11. Pitch & timbre

What distinguishes one musical note from another?

- Pitch, timbre, duration, loudness (intensity), attack & decay transients
- Perfect pitch: ability to determine absolute pitch without regard to a reference (only 1 out of ~10,000 people have it)
- **Pitch discrimination**: ability to distinguish two different pitches
 - depends on whether you play the two notes sequentially or simultaneously
 - JND: just noticeable difference (**sequential**; 0.5% of center frequency; 1/10th of a semitone)
 - LFD: limit of frequency discrimination (simultaneous; 10% of center frequency; 2 semitones)
 - Analogy with sense of touch: placing two pencil points on your arm

Where does pitch determination occur, in the ear or the brain?

- Place theory: pitch determined by the location on the basilar membrane excited by the sound wave
- Periodicity theory: pitch inferred by the brain from the timing of electrical impulses triggered by the period of the sound wave
- Missing fundamental in support of periodicity theory:
 - 200 Hz, 300 Hz, 400 Hz, -> hear 100 Hz
 - 300 Hz, 500 Hz, 700 Hz, -> hear ??? Hz
 - https://www.youtube.com/watch?
 v=AZ8qZCGg4Bk

Aural harmonics – harmonics produced by the ear

• Ear introduces distortions which converts a pure tone to one having multiple harmonics

 $x(t) = a_0 + a_1 p(t)$

$$(x) + a_2 p^2(t) + a_3 p^3(t) + \cdots$$

Aural combination tones – aural harmonics for complex tones

 If two pure tones f₁ and f₂ are played simu and difference combination tones

• If two pure tones f_1 and f_2 are played simultaneously and sufficiently loudly, one hears sum

Attack and decay transients

- How a note starts and ends affects how it sounds
- Piano C4
- Piano C4 (reversed)
- Happy birthday
- Happy birthday backwards
- Happy birthday backwards (reversed)

What makes two notes pleasing when they are played together?

- Two notes are pleasing (consonant) when they have many harmonics in common
- common

Two notes clash with one another (dissonant) when they have very few harmonics in

7

Pitch paradox – the audio equivalent of an optical illusion

- **Shepard scale**: never-ending scale (pitch seems to increase indefinitely)
- YouTube videos:
 - http://www.youtube.com/watch?
 v=PCs1lckF5vl
 - http://vimeo.com/34749558

Never-ending staircase (L. Penrose; M.C. Escher)

12. Auditorium & room acoustics

Auditorium and room acoustics – overview

- What makes for a good concert hall?
- Why do you sound good when you sing in a shower?
- Difference between "direct", "reflected", and "reverberant" sound
- Reverberation time is the most important characteristic of a room
- YouTube video / soundfile:
 - Anechoic chamber (https://www.youtube.com/watch?v=BYBSA9v8IRE)
 - "Sonic wonders" sound file (listen to -32:40)

Direct sound

• Sound received from a source in the absence of any reflections (e.g., anechoic chamber)

• Intensity: $I = \frac{P}{4\pi r^2}$ (omni-directional); $I = \frac{QP}{4\pi r^2}$ (directional source; Q is the directivity factor)

Reflected sound

- Hear an echo if the reflected sound is heard greater than 35 msec after the direct sound
- Recall: v = 346 m/s ≈ 1000 ft/s = 1 ft/msec
- SIL_{reflected} < SIL_{direct} (reflected sound travels farther and can be partially absorbed)

source

Reflected sound - example

- A listener stands 4 m in front of an omni-directional loudspeaker that is 1.5 m from a reflecting wall.
- Calculate:
 - the time of arrival for both the direct and reflected sound
 - the decrease in SIL for the reflected sound due to the larger distance traveled
- Answer:

 - $\Delta SIL = 10 \log \left[\frac{1}{(r_{reflected}/r_{direct})^2} \right] dB = 10 \log \left[\frac{(4/5)^2}{dB} = -2 db \right]$
 - $\Delta SIL = 10 \log(1 a) dB = 10 \log(1 0.2) dB = -1 db$

4 m -1.5 m

• the decrease in SIL for the reflected sound assuming an absorption coefficient a = 0.2 for the wall

• Reflected sound travels 5 meter: $t_{\text{direct}} = \frac{4 \text{ m}}{346 \text{ m/s}} = 12 \text{ msec}, t_{\text{reflected}} = \frac{5 \text{ m}}{346 \text{ m/s}} = 15 \text{ msec}$

Multiple reflections – floor and ceiling

Multiple reflections – floor and back wall

Multiple relfections – floor, back wall, and ceiling

Reverberant sound

 sound formed from multiple reflections, coming from many different directions, and overlapping in time

Reverberation time

• time required for the reverberant SIL to decrease by 60 dB (1/10⁶ in intensity)

• frequency dependent (low-frequency sounds typically have larger reverberation times)

	Year	Volume	Number	Reve	erberatio	n time
	built	(m^3)	of seats		Frequen	cy (Hz)
				125	500	200
Teatro alla Scala, Milan	1778	$11,\!245$	2289		1.2	
Royal Opera House	1858	$12,\!240$	2180		1.1	
Royal Albert Hall	1871	$86,\!600$	6080	3.4	2.6	2.2
Carnegie Hall, New York	1891	$24,\!250$	2760	1.8	1.8	1.6
Symphony Hall, Boston	1900	$18,\!740$	2630	2.2	1.8	1.7
Royal Festival Hall	1951	$22,\!000$	3000	1.4	1.5	1.4
Philharmonic Hall, Berlin	1963	$36,\!030$	2200		2.0	
St. David's Hall, Cardiff	1983	$22,\!000$	2200	1.8	1.9	1.8

Acoustical characteristics of various concert halls

Calculating reverberation time

$$T_R = 0.05 \frac{V}{A_{\rm eff}} \,\,{\rm s}$$

V: volume in (ft³)

$A_{\text{eff}} = A_1 a_1 + A_2 a_2 + \dots + B_1 + B_2 + \dots$

- A_{eff} : total absorption in sabin (1 ft² of perfectly) absorbing surface)
- A_1, A_2, \dots : surface area of walls, etc. (in ft²)
- a_1, a_2, \dots : absorption coeffs (dimensionless, freqdependent)
- B_1, B_2, \dots : absorption for seats, people, etc. (in sabin)

absorption coefficients (dimensionless)							
			Freque	ncy (Hz	\mathbf{z})		
Material	125	250	500	1000	2000	4000	
Concrete (painted)	0.10	0.05	0.06	0.07	0.09	0.08	
Plywood panel	0.28	0.22	0.17	0.09	0.10	0.11	
Plaster on lath	0.14	0.10	0.06	0.05	0.04	0.03	
Gypsum board, $1/2$ in.	0.29	0.10	0.05	0.04	0.07	0.09	
Glass window	0.35	0.25	0.18	0.12	0.07	0.04	
Curtains	0.14	0.35	0.55	0.72	0.70	0.65	
Carpet (on concrete)	0.02	0.06	0.14	0.37	0.60	0.65	
Carpet (on pad)	0.08	0.24	0.57	0.69	0.71	0.73	
Acoustical tile, suspended	0.76	0.93	0.83	0.99	0.99	0.94	

absorption (in m²) [multipy by 10.8 to convert to sabin]

		Frequency (Hz)					
	Material	125	250	500	1000	2000	40
-	Wood or metal seat, unoccupied	0.014	0.018	0.020	0.036	0.035	0.0
	Upholstered seat, unoccupied	0.13	0.26	0.39	0.46	0.43	0.
	Adult	0.23	0.32	0.39	0.43	0.46	
_	Adult in an upholstered seat	0.27	0.40	0.56	0.65	0.64	0.

19

Example

Exercise: Calculate the reverberation time at 500 Hz for a room with dimensions 20 m \times 15 m \times 8m (high). The walls are painted concrete, the ceiling is plaster, and the floor is carpet on pad. Also, assume that there are 200 upholstered seats, and that they are half-filled with people.

$$L = 20 \text{ m} \times 3.28 \text{ ft/m} = 65.6 \text{ ft}$$

 $W = 15 \text{ m} \times 3.28 \text{ ft/m} = 49.2 \text{ ft}$
 $H = 8 \text{ m} \times 3.28 \text{ ft/m} = 26.24 \text{ ft}$

 $V = L \times W \times H = 2400 \text{ m}^3 = 8.47 \times 10^4 \text{ ft}^3$

 $T_R = 0.05 \frac{V}{A_{\text{eff}}} \text{ s} = 1.2 \text{ s} \quad -> \text{ideal for music (for V=2400 m^3)}$

Acoustical design

<u>Criteria for good design</u>

- Loudness
- Uniformity (no "live" or "dead" spots)
- Reverberance or liveness (feeling of being "bathed" in sound)
- Clarity (opposite of reverberance)

Problems to avoid

- Background noise (external noise due to heating, A/C, ...)
- Shadow areas (produced by balconies, columns, ...)
- Focusing of sound ("whispering room" effect)
- Echoes
- Room resonances ("shower stall" effect)

$$f_{lmn} = \frac{v}{2} \sqrt{\left(\frac{l}{L}\right)^2 + \left(\frac{m}{W}\right)^2 + \left(\frac{n}{H}\right)^2}$$

$$l, m, n = 0, 1, 2, \cdots$$

Problems to avoid

Whispering room effect

Flutter echoes

13. Electrical reproduction of sound

Electrical reproduction of sound – overview

- Goal: Understand how microphones and loudspeakers work
- Need basic understanding of:
 - electricity and magnetism
 - Faraday's law of induction

e.g., a household wall outlet connected to a vacuum cleaner

- Voltage V(volts)
- Current *I* (amperes or amps)
- Resistance R or impedance Z (ohms, Ω)
- Direct current (DC) and alternating current (AC) circuits
- Ohm's law of electricity: V = IR
- Electrical power: $P = VI = I^2 R$ (Watts)
- Relation to work or energy:

 $P = W/\Delta t$ (Watts) or $W = P \Delta t$ (Joules)

Example – home wiring

https://gardnerbenderfaq.wordpress.com/tag/outlet/

https://www.addicted2decorating.com/how-to-wire-single-pole-light-switch.html

Example – kilowatt-hr and your electric bill

- A kilowatt-hr is a convenient unit of energy:
 - $1 \text{ kWh} = 1 \text{ kW} \times 1 \text{ hr} = 1000 \text{ W} \times 3600 \text{ s} = 3.6 \times 10^6 \text{ J}$
- Exercise: Suppose you paid \$100 for last month's electric bill at a cost of \$0.13/kWh.
 (a) How much energy (in kWh) did you use?
 (b) What was the average power consumption (in Watts) over the month (assume 30 days)?
- Answer:

(a) $W = \$100 \div \$0.13 / kWh = 769 kWh$

(b) $P = \frac{W}{\Delta t} = \frac{769 \text{ kWh}}{30 \times 24 \text{ h}} = 1.1 \text{ kW} = 1,100 \text{ W}$

 $0~{
m W}$ (eleven 100-Watt lightbulbs on continuously)

Basic magnetism

- A permanent magnet has **N** and **S poles** that attract pieces of iron
- Like poles repel; unlike poles attract (just like + and - electrical charges). But no isolated magnetic poles.
- A compass needle is a tiny magnet that is attracted to Earth's South magnetic pole.
- Oersted (1820): discovered that an **electric current** produces a magnetic field
- Can create an **electromagnet** by sending an electric current through a coil of wire

Faraday's law of induction (1831)

A change in magnetic flux through a coil of wire induces a voltage in the coil:

$$V = -N \frac{\Delta \Phi}{\Delta t}$$

- Only **relative motion** is important
- Underlies the operation of **electric generators** and electric motors
- Electric generator: mechanical energy converted to electrical energy
- Electric motor: electrical energy converted to mechanical energy

loop

Figure. Three loudspeakers types. The infinite baffle can be a wall or ceiling. The

14. Elementary music theory

Music theory – the need to standardize musical notes

- (reference note is A4 = 440 Hz; decided upon in 1939)
- Three standard tuning systems:
 - Equal temperament
 - Pythagorean temperament
 - Just temperament
- Each tuning system has its own **advantages and disadvantages**

A tuning system is an assignment of precise frequencies to all musical notes in an octave

What tuning systems do real musicians use? (comments from the musicians in class??)

Musical scales – dividing up the octave into pieces

- Chromatic scale: 12 pieces (semitones)
 - C C# D- Eb E F F# G Ab A- Bb B C' (white and black keys on a piano)
- **Diatonic scale**: 7 pieces (semitones and whole tones)
 - T-T-S-T-T-S (do-re-mi-fa-sol-la-ti-do; white keys on a piano)
- **Pentatonic scale**: 5 pieces (whole tones and 3 semitones intervals)
 - T-T-3-T-3 (F# G# A# C# D# F#'; black keys on a piano)

Equal temperament

- All semitones intervals are equal: $2^{1/12} = 1.059$
- Cent (100 cents = semitone): $2^{1/1200} = 1.000578$ (JND: ~10 cents)
- All sharps and flats are equal to one another

Note	ET freq rat
С	$2^{0/12} = 1.00$
$\mathrm{C}^{\sharp}/\mathrm{D}^{\flat}$	$2^{1/12} = 1.05$
D	$2^{2/12} = 1.12$
$\mathrm{D}^{\sharp}/\mathrm{E}^{\flat}$	$2^{3/12} = 1.18$
Ε	$2^{4/12} = 1.26$
\mathbf{F}	$2^{5/12} = 1.33$
$\mathrm{F}^{\sharp}/\mathrm{G}^{\flat}$	$2^{6/12} = 1.41$
G	$2^{7/12} = 1.49$
$\mathrm{G}^{\sharp}/\mathrm{A}^{\flat}$	$2^{8/12} = 1.58$
A	$2^{9/12} = 1.68$
$\mathrm{A}^{\sharp}/\mathrm{B}^{\flat}$	$2^{10/12} = 1.78$
В	$2^{11/12} = 1.88$
C^{\prime}	$2^{12/12} = 2.0$

Musical intervals

Interval	# semitones	Just freq ratio	ET freq ratio	Difference (cents)	Example
Octave	12	2:1=2.000	2.000	0	C-C'
Fifth	7	3:2 = 1.500	1.498	2	C-G
Fourth	5	4:3 = 1.333	1.335	-2	C-F, G-C'
Major third	4	5:4 = 1.250	1.260	-14	C-E
Minor third	3	6:5 = 1.200	1.189	16	$C-E^{\flat}, A-C'$

Harmonic	Exact freq (Hz)	Equal-tempered freq (Hz)	Difference (cents)	Piano note
1	110	110.00	0	A_2
2	220	220.00	0	A_3
3	330	329.63	2	${ m E_4}$
4	440	440.00	0	A_4
5	550	554.37	-14	C_5^{\sharp}
6	660	659.26	2	E_5
7	770	783.99	-31	G_5
8	880	880.00	0	A_5

Equal Temperament

Other tuning systems

Pythagorean temperament $A^{\flat} \xleftarrow{} E^{\flat} \xleftarrow{} B^{\flat} \xleftarrow{} F \xleftarrow{} C \xrightarrow{} G \xrightarrow{} D \xrightarrow{} A \xrightarrow{} E \xrightarrow{} B \xrightarrow{} F^{\#} \xrightarrow{} C^{\#}$

- Constructed from **perfect fifth** and **octave** intervals
- For example:

G: 3/2 D: $(3/2)^2 \times (1/2) = 9/8$ A: $(3/2)^3 \times (1/2) = 27/16$ E: $(3/2)^4 \times (1/2)^2 = 81/64$ F: $(2/3) \times 2 = 4/3$

Just temperament

- Constructed from perfect fifth, major third, and octave intervals
- For example:

G: 3/2

D: $(3/2)^2 \times (1/2) = 9/8$

A: $(2/3) \times (5/4) \times 2 = 5/3$ (vs 27/16)

E: 5/4 (vs 81/64)

F: (2/3) x 2 = 4/3

40

Comparing different tuning systems

Pythagorean vs Equal Temperament

Note	Pyth freq ratio	ET freq ratio	Difference (cents)
С	1:1=1.000	1.000	0
C^{\sharp}	2187:2048 = 1.068	1.059	14
D	9:8 = 1.125	1.122	4
$\mathrm{E}^{lat}$	32:27 = 1.185	1.189	-6
Ε	81:64 = 1.266	1.260	8
\mathbf{F}	4:3 = 1.333	1.335	-2
F^{\sharp}	729:512 = 1.424	1.414	12
G	3:2 = 1.500	1.498	2
A^{\flat}	128:81 = 1.580	1.587	-8
А	27:16 = 1.688	1.682	6
B^{\flat}	16:9 = 1.778	1.782	-4
В	243:128 = 1.898	1.888	10
C'	2:1=2.000	2.000	0

Just vs Equal Temperament

Note	Just freq ratio	ET freq ratio	Difference (cents)
С	1:1=1.000	1.000	0
C^{\sharp}	25:24 = 1.042	1.059	-29
D	9:8 = 1.125	1.122	4
$\mathrm{E}^{lat}$	6:5 = 1.200	1.189	16
Ε	5:4 = 1.250	1.260	-14
F	4:3 = 1.333	1.335	-2
F^{\sharp}	45:32 = 1.406	1.414	-10
G	3:2 = 1.500	1.498	2
A^{\flat}	8:5 = 1.600	1.587	14
А	5:3 = 1.667	1.682	-16
B^{\flat}	9:5 = 1.800	1.782	18
В	15:8 = 1.875	1.888	-12
C'	2:1=2.000	2.000	0

All tuning systems have problems!!

- Equal-tempered fifths, fourths, etc.
 perfect (only an octave)
- **Pythagorean circle of fifths doesn't close** (12 perfect fifths is not equal to 7 octaves)
- Pythagorean "**comma**":

$$\frac{B^{\sharp}}{C'} = \frac{(3/2)^{12}}{2^7} = 1.0136 \quad (23 \text{ cents too } |$$

 Fifth C[#] to A^b is too flat in Pythagorean temperament ("wolf" fifth) and too sharp in temperament

	Fifth	Temperament	Freq ratio	Difference (cents)
	C-G	equal	1.498	-2
iust	C-G	pyth	1.500	0
J • • • •	C-G	just	1.500	0
	$C^{\sharp}-A^{\flat}$	equal	1.498	-2
	$C^{\sharp}-A^{\flat}$	pyth	1.480	-23
	$C^{\sharp}-A^{\flat}$	just	1.536	41

"The Well-Tempered Clavier"

- Written by Johannes Sebastian Bach in 1722
- Piece played in all 24 major and minor keys
 - Major interval order: T-T-S-T-T-S
 - Minor interval order: T-S-T-T-S-T-T
- Demonstrates the usefulness of equal temperameters temperament tuning system)

https://www.youtube.com/watch?v=nPHIZw7HZq4

C Major - 846 0:00 / 2:41c minor - 847 4:39 / 6:26C# Major - 848 8:22 / 9:39c# minor - 849 12:13 / 15:12D Major - 850 17:51 / 19:25d minor - 851 21:13 / 22:51Eb Major - 852 24:59 / 28:32eb/d# minor - 853 30:21 / 34:19E Major - 854 38:14 / 39:58e minor - 855 41:20 / 43:20F Major - 856 44:50 / 45:54f minor - 867 47:22 / 50:14F# Major - 858 54:12 / 55:52f# minor - 859 57:58 / 59:03G Major - 860 1:02:19 / 1:03:14g minor - 861 1:05:50 / 1:08:03Ab Major - 862 1:09:58 / 1:11:30g# minor - 863 1:13:29 / 1:15:31A Major - 864 1:17:48 / 1:19:21a minor - 865 1:21:16 / 1:22:41Bb Major - 866 1:26:45 / 1:28:02bb minor - 867 1:29:59 / 1:32:26B Major - 868 1:35:44 / 1:36:43b minor - 869 1:38:33 / 1:41:01

Demonstrates the usefulness of equal temperament tuning (the piece sounds good only in the equal