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1.5 Waves

Suppose you had a long rope;?® you're holding one end, and the other is tied
to a tree {say). Shake your end up and down rhythmically, and a wave travels
down the line.”'

5

blue spot

Part way along somebody has put a dab of blue paint on the rope. Question:
How does that blue spot move, as the wave passes by? Naively, you might expect
that it would be swept along by the wave. But that can’t be right — after all, the
spot is at a fixed location on the rope. In fact, the spot simply moves up and
down, while the wave moves to the right. The wave is a kind of epiphencmenon —
a pattern arising from the collective motion of different points on the rope. It
is the shape of the rope, not the rope itself, that travels to the right.

1.5.1 Velocity, wavelength, and frequency

We need some terminology for describing waves.

+ The amplitude of the wave, A, is a measure of how “big” it is — the height
of a crest.

» The speed {(or velocity) of the wave, v, tells you how fastitis traveling. Please
note that this is the speed of a point on the wave — a crest, for instance —
and is not to be confused with the speed of a point on the rope ~ the blue
spot, for example - as it oscillates up and down.

+ The wavelength, & (Greek letter “lambda™), is the distance between adjacent
crests,

2 Actually, a slinky works better.

2L When the wave gets to the tree it will “reflect” back, and now you've got fwo waves, ’ _
propagating in opposite directions. I'll discuss that case in & moment, but for now let’s keep it
simple: the rope is long, and the wave hasn’t reached the tree yet.
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Table 1.1. The visible range.

Frequency (Hz) Color Wavelength (m)
1.0 % 103 near ultraviolet 3.0x 1077
7.5 x 101 shortest visible blue 4.0 x 10~7
6.5 x 10" blue 4.6 x 1077
5.6 x 101 green 54 %1077
5.1 % 101 vellow 59%10°7
4.9 x 101 orange 6.1 x 1077
3.9 x 10! longest visiblered 7.6 x 1077
3.0 x 10 near infrared 1.0 x 1076

-The: period, 7', is the time it takes a point on the rope — the blue spot, say —
-0 execute one full oscillation. Because A is the distance the wave travels in
- "one cycle, and T is the time it takes,

A

V= (1.31)

et s customary to work with the frequency, f, instead of the period (7).
* Frequency is the number of cycles per second, whereas period is the number
.- of seconds per cycle; they are reciprocals:

1
o f= X (1.32)
: _S'o I could rewrite the fundamental relation (Eq. (1.31)) in the more useful
“ form
' Af =,

_ (1.33)
“The units of frequency are “cycles per second,” or hertz (Hz).

'-'All this applies to any kind of wave — waves on water,22 sound waves, 2 radio
waves, light, whatever. In the case of sound waves, frequency corresponds to
pitch. The higher the frequency, the higher the pitch. For example, “concert A”
' 5440 Hz. The audible range for humans runs from about 16 Hz (a deep bass
note) up to 20 000 Hz (a shuill squeak).

“For light waves, frequency corresponds to color. Red light has a frequency
around 4 x 10'* Hz, and blue light is around 6.5 x 10" Hz. The visible range
or humans runs from 3.9 to 7.5 x 10 Hz (Table 1.1). This represents only

22 1 'the case of water waves the actual motion of a droplet is not up-and-down, but circular —
“that’s how a cork floating on the surface, for instance, would move. But never mind; the fact
remains that every point in the medium executes a little dance in place, while the wave itself
““passes by.

3:For sound waves the air molecules move forward and back along the direction of the wave, not

“-p-and down perpendicular to it, but once again there is no ner displacement as the wave
passes by,
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Table 1.2. The electromagnetic spectrum.

Frequency (Hz) Type Wavelength (m)
1022 10~ 13
10%! gamma rays 10712
i 020 10—1 1
1 O] S 10~ 10
1018 X-rays 18‘3
17 10~
181 6 ultraviolet 1077
104 visible 109
101 infrared igj
i3
1812 1073
101 1072
101 microwave i(}“1
9
}igs TV, FM 10
107 107
10° AM 108
10° 10*
104 RF 109
10 108

a tiny “window” in a vast electromagnetic spc?ctrum that_ goes fro;{n 104 Pié
(radio waves) through microwaves, infrared, visible, ultravio.let, fnd -rays, :
gamma rays at 1022 Hz (Table 1.2}. I shall use the .word light” as a genznc;
term for all of them. Electromagnetic waves travel (in vacuum) at the speed ¢
light, for which we reserve the letter c:

¢ = 2.998 x 108 m/s. (1.34)

Problem 40. Suppose you shake the rope up and down twice a second.
What is the period of the resulting wave? What is its frequency?

Problem 41. The speed of sound is 340 m/s. What is the wavelength of
concert “A”?

—7
Problem 42. Helium-neon lasers have a wavelength of 6.328 x 107" m.
‘What is the frequency of this light? What color is it?
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Problem 43. AM radio station KPOJ broadcast
(6.2 x 10° Hz). What is the wavelen
the oscillations?

s at a frequency of 620 kHz
gth of the signal? What is the period of

1.5.2 Interference

'~ What happens when a wave comes to the end of the [i
- 'to the tree, for example)? It “reflects”
*. rope — the original one propagating to the ri
“-the left.** What is the resulting sh
~but T will tell you the answer:
the net displacement of the ro

ne (where the rope is tied
back. Now we have two waves on the
ght, and the reflected one going to
ape of the rope? Tt is certainly not obvious,
the two waves pass right through each other —
Pe at any point (say, the blue spot) is the sum
it would have had from each wave separately. This is
~“called the principle of superposition; it is the simplest behavior you could
possibly hope for, but its irplications are astounding.

" To understand exactly what it means, let’s track two sh
s mg each other from opposite directions.

-of the displacements

orl pulses, approach- N

“In scene (a) they are coming toward each other; in scene (b) they have just met;
and by scene () they have passed completely through and are moving apart.
In scene (c), where the two pulses momentarily coincide, the net displacement
is twice what it would have been for either one alone. Nothing too surprising
about that,

.. But what if one pulse is a valley, instead of a hill (shake the string
downward)?

7"_‘ The same thing happens when water w.

aves hit a barrier, sound echoes off 2 wall, or light
- strikes a mirror.
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This time there comes an instant (c) when the two exactly cancel, and the string
is momentarily straight — the two pulses add up to no pulse at alll We call this
destructive interference (the previous case was constructive interference).?

Destructive interference is the unmistakable signature of a wave phe-
nomenon. If you are talking about a rope, or water, where you can actually
see the thing that’s waving, there’s no problem. But in the case of sound or
light it’s not so obvious that we're dealing with waves at all. Indeed, Newton
thought light was a stream of particles (“corpuscles,” he called them). How
would you determine whether something is a wave or a particle, if you can’t
see it? Answer: You check for destructive interference. Two particles cannot
add up to no particle at all, but two waves can combine to make no wave at all.
In 1801, Thomas Young used destructive interference to prove that Light is a
wave phenomenon.

The basic idea is easy to demonstrate with water waves, using a “ripple
tank.” In a shallow tray of water, two small spheres bob up and down in unison,
driven by a motor (in the figure they are 34 apart, at the bottom edge). The
point indicated toward the upper left is half a wavelength farther from the right
sphere than the left one, so the waves arrive out of phase (one’s a crest when
the other is a trough), and they interfere destructively — at this point the water
is flat. But a little to the left or right the waves are in phase (both crests, or both
troughs) so they interfere constructively, and here the water is choppy. Notice
that the points of destructive interference form lines (“nodal” lines). The nodal
lines represent the locus of points that are A /2, 3. /2, 5A./2, . . . farther from one
sphere than the other.

23 personally, I think “interfersnce” is precisely the wrong word for it. The two waves do not
interact, and they emerge unscathed from their encounter. But I'm afraid we are stuck with the
misleading terminology.
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o N ow imagine doing the same thin g with light. The wavelength is very much
5 s_qialler, so to make the two sources Young scratched lines very close together on
: an opaque slide, and illuminated the two slits with a lantern (nowadays we use a
._l_.a._ser). This time we don’t see the nodal lines (though you can, if you blow smoke
: _0§_Chaﬂc dustonto the beam), but on a distant screen {whichis like the top edge of
- -the_ figure) you do see a tell-tale pattern of bright and dark spots, corresponding
‘1espectively to points of constructive and destructive interference. If light had
“been a stream of particles, you would have seen just fwo spots — one for particles
: thaﬁ came through the left slit, and one for particles that came through the right
-:s_lit.. But in fact you see 10 or 20 spots, before they fade away at the edges of the
._”_{:regn. From the separation of the spots and the geometry of
you can even determine the wavelength of the light 26

the arrangement,

Pr.oblem 44. Two loudspeakers, mounted 3 m apart on a wall, are driven in
unison by the same amplifier, delivering a sustained note with a wavelength

_'o'_f 2m. You are standing 4 m in front of one of the speakers, as shown in
the figure below.

(a.)' How far are you from the other speaker?

(_b).' How many wavelengths are you from each speaker?

(¢)- What do you hear? '

(d) If you move 1.5m to the right (so you are the same distance from both

© speakers), what will you hear??? e

_You can easily rlep%'oduce Young’s double-slit experiment for yourself, if you have access to a
ser. Cut the slits in a 3%5 card, using a razor blade.

i rp}racitice there will be refiections off the ceiling, the furniture, ete., so this doesn’t work
ectiy. ,
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1.5.3 Standing waves

When the reflected wave gets back to your hand, it reflects again, sO we now
have fwo waves going down, and one coming back. When the twice-reflected
wave reaches the tree, it generates a second returning wave, and so on, In
general, these muitiply reflected waves are out of phase, and they tend to cancel
each other out — the rope jiggles a bit, but there’s nothing dramatic. However: if
you shake it at just the right frequency so that the multiply reflected waves are
exactly in phase, then they all add up, making one big wave in each direction.2
This is an example of resonance: a particular frequency at which a system just
Joves to oscillate,

When you have two waves of the same amplitude and frequency, propagating
in opposite directions, the result is a standing wave; the rope vibrates up and
down, but there is no net wave motion to the left or right.

i
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28 Indeed, the waves should grow bigger and bigger without limit, as more and more reflections
Pile up. In practice, friction limits the growth,
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.. At one instant (a) the waves superimpose constructively. A moment later (b)
-~ one wave (the solid line) has moved to the right, the other {dashed) to the left —
- they now exactly cancel, and the rope is instantaneously flat. Later still (c} they
again interfere constructively, but this time in the opposite direction. Finally
--(d) they again cancel. The net result (on the right, in the figure) is that the rope
* simply oscillates up and down. Interestingly, there occur nodes, a distance A /2
g apart, where the rope never moves at all.

. Resonance occurs when one full “lobe,” or two, or three, . . . fits perfectly,

L=2

L=302

A

A 4

n=123..), (1.35)

A
L=n—-,
2
Whﬁe L is the length of the rope. In terms of frequency (remember, Af = v,
"t_h:e wave speed),
| (32)
— | n.
2L

If_yoil are shaking the rope, and you gradually increase the frequency, most
of the time there will not be much response (because the multiply reflected
Wéi}es are all out of phase, and tend to cancel out). But when you hit one of
the resonant frequencies, suddenly the whole thing oscillates in unison, and the
response is large.

“This is, incidentally, the basis for all stringed instruments, including pianos
a_nd harpsichords, as well as violins and guitars. When you pluck, bow, or
harimier the string, you are stimulating all frequencies, but the string responds
éi_g;hiﬁcantly only at the resonant frequencies — the “fundamental” (n = 1), the
“first overtone” (n = 2), and so on. Wind instruments are similar, only now it
1s-$fand1'ng sound waves in a pipe that create the tone.

L
fl

{1.36)
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Problem 45. The active part of a guitar string is 60 ¢ long. What is the
wavelength of the fundamental (n = 1)7 What is the wavelength of the
“third harmonic” (n = 3}7

Problem 46. A violin has been tuned?” so that the velocity of waves on the
E string (33 cm long) is 435 m/s.

(a) What is the wavelength of the fundamental? What is its frequency?

(b) The vibrating string sets up sound waves in air. Their frequency is the
same as the frequency of the waves on the string (of course), but their
wavelength is completely different, because the speed of sound in air
(340 m/s) is not the same as the speed of waves on the string. Find the
wavelength of the resulting sound wave.

In this chapter we have encountered three fundamental physical entities:
particles (chunks of matter), fields (mediators of forces), and waves (oscillations
of a continuous medium}. As we shall see, these three concepts inform all of
twentieth-century physics, but in ways nobody could have anticipated.

2 The speed of waves on a string is v = /T L/m, where T is the tension and m is the mass.
When you tune an instrument, you are actually adjusting T, and hence v,

Special relativity

: Classmal physics,'! some aspects of which we discussed in Chapter 1, is — for
“the most part — comforting to our intuitions. You probably wouldn’t have come

up with Newton’s second law (F = ma) on your own (after all, nobody did
“before Newton), but once it is on the table it feels right. It seems consistent with
‘our everyday experience. Classical physics refines and perfects our intuitions,
<but it doesn’t upset them. By contrast, the four revolutions in twentieth-century
_-.physms are wildly counterintuitive; they seem to contradict everything we
_f‘rhought we understood — everything we took for granted about the world.
That is, in part, what makes them so interesting. But it also raises a recurring
o quesﬂon “If this is really true, how come I never noticed it before?” | hope you
: wﬁl keep a skeptical eye on that subtext, as we go along.

2.1 Einstein’s postulates

Emstem published his Special Theory of Relativity in 1905. The special
-:theory 15 not an account of any particular physical phenomenon; rather, it is a
< escription of the arena in which all phenomena occur. It is a theory of space
and time themselves. As such, it takes precedence over all other theories. If you
“were to propose a new model of elementary particles, say, the first thing to ask
‘would be, “Ts it consistent with special relativity?” T not, you have some fast
alking to do. As Kant would say, special relativity is a prolegomenon to any
Auture physics.

. Einstein based the theory on two postulates.

Postulate 1: The principle of relativity.
‘Postulate 2: The universal speed of light.

; _Réﬂghly speaking, “classical” physics is the subject as it stood in the year 1900.
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