.32 0.39 0.43 0.46 —
Adult in an upholstered seat 0.27 0.40 0.56 0.65 0.64 0.56

Table 7: Absorption (in units of m2) for di↵erent types of seats with and without people evalu-
ated at di↵erent octave intervals. To convert to absorption in units of sabin, multiply the values
in the Table by 10.8. (Based on a similar table in “Science of Sound,” by Rossing, Moore, and
Wheeler.)
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Example

20

L = 20 m × 3.28 ft/m = 65.6 ft
W = 15 m × 3.28 ft/m = 49.2 ft
H = 8 m × 3.28 ft/m = 26.24 ft

MU1217 Fundamental Acoustics: Lecture Notes Page 43 

The intensity of this reverberant sound decreases with time, and it may well take several seconds to 
become inaudible.  The reverberance of the room adds to the feeling of loudness of a sound.  The 
persistence gives added presence.  You might think that the early sound, which consists of individual 
echoes, might be perceived as a jumble of poorly co-ordinated sounds, but as long as the early echoes 
arrive within about 35 ms of each other they are perceived as one event.  In fact, the early reflections tend 
to strengthen the feeling that a single, important event has occurred.  This is known as the precedence 
effect.  It is worth noting that sound waves travel about 12 m in 35 ms – not a large distance – so concerts 
halls must be designed carefully to ensure that the early reflections arrive in time.  Modern concert halls 
are also designed to ensure that orchestral musicians hear plenty of early reflections from other performers 
on stage to aid ensemble playing.  This sometimes requires special panels to be placed in positions to 
strengthen early reflections. 

Reverberation Time 
It is convenient to define the persistence of the reverberant sound.  This is defined through the 
reverberation time.  Formally, this is the time taken for the sound intensity to fall by 60 dB (or one millionth 
of its original value).  Reverberation time is an important criterion for concert-hall design.   

The  reverberation  time  can  be  estimated  using  Sabine’s  formula: 

𝑅𝑇 =
0.16𝑉
𝐴

  , 

where 𝑉 is the volume of the room and 𝐴 is the absorption of the walls etc.  The absorption is calculated by 
multiplying the absorption coefficient of the reflecting surface by its surface area (see later). 

 

Figure 10.2  “Ideal” reverberation times. 

Reverberation time should be chosen with regard to the function and size of the room.  For a given 
function, small rooms should have a lower reverberation time than a room of large volume.  For speech, it 
is necessary to have a fairly short reverberation time, otherwise words become unintelligible.  Most 
orchestral music requires a reverberation time in excess of one second.    Figure  10.2  summarises  “ideal” 
reverberation times. 

Figure 55: Ideal reverberation times for rooms of di↵erent sizes and for various functions. (Figure
taken from “MU1217 Lecture Notes,” Cardi↵ University by Dr. Bernard Richardson.)
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where Ai and ai are the surface area (in ft2) and absorption coe�cient (dimensionless) of surface
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foot in area.

• The sabin is named after Wallace C. Sabine (1869-1937), who was the first person to systematically
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• The reverberation time depends on the frequency of the sound, since the absorption coe�cients of
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• Table 6 gives the absorption coe�cients for several di↵erent materials evaluated at di↵erent octave
intervals.

• Table 7 gives the absorption (in units of m2) for seats and people in the audience. To convert to
absorption in units of sabin, multiply the values in the Table by 10.8.

• Exercise: Calculate the reverberation time at 500 Hz for a room with dimensions 20 m ⇥ 15 m ⇥ 8m
(high). The walls are painted concrete, the ceiling is plaster, and the floor is carpet on pad. Also,
assume that there are 200 upholstered seats, and that they are half-filled with people.
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Aeff = 0.06 [2(L × H) + 2(W × H)] + 0.06(L × W) + 0.57(L × W) + 10.8(100 × 0.39 + 100 × 0.56)

= 3.42 × 103 sabin

occupiedempty upholsteredcarpet on padpainted concrete plaster

TR = 0.05
V

Aeff
s = 1.2 s —> ideal for music (for V=2400 m3)

V = L × W × H = 2400 m3 = 8.47 × 104 ft3



Acoustical design

• Loudness


• Uniformity (no “live” or “dead” spots)


• Reverberance or liveness (feeling of 
being “bathed” in sound)


• Clarity (opposite of reverberance)

21

• Background noise (external noise due to 
heating, A/C, …)


• Shadow areas (produced by balconies, 
columns, …)


• Focusing of sound (“whispering room” effect)


• Echoes


• Room resonances (“shower stall” effect)

Problems to avoidCriteria for good design

flmn =
v
2 ( l

L )
2

+ ( m
W )

2

+ ( n
H )

2

l, m, n = 0,1,2,⋯



Problems to avoid
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Figure 56: Illustration of the so-called “whispering chamber e↵ect” for a room shaped like an
ellipse (top view). The whisperer sits at the focal point indicated by the red dot, and listener
sit at the other focal point. (Figure taken from http://hyperphysics.phy-astr.gsu.edu/.)

where v is the speed of sound in air. (This is just a generalization of standing waves in a 1-dimensional
tube closed a both ends to 3 dimensions.)

• Exercise: Calculate the first few resonant frequencies for a rectangular-shaped shower stall having
dimensions 1 m ⇥ 1 m ⇥ 2m.

• Answer:

f001 = 85 Hz , f010 = 170 Hz , f100 = 170 Hz , (13.16)

f002 = 170 Hz , f110 = 240 Hz , f111 = 255 Hz , · · · (13.17)

• Although resonances might be good for singing in the shower, they are not good for concert halls in
general!

• Background noise: External noise due to heating, ventillation or air conditioning systems should be
kept to a minimum.

• For example, one should try to isolate the air conditioning unit from the ceiling joists, which would
strongly couple the vibrations of the air conditioning unit into the building.

13.8 Terminology used for concert halls

• Intimacy or presence: The impression of being in a small concert hall.

• Spaciousness: The sound appears to come from all directions and from a source wider than the visual
width of the source.

• Reverberance or liveness: (As before.) The feeling that the listener is bathed in sound.

• Clarity: (As before.) Being able to distinguish between discrete sounds in a musical performance.

• Warmth: Liveness of the bass notes (75 Hz–350 Hz) relative to the treble notes.

• Brilliance: Liveness of the treble notes (> 350 Hz) relative to the bass notes.
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Whispering room effect

Figure 57: Multiple reflections and image sources due to parallel floor and ceiling. Multiple
reflections from closely-spaced parallel surfaces can produce so-called flutter echoes.
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Flutter echoes



13. Electrical reproduction of 
sound
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Electrical reproduction of sound — overview
• Goal: Understand how microphones and loudspeakers work


• Need basic understanding of: 


• electricity and magnetism


• Faraday’s law of induction
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Basic electricity
• Voltage  (volts)


• Current  (amperes or amps)


• Resistance  or impedance  (ohms, )


• Direct current (DC) and alternating current (AC) 
circuits


• Ohm’s law of electricity:  


• Electrical power:    (Watts)


• Relation to work or energy:  


                  (Watts)   or     (Joules)

V

I

R Z Ω

V = IR

P = VI = I2R

P = W/Δt W = P Δt
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(DC circuit)

e.g., a battery connected

to a flashlight bulb

/

14 Electrical reproduction of sound

• A basic understanding of electricity and magnetism is needed to describe the functioning of musical
recording and reproduction equipment.

• Here, we briefly describe electrical circuits (voltage, current, resistance, power, · · · ) and also Faraday’s
law of induction, which underlies the operation of microphones and loudspeakers.

14.1 Basic electricity

• When a voltage source (such as a battery) is connected to a load (such as a flashlight bulb) via a closed
path (called a circuit), an electric current flows (electric charges in motion).

• Voltage is denoted by V and is measured in volts (V). The load has a resistance, denoted by R, which
is measured in ohms (⌦). Current is denoted by I and is measured in ampères or amps (A).

• For certain materials, V , I, and R are related by

R = V/I or, equivalently, V = IR (14.1)

This is called Ohm’s law of electricity, not to be confused with Ohm’s law of hearing, even though it’s
by the same guy.

• For a battery, which has a polarity (+ and � terminals), the current I flows in only one direction,
which we take to be from the + terminal of the battery to the � terminal. This is called a direct
current (DC) circuit. (See the left-hand panel of Figure 58.)

                 8-3 
DC and AC circuits, Ohm’s Law of Electricity 
 
When a constant voltage V such as that from a battery is applied to a load resistance R, 
the result is a constant, direct current I (DC). 
When an alternating, time-varying voltage such as from a household outlet or an audio 
amplifier is applied to a load, the result is an alternating current I (AC). In this case the 
reaction by the load to the applied voltage is called the impedance Z. 
For pure resistances such as electric heaters and incandescent light bulbs, Z = R. But if 
the circuit contains other elements such as inductances or capacitances, the impedance Z 
and resistance R of the circuit are different. We shall ignore this difference. 

 
Figure. Left: DC circuit. The voltage  source is a battery, photovoltaic cell etc. The load 
resistance is R, and the current I flows in one direction. Right: AC circuit. The voltage 
source is an audio amplifier, generator etc. The load is called the impedance Z. The 
current changes direction between clockwise and counterclockwise in the loop. 
 
Ohm’s Law of Electricity 
For a DC circuit, the relation between voltage V (in Volt V), resistance R (in Ohm W), 
and current I (in Ampere A) is given by Ohm’s law of electricity (not to be confused with 
Ohm’s law of acoustics!): 
     V = RI 
Example 1 
You connect an 8 W loudspeaker to an audio amplifier. The amplifier supplies a voltage 
of 12 V to the speaker. What is the current flowing at that instant? 
Answer: I = V/R = 12V/8W = 1.5 A (P.S.: This would give a rather loud sound.) 
Example 2 
A current of I = 0.5 A flows through an incandescent old-style light bulb. The resistance 
of the light bulb when hot is R = 240 W.  
What is the voltage across the contacts of the light bulb? 
Answer: V = RI = 240W x 0.5A = 120 V (effective household voltage in the USA) 
 
Demonstrations 
1. Show a flashlight circuit with two 1.55 V batteries in series, 3.1 V total, I = 0.29 A. 
Measure V and I. The resistance is R = 3.10/0.29 = 10.7 W.   
2. Show a circuit with three light bulbs: 60W old-style incandescent, 14 W compact 
fluorescent (CFL), and 6 W light emitting diode (LED). Read the currents through the 
light bulbs. The power consumptions are very different, but the light outputs are similar.

V V

Figure 58: Left: Direct current (DC) circuit, consisting of a voltage source V and a load having
resistance R. Right: Alternating current (AC) circuit, consisting of a voltage source V and a
load having impedance Z. For a DC circuit, the current I flows in only one direction. For an
AC circuit, the current I flows alternately clockwise and counterclockwise around the circuit.
(Figures from “PHYS 1406: Physics of Sound & Music” Course Guide by Prof. Borst.)

• For a household wall outlet, the voltage V alternates sinusoidally with time (60 cycle/sec or 60 Hz),
producing a current I that also alternates sinusoidally, traveling both clockwise and counterclockwise
around the circuit. Such a circuit is called an alternating current (AC) circuit. (See the right-hand
panel of Figure 58.)

• For AC circuits, there is a relation
V = IZ (14.2)

which is similar to Ohm’s law, but it involves the impedance Z of the load.
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e.g., a household wall outlet

connected to a vacuum cleaner
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2. Show a circuit with three light bulbs: 60W old-style incandescent, 14 W compact 
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load having impedance Z. For a DC circuit, the current I flows in only one direction. For an
AC circuit, the current I flows alternately clockwise and counterclockwise around the circuit.
(Figures from “PHYS 1406: Physics of Sound & Music” Course Guide by Prof. Borst.)

• For a household wall outlet, the voltage V alternates sinusoidally with time (60 cycle/sec or 60 Hz),
producing a current I that also alternates sinusoidally, traveling both clockwise and counterclockwise
around the circuit. Such a circuit is called an alternating current (AC) circuit. (See the right-hand
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Example — home wiring
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https://www.addicted2decorating.com/how-to-wire-single-pole-light-switch.htmlhttps://gardnerbenderfaq.wordpress.com/tag/outlet/



Example — kilowatt-hr and your electric bill
• A kilowatt-hr is a convenient unit of energy:


        


• Exercise: Suppose you paid $100 for last month’s electric bill at a cost of $0.13/kWh.


(a) How much energy (in kWh) did you use?


(b) What was the average power consumption (in Watts) over the month (assume 30 days)?


• Answer:


(a)  


(b)  

1 kWh = 1 kW × 1 hr = 1000 W × 3600 s = 3.6 × 106 J

W = $100 ÷ $0.13/kWh = 769 kWh

P =
W
Δt

=
769 kWh
30 × 24 h

= 1.1 kW = 1,100 W
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(eleven 100-Watt lightbulbs on continuously)



Basic magnetism
• A permanent magnet has N and S poles that attract 

pieces of iron


• Like poles repel; unlike poles attract (just like + and 
 electrical charges).  But no isolated magnetic 

poles.


• A compass needle is a tiny magnet that is attracted 
to Earth’s South magnetic pole.


• Oersted (1820): discovered that an electric current 
produces a magnetic field


• Can create an electromagnet by sending an electric 
current through a coil of wire

−

28
Figure 76: Magnetic fields lines B encircle current-carrying wires I, in a direction given by the
right-hand rule. (a): Contribution to the magnetic field at r due to the current flowing at r

0.
(b): Magnetic field lines for an infinitely-long, straight current-carrying wire.

Figure 77: Definitions of s, ✓1, and ✓2 for the exercise given in the text.
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Faraday’s law of induction (1831)
• A change in magnetic flux through a coil of wire 

induces a voltage in the coil:


                 


• Only relative motion is important


• Underlies the operation of electric generators 
and electric motors


• Electric generator: mechanical energy 
converted to electrical energy


• Electric motor: electrical energy converted to 
mechanical energy

V = − N
ΔΦ
Δt
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14.3 Faraday’s law

• In 1831, British scientist Michael Faraday discovered that a change in the magnetic flux through a coil
of wire induces a voltage in the coil. This is called Faraday’s law of electromagnetic induction.

• Mathematically, the induced voltage is given by

V = �N
��

�t
(14.9)

where N is the number of loops of the coil and �� is the change in the magnetic flux passing through
a loop in time interval �t.

• Demonstration: Connect a coil of wire to a galvanometer (a sensitive current meter). Move a permanent
magnet toward or away from the coil and watch how the galvanometer needle deflects. Repeat, but
keep the magnet stationary and move the coil instead. Note that only the relative motion of the magnet
and coil is important. (See Figure 59.)               8-10 

Principle of Electric Generator (Microphone) and Electric Motor (Loudspeaker) 

 
Figure. Electric generator based on Faraday’s law of a changing magnetic field through a 
wire coil. A voltage V is induced by electromagnetic induction. It does not matter 
whether the magnet or the coil moves. (From Berg & Stork, Fig. 7-3, p. 188.) 
 

 
 
Figure. Dynamic microphone. A wire coil moves with respect to a stationary magnet. A 
voltage is induced between the ends of the coil. The coil is fastened to a diaphragm that 
moves with the sound waves. The induced voltage tracks the arriving waveform.  
(From Berg & Stork, Fig. 7-4, p. 188.) 

 
Figure. Dynamic loudspeaker. A time-varying voltage is applied to a moving wire coil 
attached to the loudspeaker cone. The magnet inside the coil is fixed. (This also is the 
basic principle of an electromagnetic motor, which is the reverse of an electric generator.) 
(From Berg & Stork, Fig. 7-10, p. 192.) 

Figure 59: Illustration of Faraday’s law. As a magnetic moves back and forth (X vs t) in the
vicinty of a coil of wire, an alternating voltage (V vs t) is induced in the coil. (Figure from
“Physics of Sound,” by Berg and Stork.)

• Faraday’s law of induction has had a profound influence of technology, as it underlies the operation
of electric motors and generators. It also underlies the operation of certain types of microphones and
loudspeakers (these will be described in the next subsection).

• Demonstrations:

(i) Illustrate how a hand-powered AC generator works.

(ii) Illustrate the operation of a simple DC motor constructed from electromagnets.

(iii) Show a “do-it-yourself” DC motor constructed from a D-cell flashlight battery, a small magnet,
paper clips, and a coil of (magnet) wire stripped on one side.

• Note that electric motors and electric generators are basically “inverses” of one another:

Electric generator: mechanical energy is converted to electrical energy by physically rotating a coil in
an external magnetic field. An voltage is induced in the coil by Faraday’s law.

Electric motor: electrical energy is converted to mechanical energy by sending a current through a
coil of wire. This current creates an electromagnet, which interacts with the external magnetic field,
causing the coil to rotate.

14.4 Microphones and loudspeakers

• Faraday’s law of electromagnetic induction also underlies the operation of so-called “dynamic” micro-
phones and loudspeakers.
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Application — microphones and loudspeakers
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               8-10 
Principle of Electric Generator (Microphone) and Electric Motor (Loudspeaker) 

 
Figure. Electric generator based on Faraday’s law of a changing magnetic field through a 
wire coil. A voltage V is induced by electromagnetic induction. It does not matter 
whether the magnet or the coil moves. (From Berg & Stork, Fig. 7-3, p. 188.) 
 

 
 
Figure. Dynamic microphone. A wire coil moves with respect to a stationary magnet. A 
voltage is induced between the ends of the coil. The coil is fastened to a diaphragm that 
moves with the sound waves. The induced voltage tracks the arriving waveform.  
(From Berg & Stork, Fig. 7-4, p. 188.) 

 
Figure. Dynamic loudspeaker. A time-varying voltage is applied to a moving wire coil 
attached to the loudspeaker cone. The magnet inside the coil is fixed. (This also is the 
basic principle of an electromagnetic motor, which is the reverse of an electric generator.) 
(From Berg & Stork, Fig. 7-10, p. 192.) 

Figure 60: Schematic diagram of a dynamics microphone. The pressure deviations associated
with a sound wave push back and forth on the diaphragm of the microphone. A coil of wire,
which is attached to the diaphragm, thus moves in the presence of a magnetic field. The changing
magnetic flux through the coil induces a voltage V in the coil which follows the fluctuations of
the sound wave. (Figure from “Physics of Sound,” by Berg and Stork.)

• A schematic diagram of a dynamic microphone is shown in Figure 60.

• When a sound wave impinges on the movable diaphragm, the pressure deviations in the wave cause the
diaphragm to move back-and-forth in response to the sound. A coil of wire, which is attached to the
diaphragm, thus moves with respect to a fixed magnetic field, inducing a time-varying voltage in the
coil (according to Faraday’s law) that follows the pressure deviations in the sound wave. This voltage
can then be amplified and used as input to other electronics that record or transmit the sound.

• A loudspeaker works like a microphone in reverse, see Figure 61.
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Figure. Dynamic loudspeaker. A time-varying voltage is applied to a moving wire coil 
attached to the loudspeaker cone. The magnet inside the coil is fixed. (This also is the 
basic principle of an electromagnetic motor, which is the reverse of an electric generator.) 
(From Berg & Stork, Fig. 7-10, p. 192.) 

Figure 61: An time-varying electrical signal (e.g., a voltage) applied to the coil creates a magnetic
field that interacts with that of the permanent magnet. The speaker cone, which is attached
to the coil, moves back-and-forth in repsonse to this interaction, thus producing a sound wave.
(Figure from “Physics of Sound,” by Berg and Stork.)

• A time-varying voltage, which is an electrical representation of the sound, is applied to a coil of wire
that is attached to the loudspeaker cone. A current then flows in this coil creating an electromagnet
that interacts with an external magnetic field, causing the loudspeaker cone to move back-and-forth.
This motion creates pressure deviations in the air, which is the sound wave that we then hear.
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Loudspeaker Types          

 
                       Infinite baffle         Acoustic suspension     Tuned port (bass reflex) 
 
Figure. Three loudspeakers types. The infinite baffle can be a wall or ceiling. The 
acoustic suspension speaker is in an airtight box. Waves cannot get out from the back and  
interfere with waves from the front. For a tuned port speaker the box is a Helmholtz 
resonator and extends the bass response. (From Berg & Stork, Fig. 7-11, p. 193.) 

 
Figure. (a) Frequency response of an acoustic suspension speaker. The bump at low 
frequencies is due to speaker resonance (at about 100 Hz). (b) Frequency response of an 
empty box having a tuned port that acts as a Helmholtz resonator. (c) Overall response 
with the speaker in the box. The dimensions of the box and port are tuned to extend the 
frequency range farther into the bass region. (From Berg & Stork, Fig. 7-12, p. 193.) 
 
Demonstration 
Compare the bass response of an open speaker and a similar one in a bass reflex box.

Frequency response curves

(acoustic suspension, tuned port)
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Music theory — the need to standardize musical notes
• A tuning system is an assignment of precise frequencies to all musical notes in an octave 

(reference note is A4 = 440 Hz; decided upon in 1939)


• Three standard tuning systems:


• Equal temperament


• Pythagorean temperament


• Just temperament


• Each tuning system has its own advantages and disadvantages


• What tuning systems do real musicians use?  (comments from the musicians in class??)
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Musical scales — dividing up the octave into pieces
• Chromatic scale: 12 pieces (semitones)


C - C# - D- Eb - E - F - F# - G - Ab - A- Bb - B - C’ (white and black keys on a piano)


• Diatonic scale: 7 pieces (semitones and whole tones)


T-T-S-T-T-T-S  (do-re-mi-fa-sol-la-ti-do; white keys on a piano)


• Pentatonic scale: 5 pieces (whole tones and 3 semitones intervals)


T-T-3-T-3  (F# - G# - A# - C# - D# - F#’; black keys on a piano)
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Equal temperament
• All semitones intervals are equal: 


• Cent (100 cents = semitone):   (JND: ~10 cents)


• All sharps and flats are equal to one another

21/12 = 1.059

21/1200 = 1.000578
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16 Tuning systems

• An International Conference in London in 1939 established A4 = 440 Hz as the standard reference
frequency. Before that time, A4 was tuned to di↵erent frequencies ranging from 422.5 Hz (Handel) to
444 Hz, depending on composer, orchestra, ...

• A tuning system is basically an assignment of precise frequencies to all the other musical notes.

• Since notes an octave apart have a frequency ratio of exactly 2 in all tuning systems, it su�ces to
assign frequencies to all the notes within a single octave scale. The frequencies of notes outside this
reference octave scale are simply related to the frequencies of the notes within the reference octave.

• Example: The note A3 has frequency 440/2 = 220 Hz in all tuning systems.

• In this section, we describe three di↵erent tuning systems: equal temperament, Pythagorean temper-
ament, and just temperament.

• As we shall see below, there is no such thing as a perfect tuning system. Each tuning system has its
own advantages and disadvantages.

16.1 Equal temperament

• Equal temperament is the most common tuning system in use today.

• In equal temperament tuning, all semitone intervals have the same size, corresponding to a frequency
ratio of

21/12 = 1.05946 (16.1)

A whole tone is exactly equal to two semitones.

• An equal-tempered chromatic scale was originally proposed independently by Vincenzo Galilei (father
of Galileo Galilei) and Chu Tsai-Yu (a Chinese scholar) around 1580.

• Equal temperament didn’t become popular until the 1700’s. “The Well-Tempered Clavier” by Johannes
Sebastian Bach demonstrated the usefulness of equal-temperament. Using all 24 major and minor keys,
this piece sounded good only in equal-tempered tuning, and not in the other tuning systems that we
will describe below.

• Table 10 gives the frequency ratios for a chromatic scale in equal-temperament tuning.

Note ET freq ratio
C 20/12 = 1.000

C]/D[ 21/12 = 1.059
D 22/12 = 1.122

D]/E[ 23/12 = 1.189
E 24/12 = 1.260
F 25/12 = 1.335

F]/G[ 26/12 = 1.414
G 27/12 = 1.498

G]/A[ 28/12 = 1.587
A 29/12 = 1.682

A]/B[ 210/12 = 1.782
B 211/12 = 1.888
C0 212/12 = 2.000

Table 10: Notes in a chromatic scale and the corresponding equal-temperament frequency ratios.
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15 Musical scales and intervals

• A scale is basically a division of the octave into a succession of notes, in ascending or descending order.

• The most common scales in Western music are the chromatic, diatonic, and pentatonic scales, consisting
of 12, 7, and 5 intervals per octave, respectively.

• In this section, we shall describe these scales and the most common musical intervals.

15.1 Chromatic scale

• A chromatic scale divides the octave into 12 intervals called semitones or half-steps. In equal tempera-
ment tuning (more about this in a later section), these intervals all have the same size, corresponding
to a frequency ratio of

21/12 = 1.05946 (15.1)

• Oftentimes it is more convenient to work in term of cents, where a cent is the frequency interval
corresponding to 1/100 of a semitone:

21/1200 = 1.000578 (15.2)

• The human ear can distinguish frequencies that di↵er by about 10 cents, which corresponds to a
frequency ratio of 210/1200 = 1.00579, or about a 0.5% di↵erence in frequency. (This percentage
di↵erence in frequency is the just noticeable di↵erence for pitch discrimination.)

• Figure 64 shows the corresponding notes in a chromatic scale on a piano keyboard:

C � C] � D � E[ � E � F � F] � G � A[ � A � B[ � B � C0

Figure 64: Notes in a chromatic scale on a piano keyboard.

• On a piano, or any instrument tuned to equal temperament, the sharps and flats are equal to one
another—e.g., C] and D[ are tuned to the same frequency. These are called enharmonic notes.

• A full piano keyboard, which has 88 keys ranging from A0 to C8, is a basically a logarithmic frequency
scale, with neighboring keys (white-black or white-white) corresponding to a frequency interval of a
semitone.

• Figure 65 shows the correspondence between the treble and bass staves and their equal-tempered
frequencies. This is another example of a logarithmic frequency scale.

• The sta↵ lines are not equally-spaced in this graph, since some divisions correspond to a minor third
(three semitones), while other divisions correspond to a major third (four semitones).
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15.2 Diatonic scale

• A diatonic scale divides the octave into 7 intervals consisting of both tones and semitones. The order
of tones and semitones defines the major and minor interval orders.

• The diatonic major interval order is T-T-S-T-T-T-S (2-2-1-2-2-2-1). This is the standard

do � re � mi � fa � sol � la � ti � do

interval order.

• The diatonic minor interval order is T-S-T-T-S-T-T (2-1-2-2-1-2-2).

15.3 Musical intervals

• The most important musical interval is the octave, corresponding to a frequency ratio of exactly 2.

• Other common musical intervals are the fifth (C-G), fourth (C-F), major third (C-E), and minor third
(C-E[).

• Table 8 is a list of these and other musical intervals and their corresponding just and equal-tempered
frequency ratios. (We will describe the just temperament tuning system in a later section.)

Interval # semitones Just freq ratio ET freq ratio Di↵erence (cents) Example
Octave 12 2 : 1 = 2.000 2.000 0 C-C0

Fifth 7 3 : 2 = 1.500 1.498 2 C-G
Fourth 5 4 : 3 = 1.333 1.335 �2 C-F, G-C0

Major third 4 5 : 4 = 1.250 1.260 �14 C-E
Minor third 3 6 : 5 = 1.200 1.189 16 C-E[, A-C0

Table 8: Common musical intervals and their corresponding just and equal-tempered frequency
ratios.

• Mathematically, a musical interval corresponds to a ratio of frequencies. Multiplication of frequency
ratios corresponds to addition of frequency intervals.

• For example, an octave equals a fifth plus a fourth, and a fifth equals a major third plus a minor third:

3

2
· 4

3
=

2

1
,

5

4
· 6

5
=

3

2
(15.3)

15.4 Harmonic series

• Notes in a harmonic series have frequencies that are integer multiples of some fundamental frequency:
fn = nf1, where n = 1, 2, · · · .

• Successive harmonics can be related to the musical intervals as shown in Figure 66, where the funda-
mental frequency corresponds to A2.

• A comparison of the harmonic frequencies and equal-tempered frequenices are given in Table 9.

• Note that the largest discrepancy in equal temperament tuning is for the 7th harmonic.
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A2 B2 C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4 C5

1 2 3 4 5 6 8(7)

octave fifth fourth fourth
major
third

minor
third

D5 F5E5 A5G5

Figure 66: Notes on a piano keyboard corresponding to the first eight harmonics of A2.

Harmonic Exact freq (Hz) Equal-tempered freq (Hz) Di↵erence (cents) Piano note
1 110 110.00 0 A2

2 220 220.00 0 A3

3 330 329.63 2 E4

4 440 440.00 0 A4

5 550 554.37 �14 C]
5

6 660 659.26 2 E5

7 770 783.99 �31 G5

8 880 880.00 0 A5

Table 9: Relation between harmonic frequencies and equal-tempered frequencies.

15.5 Chords

• Chords: There are three major chords (triads) having just frequency ratios 4:5:6:

C � E � G , F � A � C , G � B � D

These three notes correspond to a major third followed by a minor third.

• There are two minor chords (triads) having just frequency ratios 10:12:15:

E � G � B , A � C � E

These three notes correspond to a minor third followed by a major third.

15.6 Circle of fifths

• A useful construct is the so-called circle of fifths shown in Figure 67.

• Successive notes on the circle are separated by a musical fifth.

• In equal temperament, the notes next to one another have the same frequency; this is not the case for
other tuning systems such as Pythagorean or just temperament, as we shall see in a later section. For
these other tuning systems, the circle of fifths does not close.

15.7 Major and minor key signatures

• For example, the C-major and C-minor diatonic scales are:

C � D � E � F � G � A � B
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Figure 67: Circle of fifths. Left panel: General circle of fifths. Right panel: Simplified circle of
fifths for equal temperament tuning.

and
C � D � E[�F � G � G]�A]

• The notes in the G-major scale are the same as for C-major except for F]:

G � A � B � C � D � E � F]

• The notes in the F-major scale are the same as for C-major except for B[:

F � G � A � B[�C � D � E

• Note that the A-minor scale is
A � B � C � D � E � F � G

so the notes are exactly the same as for C-major. But because the tonic (and tonal interval order) are
di↵erent for these two scales, they sound di↵erently.

15.8 Pentatonic scale

• A pentatonic scale is probably the oldest division of the octave. It was developed independently in
many di↵erent cultures.

• A pentatonic scale divides the octave into 5 intervals (3 intervals are whole tones and 2 intervals are
three semitones wide).

• Examples of pentatonic scales in major interval order are

C � D � E � G � A (15.4)

and
F] � G] � A] � C] � D] (15.5)

which are just the black keys on a piano.

• The pentatonic scale also has minor and various modal inteval orders. The major interval order is:
2-2-3-2-3. The minor interval order is: 3-2-2-3-2.
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Figure 67: Circle of fifths. Left panel: General circle of fifths. Right panel: Simplified circle of
fifths for equal temperament tuning.
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Pythagorean temperament

• Constructed from perfect fifth and octave intervals


• For example:


G: 3/2


D: (3/2)2 x (1/2) = 9/8


A: (3/2)3 x (1/2) = 27/16


E: (3/2)4 x (1/2)2 = 81/64


F: (2/3) x 2 = 4/3
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• On a piano, or any instrument tuned to equal temperament, the sharps and flats are equal to one
another—e.g., C] and D[ are tuned to the same frequency. These are called enharmonic notes.

• NOTE!! This equality of sharps and flats is not true, in general, for other tuning systems such as
Pythagorean or just temperament (see below). For these systems, one must first decide to tune, for
example, to C] or D[, etc., and then set the other (enharmonic) note equal to the first.

• It is common to choose:

C � C] � D � E[ � E � F � F] � G � A[ � A � B[ � B � C0

as the fundamental notes in a chromatic scale.

• Exercise: Show that middle C in equal temperament has a frequency of 261.63 Hz:

C4 : A3 · 23/12 =
440 Hz

2
· 23/12 = 261.63 Hz (16.2)

16.2 Pythagorean temperament

• Pythagorean temperament is a tuning system constructed from just fifths and the the octave (or,
equivalently, from just fifths and fourths).

• Using the circle of fifths (cf. Fig. 67), we can tune a chromatic scale to Pythagorean temperament as
illustrated in Figure 68.

Figure 68: A portion of the circle of fifths for calculating a chromatic scale of frequencies in
Pythagorean temperament.

• Applying the appropriate number of factors of 3/2 (or 2/3) and then scaling by 1/2 (or 2) to bring the
resulting frequency to within an octave of C, we obtain the numbers in Table 11.

Note Pyth freq ratio ET freq ratio Di↵erence (cents)
C 1 : 1 = 1.000 1.000 0
C] 2187 : 2048 = 1.068 1.059 14
D 9 : 8 = 1.125 1.122 4
E[ 32 : 27 = 1.185 1.189 �6
E 81 : 64 = 1.266 1.260 8
F 4 : 3 = 1.333 1.335 �2
F] 729 : 512 = 1.424 1.414 12
G 3 : 2 = 1.500 1.498 2
A[ 128 : 81 = 1.580 1.587 �8
A 27 : 16 = 1.688 1.682 6
B[ 16 : 9 = 1.778 1.782 �4
B 243 : 128 = 1.898 1.888 10
C0 2 : 1 = 2.000 2.000 0

Table 11: Pythagorean chromatic scale and comparison to equal-tempered frequency ratios. The
Pythagorean diatonic whole-tone interval is 9:8. The Pythagorean chromatic semitone interval
is either 256:243 or 2187:2048.
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Figure 67: Circle of fifths. Left panel: General circle of fifths. Right panel: Simplified circle of
fifths for equal temperament tuning.
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di↵erent for these two scales, they sound di↵erently.

15.8 Pentatonic scale

• A pentatonic scale is probably the oldest division of the octave. It was developed independently in
many di↵erent cultures.

• A pentatonic scale divides the octave into 5 intervals (3 intervals are whole tones and 2 intervals are
three semitones wide).

• Examples of pentatonic scales in major interval order are

C � D � E � G � A (15.4)

and
F] � G] � A] � C] � D] (15.5)

which are just the black keys on a piano.

• The pentatonic scale also has minor and various modal inteval orders. The major interval order is:
2-2-3-2-3. The minor interval order is: 3-2-2-3-2.
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Just temperament
• Constructed from perfect fifth, major third, 

and octave intervals


• For example:


G: 3/2


D: (3/2)2 x (1/2) = 9/8


A: (2/3) x (5/4) x 2 = 5/3  (vs 27/16)


E: 5/4  (vs 81/64)


F: (2/3) x 2 = 4/3
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• In addition, a Pythagorean third (e.g., from C to E) di↵ers signicantly from a just major third that
has a frequency ratio of 5/4. This di↵erence is called the syntonic comma:

� =
81/64

5/4
=

81

80
= 1.0125 (16.5)

Thus, a Pythagorean third is too sharp by just over 1% or approximately 22 cents.

16.3 Just temperament

• Just temperament is a tuning system constructed from perfect fifths, major thirds, and the octave
(or, equivalently, from perfect fifths, perfect fourths, major thirds, and minor sixths). In the key of
C-major, it has three beatless major chords and two beatless minor chords.

• Using Figure 69 as a schematic for going up and down in frequency by perfect fifths and major thirds,
we obtain the frequency ratios given in Table 13.

Figure 69: Schematic for calculating a chromatic scale of frequencies in just temperament.

• Just temperament is arguably the best possible tuning system, provided one stays within the key in
which you tuned to, e.g., the key of C for the above tuning.

• But just as we saw for Pythagorean temperament, just temperament becomes increasingly out of tune
as one move away from the key of C. For example, the fifth C] to A[ in the key of C] di↵ers from a
perfect fifth by 41 cents.

16.4 Comparison of di↵erent tuning systems

• Figure 70 compares the frequency ratios for a chromatic scale for the three di↵erent tuning systems
that we considered in the previous subsections. One can easily see from this figure that the perfect
fifth C] to A[ is too flat in Pythagorean tuning and too sharp in just temperament tuning.

• Table 14 quantifies this comparison, giving the frequency ratios of two di↵erent fifths (C to G and C]

to A[) in the three di↵erent tuning systems that we considered. The last column gives the di↵erence
in cents between these frequency ratios and 3/2 for a just perfect fifth.
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Comparing different tuning systems

Note Just freq ratio ET freq ratio Di↵erence (cents)
C 1 : 1 = 1.000 1.000 0
C] 25 : 24 = 1.042 1.059 �29
D 9 : 8 = 1.125 1.122 4
E[ 6 : 5 = 1.200 1.189 16
E 5 : 4 = 1.250 1.260 �14
F 4 : 3 = 1.333 1.335 �2
F] 45 : 32 = 1.406 1.414 �10
G 3 : 2 = 1.500 1.498 2
A[ 8 : 5 = 1.600 1.587 14
A 5 : 3 = 1.667 1.682 �16
B[ 9 : 5 = 1.800 1.782 18
B 15 : 8 = 1.875 1.888 �12
C0 2 : 1 = 2.000 2.000 0

Table 13: Just chromatic scale and comparison to equal-tempered frequency ratios. The just
diatonic whole-tone interval is either 9:8 or 10:9. The just chromatic semitone interval is either
16:15, 25:24, or 27:25.
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Figure 70: Frequency ratios for a chromatic scale for the three di↵erent tuning systems that
we considered. The horizontal axis is the frequency ratio expressed in cents (1200 cents equals
one octave). The dotted vertical lines correspond to equal-tempered tuning (equally spaced at
0, 100, 200, · · · 1200 cents); the blue and red vertical lines correspond to the Pythagorean and
just temperament tuning systems, respectively.

Fifth Temperament Freq ratio Di↵erence (cents)
C-G equal 1.498 �2
C-G pyth 1.500 0
C-G just 1.500 0

C]-A[ equal 1.498 �2
C]-A[ pyth 1.480 �23
C]-A[ just 1.536 41

Table 14: Frequency ratios for two di↵erent fifths for the four di↵erent tuning systems that we
considered. The last column is the di↵erence in cents from a perfect fifth, which has a frequency
ratio of 3/2.
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Pythagorean

Just

• On a piano, or any instrument tuned to equal temperament, the sharps and flats are equal to one
another—e.g., C] and D[ are tuned to the same frequency. These are called enharmonic notes.

• NOTE!! This equality of sharps and flats is not true, in general, for other tuning systems such as
Pythagorean or just temperament (see below). For these systems, one must first decide to tune, for
example, to C] or D[, etc., and then set the other (enharmonic) note equal to the first.

• It is common to choose:

C � C] � D � E[ � E � F � F] � G � A[ � A � B[ � B � C0

as the fundamental notes in a chromatic scale.

• Exercise: Show that middle C in equal temperament has a frequency of 261.63 Hz:

C4 : A3 · 23/12 =
440 Hz

2
· 23/12 = 261.63 Hz (16.2)

16.2 Pythagorean temperament

• Pythagorean temperament is a tuning system constructed from just fifths and the the octave (or,
equivalently, from just fifths and fourths).

• Using the circle of fifths (cf. Fig. 67), we can tune a chromatic scale to Pythagorean temperament as
illustrated in Figure 68.

Figure 68: A portion of the circle of fifths for calculating a chromatic scale of frequencies in
Pythagorean temperament.

• Applying the appropriate number of factors of 3/2 (or 2/3) and then scaling by 1/2 (or 2) to bring the
resulting frequency to within an octave of C, we obtain the numbers in Table 11.

Note Pyth freq ratio ET freq ratio Di↵erence (cents)
C 1 : 1 = 1.000 1.000 0
C] 2187 : 2048 = 1.068 1.059 14
D 9 : 8 = 1.125 1.122 4
E[ 32 : 27 = 1.185 1.189 �6
E 81 : 64 = 1.266 1.260 8
F 4 : 3 = 1.333 1.335 �2
F] 729 : 512 = 1.424 1.414 12
G 3 : 2 = 1.500 1.498 2
A[ 128 : 81 = 1.580 1.587 �8
A 27 : 16 = 1.688 1.682 6
B[ 16 : 9 = 1.778 1.782 �4
B 243 : 128 = 1.898 1.888 10
C0 2 : 1 = 2.000 2.000 0

Table 11: Pythagorean chromatic scale and comparison to equal-tempered frequency ratios. The
Pythagorean diatonic whole-tone interval is 9:8. The Pythagorean chromatic semitone interval
is either 256:243 or 2187:2048.
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Pythagorean vs Equal Temperament
Note Just freq ratio ET freq ratio Di↵erence (cents)

C 1 : 1 = 1.000 1.000 0
C] 25 : 24 = 1.042 1.059 �29
D 9 : 8 = 1.125 1.122 4
E[ 6 : 5 = 1.200 1.189 16
E 5 : 4 = 1.250 1.260 �14
F 4 : 3 = 1.333 1.335 �2
F] 45 : 32 = 1.406 1.414 �10
G 3 : 2 = 1.500 1.498 2
A[ 8 : 5 = 1.600 1.587 14
A 5 : 3 = 1.667 1.682 �16
B[ 9 : 5 = 1.800 1.782 18
B 15 : 8 = 1.875 1.888 �12
C0 2 : 1 = 2.000 2.000 0

Table 13: Just chromatic scale and comparison to equal-tempered frequency ratios. The just
diatonic whole-tone interval is either 9:8 or 10:9. The just chromatic semitone interval is either
16:15, 25:24, or 27:25.
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Figure 70: Frequency ratios for a chromatic scale for the three di↵erent tuning systems that
we considered. The horizontal axis is the frequency ratio expressed in cents (1200 cents equals
one octave). The dotted vertical lines correspond to equal-tempered tuning (equally spaced at
0, 100, 200, · · · 1200 cents); the blue and red vertical lines correspond to the Pythagorean and
just temperament tuning systems, respectively.

Fifth Temperament Freq ratio Di↵erence (cents)
C-G equal 1.498 �2
C-G pyth 1.500 0
C-G just 1.500 0

C]-A[ equal 1.498 �2
C]-A[ pyth 1.480 �23
C]-A[ just 1.536 41

Table 14: Frequency ratios for two di↵erent fifths for the four di↵erent tuning systems that we
considered. The last column is the di↵erence in cents from a perfect fifth, which has a frequency
ratio of 3/2.
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Just vs Equal Temperament
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All tuning systems have problems!!
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• Equal-tempered fifths, fourths, etc. are never 
perfect (only an octave)


• Pythagorean circle of fifths doesn’t close (12 
perfect fifths is not equal to 7 octaves)


• Pythagorean “comma”:


   (23 cents too large)


• Fifth  to  is too flat in Pythagorean 
temperament (“wolf” fifth) and too sharp in just 
temperament

B♯

C′￼

=
(3/2)12

27
= 1.0136

C♯ A♭

Note Just freq ratio ET freq ratio Di↵erence (cents)
C 1 : 1 = 1.000 1.000 0
C] 25 : 24 = 1.042 1.059 �29
D 9 : 8 = 1.125 1.122 4
E[ 6 : 5 = 1.200 1.189 16
E 5 : 4 = 1.250 1.260 �14
F 4 : 3 = 1.333 1.335 �2
F] 45 : 32 = 1.406 1.414 �10
G 3 : 2 = 1.500 1.498 2
A[ 8 : 5 = 1.600 1.587 14
A 5 : 3 = 1.667 1.682 �16
B[ 9 : 5 = 1.800 1.782 18
B 15 : 8 = 1.875 1.888 �12
C0 2 : 1 = 2.000 2.000 0

Table 13: Just chromatic scale and comparison to equal-tempered frequency ratios. The just
diatonic whole-tone interval is either 9:8 or 10:9. The just chromatic semitone interval is either
16:15, 25:24, or 27:25.
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Figure 70: Frequency ratios for a chromatic scale for the three di↵erent tuning systems that
we considered. The horizontal axis is the frequency ratio expressed in cents (1200 cents equals
one octave). The dotted vertical lines correspond to equal-tempered tuning (equally spaced at
0, 100, 200, · · · 1200 cents); the blue and red vertical lines correspond to the Pythagorean and
just temperament tuning systems, respectively.

Fifth Temperament Freq ratio Di↵erence (cents)
C-G equal 1.498 �2
C-G pyth 1.500 0
C-G just 1.500 0

C]-A[ equal 1.498 �2
C]-A[ pyth 1.480 �23
C]-A[ just 1.536 41

Table 14: Frequency ratios for two di↵erent fifths for the four di↵erent tuning systems that we
considered. The last column is the di↵erence in cents from a perfect fifth, which has a frequency
ratio of 3/2.
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Figure 67: Circle of fifths. Left panel: General circle of fifths. Right panel: Simplified circle of
fifths for equal temperament tuning.

and
C � D � E[�F � G � G]�A]

• The notes in the G-major scale are the same as for C-major except for F]:

G � A � B � C � D � E � F]

• The notes in the F-major scale are the same as for C-major except for B[:

F � G � A � B[�C � D � E

• Note that the A-minor scale is
A � B � C � D � E � F � G

so the notes are exactly the same as for C-major. But because the tonic (and tonal interval order) are
di↵erent for these two scales, they sound di↵erently.

15.8 Pentatonic scale

• A pentatonic scale is probably the oldest division of the octave. It was developed independently in
many di↵erent cultures.

• A pentatonic scale divides the octave into 5 intervals (3 intervals are whole tones and 2 intervals are
three semitones wide).

• Examples of pentatonic scales in major interval order are

C � D � E � G � A (15.4)

and
F] � G] � A] � C] � D] (15.5)

which are just the black keys on a piano.

• The pentatonic scale also has minor and various modal inteval orders. The major interval order is:
2-2-3-2-3. The minor interval order is: 3-2-2-3-2.
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“The Well-Tempered Clavier”
• Written by Johannes Sebastian Bach in 1722


• Piece played in all 24 major and minor keys 


• Major interval order: T-T-S-T-T-T-S


• Minor interval order: T-S-T-T-S-T-T


• Demonstrates the usefulness of equal temperament tuning (the piece sounds good only in the equal 
temperament tuning system)
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https://www.youtube.com/watch?v=nPHIZw7HZq4

https://www.youtube.com/watch?v=nPHIZw7HZq4

