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PREFACE TO THE LABORATORY MANUAL FOR PHYS 1406 
 
This laboratory is an integral part of “Physics of Sound and Music”, PHYS 1406.  
This course fulfills the Natural Sciences Core Curriculum Competency requirement.  
 
The experiments cover harmonic motion, waves, resonance, analysis and synthesis of 
sound, hearing and voice, room acoustics, electrical and acoustical energy, musical 
instruments, and very elementary music theory. 
 
The manual provides the background for the experiments. Some experiments are single 
sets and are done in a group.  
Participate! 
 
Laboratory Reports 
The manual includes the questions for the laboratory reports. 
Follow the directions of your instructor for the reports. 
The reports are always due at the next lab meeting. 
 
Required  
Attendance, participation, answering the quizzes, and submitting reports. 
Notify your instructor about any absence in case of an emergency. 
 
Please note: 
You need a laboratory score of 75% or higher to pass the course “Physics of Sound 
and Music”. 
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1. Simple Harmonic Motion (SHM) 
EQUIPMENT 

Sonometer, dynamic microphone, Mac mini, string, pendulum stand, spring, aluminum and lead 
bobs, timers, metronome, stopwatch, multi-pendulum setup for visualizing and tuning of musical 
intervals. 

PURPOSE AND BACKGROUND 

In order to understand sound and music, we need to understand periodic motion and how it gives 
rise to sound. Periodic motion is any sort of movement that repeats itself after an amount of time 
called the period. For example, a violin string or the reed of a bassoon exhibit periodic motion 
when playing a sustained tone. A grandfather clock exhibits periodic motion as the pendulum 
swings back and forth, and so does a Ferris wheel that rotates at a constant speed.  

Simple harmonic motion (SHM) is the purest form of periodic motion. Two conditions have to be 
met: 

1. There exists a stable equilibrium position. If the system is at rest it will stay at rest there. It 
will tend to return to that position if displaced from it.  

2. There exists a restoring force towards the equilibrium position. This force is proportional to 
the amount of displacement from equilibrium. For example, if a mass hanging from a spring 
originally is at rest and then pulled down a small distance, the mass will oscillate up and down 
with SHM when let go. The spring provides a restoring force to bring the mass back to the 
equilibrium position. If the mass instead is pulled twice as far, the spring provides twice the force 
to bring it back. In this manner, the system is linear and it is said to obey Hooke’s Law. 

Much of music and sound is generated from periodic vibrations of the air or solid material in 
musical instruments. Examples are the vibrating strings of a violin and the reeds of woodwind 
instruments. In practice, however, very few musical tones come from pure SHM. That sound 
actually would be rather boring. Instead, musical tones consist of a combination of harmonics - 
see a tone from a plucked violin string in Figure 1. The lowest frequency corresponding to the 
first peak is called the fundamental frequency. This is the only frequency present in SHM. The 
peaks at the higher frequencies in Figure 1 are the higher harmonics or overtones that make up 
the tone. We shall discuss this in more detail in later laboratories.  

QUESTIONS   

1. Give your own example of simple harmonic motion and describe how it meets the two 
required conditions. 

2. Give an example of periodic motion that is not simple harmonic. Give reasons why it is 
periodic but not simple harmonic. 

3. Give an example of motion that is neither periodic nor simple harmonic. What would you 
call this type of “sound”? 



1-2 

 

 

Figure 1. Frequency spectrum of a plucked string showing the fundamental frequency and higher 
harmonics (overtones). 

THEORY AND EXPERIMENT 

A basic property of simple harmonic motion and any periodic motion is the period T and directly 
related to it the frequency f. The period is the time for one complete cycle of motion. The 
frequency is the number of cycles during that time. These two quantities are inversely related. 
For example, if it takes a mass on the spring two seconds to complete a cycle, then 

, and the frequency is one cycle per two seconds. As a formula we can write 
    

          (1)  

The unit of frequency is Hertz, abbreviated Hz, and is the number of cycles per second. A cycle 
can be one revolution, a completion of a periodic process, or one oscillation.  

The Pendulum 

Make a pendulum using a string and either a lead (Pb) or aluminum (Al) ball as the mass (see 
Figure 2). 

4. Which mass is heavier? If the length of the string is the same for both masses, which one do 
you believe will have the longer period? 

 

€ 

T = period = 2s

€ 

f =
1
T

=
1
2s

= 0.5Hz
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Figure 2. Pendulum and spring 

The length of the string should be L = 20.0 cm from the support to the center of the mass ball. 
Obtain the time it takes for one period of oscillation using a small displacement. For accuracy, 
find the time for ten oscillations, then divide the total by 10 to get the average time for one 
period. Repeat this process three times and record the average time. Repeat the whole process for 
the other mass using the same length of L = 20.0 cm, then repeat for the lead and aluminum balls 
using L=80.0 cm. 

5. Put your results in Table 1: 

Pendulum Periods T (second) 
 L=20.0 cm L=80.0 cm 
Trial Pb Al Pb Al 
#1         
#2         
#3         

 
6. Compare your results for the different masses and lengths. Which variable had an effect on 

the period? Which had no effect? (This might puzzle you and is different from the spring 
below.) 

 
7. Note that the long pendulum was four times longer than the shorter one. Compare the periods 

of the longer and shorter pendulums.  

We know from basic mechanics that the period T is proportional to the square root of the length 
of the pendulum according to the formula 

          (2)  

So, if the long pendulum is four times as long as the short one, the period T is only twice as long. 
(The quantity g is the acceleration in Earth’s gravitational field, given by g = 980 cm/s2.) 

8. If the length of the long pendulum were 9x longer (i.e. L=180 cm) than the short pendulum, 
what would be the period?   

 

€ 

T = 2π L /g ∝ L
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Springs 
 
For springs the formula for the period of oscillation is 
 

,      (3) 
 
where m is the mass suspended from the spring and k is the so-called spring constant. 

Attach a 50 g mass to the spring. Pull slightly down on the spring, let go, and record the time for                
ten oscillations, dividing by 10 again to obtain the average period. Repeat with a mass of 200 g. 
(Choose your own masses that work best.)  

9. Complete Table 2 

 

 

 

 
 
10. How does the period T of a spring depend on the mass suspended from it? Write a simple 

proportionality to describe your observation. 

Strings 

We study the simple harmonic motion of a vibrating string. Guitars and other string instruments 
have strings under tension. We use a so-called sonometer, which is an apparatus with strings 
whose tension can be adjusted. A string is fastened at one end to a tension meter and led over a 
bridge near the other end (see Figure 3). 

 

 

Figure 3. Sonometer setup with two vibrating strings (only one of the strings is needed). 

€ 

T = 2π m/k

Spring Periods (seconds) 
Trial Mass m Period T 
#1     
#2     
#3     
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The tension meter on the Sonometer measures the equivalent of “mass”. For instance, when the 
tension scale reads 6 kg, it is the equivalent of having the string attached to a 6 kg mass hanging 
over the edge of the table. 

Drive a loudspeaker with a signal generator and tune to the same frequency f of the vibrating 
string. Get the period from T = 1/f. Also display the waveform on the computer and obtain T.  

Use the microphone connected to the Mac mini-computer and record the frequency spectrum of 
the vibrating string with the spectrum analyzer in our “Electroacoustics Toolbox” software. See 
Figure 1 again, which shows the fundamental frequency but also the frequency spectrum from 
the vibrating string. (P.S.: In the figure, the sound intensity from the microphone is displayed on 
the y-axis, versus the frequency on the x-axis.) Several frequencies are present when a string is 
plucked, namely the fundamental and the higher harmonics.                                                 
Compare the fundamental frequencies: a) From the signal generator readout. b) From the 
“spectrum analyzer” mode on the computer. c) From  the “oscilloscope” mode on the computer. 

11. Complete the following Table 3: (The mass is from the tension meter on the sonometer. The 
fundamental frequency from the spectrum analysis. Compare the calculated period T = 1/f from 
the spectrum analysis and signal generator with T as read directly from the waveform.) 

String Period (seconds) 
Trial Mass m  Frequency f  Period T 
#1       
#2       

 

Pluck the string gently in the middle and observe whether the spectrum becomes simpler or stays 
the same. Repeat by plucking the string at different locations and observe any changes in the 
frequency spectrum.  

12. How does the period change with increasing mass? Is this similar or different from the 
spring?  

13. How does the fundamental frequency (pitch) change as the mass increases? 

Multi-pendulum Setup, Musical Intervals, and Harmony 

Use the 4 pendulums mounted on a horizontal bar and held by a stand. Adjust the lengths of the 
strings so that the frequencies and periods of oscillation correspond to simple musical intervals. 
For instance, take a length L1 = 50 cm for the longest string. Call its period of oscillation T1, and 
the corresponding “fundamental” frequency f1.  The lengths of the other 3 pendulums are 
adjusted to simulate the important musical intervals of a third, fifth and octave. The frequencies 
associated with these intervals are simple fractions of the fundamental f1 as shown in Table 4. 

14. Call T1 the period of oscillation of the fundamental oscillation of the L1-string. What are the 
other periods? Hint: use f = 1/T. Insert these periods in Table 4 as multiples of T1. 

 



1-6 

 

15. Calculate the lengths of the 3 shorter pendulums with the aid of Formula (2). Hint: Use L1 = 
50.0 cm, and from that get the other lengths with your results for the periods T in Table 4. For 
example, the length of the string of the musical third is given by L = (4/5)2L1 = 32.0 cm, and so 
forth for the other pendulums.  

Table 4.  Musical Intervals Visualized With Pendulums 

Musical Interval 
Name 

C-major 
scale analog 

Frequency f Period T 
calculated 

Period T 
measured 

Pendulum 
length L 

Oscillations for 
synchronization 

Fundamental C f1  T1 50 cm NA 

Third E 5/4 f1     

Fourth F 4/3 f1    Not on set, but 
calculate it  

Fifth G 3/2 f1     

Octave C 2 f1     

 

16. Start the longest pendulum and the next shorter one (musical third) at the same time so that 
they are synchronized at the beginning. Will they ever return together to their original position 
and be synchronized again? In other words, are the pendulums in tune?  (P.S.: The simple 
frequency ratios in Table 4 correspond to so-called Pythagorean temperament.)  

17. Count the smallest number of full periods for each of the two pendulums when they are back 
at the starting position again. Insert this pair of numbers in the last column of Table 4, with the 
smaller number X of oscillations for the longer string first, followed by the number Y of 
oscillations of the shorter string. Write this down as a pair X – Y. 

18. Carry out the same procedure for the remaining two pendulums for the fifth and octave.  
Insert the pairs of numbers in Table 4 to complete the last column. 

19. Observe how long the four pendulums stay synchronized and remain “in tune” with the 
fundamental frequency. Do not change the length of the pendulums! Only your instructor may do 
so if for some unfortunate reason the pendulums have been de-synchronized or “detuned”. 
 
20. Start the pendulums for the fundamental, third, and fifth at the same time. Observe the 
oscillations and their regular behavior, assuming they are well tuned. What are you visualizing 
here, musically speaking? (Answer: A major triad, with its pleasing consonance!) Music 
students: Play a major triad on the keyboard in the laboratory, for instance C-E-G. Does it sound 
pleasing? 
 
21. Start all 4 pendulums together. Do they ever come back together again at the starting 
position? For the music students: Play the corresponding notes, e.g. C4 –E4 – G4 – C5, on the 
keyboard. Does it sound pleasing? Any ideas why? 
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22. Challenge question:  
Consider the pendulums for the intervals of the third and fifth. If you start them at the same time, 
how many oscillations will it take for each to find themselves back together again at the starting 
position? Figure out your answer with help from Table 4, and verify it experimentally. 
 
Pythagorean Intervals and String Division 
 
Use a sonometer and divide its strings with a wedge. 
 
23. Move the wedge under the string. Pluck the two sections of the string and listen when the two 
resulting tones sound consonant. Do this for three different string divisions. Write down the 
lengths of the two string sections and take their ratio. Show the ration as a decimal fraction with 
3 significant figures. 
 
Example: 
   L2/L1 = 60.6 cm/ 39.4 cm  =     1.54 _ (close to 3/2, i.e. musical fifth) 
 
Your 3 measurements: 

L2/L1 =      cm/  cm  =      (close to ________, i.e. _____________________) 
                                       ratio           musical interval 

L2/L1 =      cm/  cm  =      (close to ________, i.e. _____________________) 
                                       ratio           musical interval 

L2/L1 =      cm/  cm  =      (close to ________, i.e. _____________________) 
                                       ratio           musical interval 

 

The Metronome 

We have an old metronome in the laboratory that exhibits periodic (but not simple harmonic) 
motion. This essentially is an inverted rigid pendulum. As the pendulum stick swings, a spring 
pulls the bob back towards the equilibrium position in the center. The effective length of the 
pendulum and thus the frequency can be adjusted by moving the bob up and down.  

24. Read the frequency range of the metronome on its pendulum stick and compare it with the 
measurement on a stopwatch. 

25. Describe the purpose of a metronome. 
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2. Wave Phenomena in Water and Air 
 
PURPOSE AND BACKGROUND 

Wave motion is responsible for the propagation of sound. In this laboratory we study various 
wave characteristics and how they are related to the production and propagation of sound. We 
will take a look at reflection, refraction, interference, and diffraction. A “ripple tank” with water 
waves is used to simulate the properties of sound waves. A light source at the ripple tank 
illuminates the waves so that they are visible. For actual sound waves we use a two-speaker 
system to demonstrate interference and diffraction. 

 
EQUIPMENT 

PASCO WA-9897 Ripple Tank, ripple tank wave generator, stroboscope light source, protractor  
for measuring angles, stop watch, Mac mini, two loudspeakers.  

Caution: Please inform the instructor if you feel uncomfortable from the light flashes of the 
stroboscope or if you have photosensitive epilepsy. 

 

THEORY AND EXPERIMENT 

A wave is a periodic disturbance or fluctuation in a medium about its equilibrium position. We 
use water waves as a good example. Waves transport energy and can do work. A simple sine 
wave can be used to demonstrate important properties of waves. Figure 1 shows the 
displacement of the vibrating medium (e. g. air, water, or a string) as a function of time. The 
horizontal axis is the time, and the vertical axis is the displacement. The equilibrium position is 
at x=0. The period T is the time for one complete cycle, in other words the time for a system to 
return to its initial position.  

The frequency of oscillation is defined as the inverse of the period, .  

The physical unit of the frequency is Hertz, abbreviated Hz. The oscillation in Figure 1 has a 
period of T = 0.10 s and a frequency of f = 10 Hz. For water, the molecules move up and down 
(transversely), while the wave itself travels in a direction perpendicular to the up and down 
motion. This kind of wave is called a transverse traveling wave. The wavelength l is the distance 
the wave travels during one “up and down” cycle. It is the distance from any one crest to the next 
nearest crest, or from wave trough to next trough, or between any two corresponding points 
having the same phase - see Figure 2. If we call v the wave speed, then we have 

     (1) 

T
f 1
=

f
T

λ
λ
==v
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Figure 1. Displacement of the medium (e.g. water) of a wave from equilibrium as a 
function of time, for a fixed point of observation. 

 

Figure 2. A transverse wave traveling with velocity v and wavelength λ. We see a 
snapshot at a fixed time with vertical direction showing the displacement of the medium 
and  horizontal direction the position of the wave. 

 
Use the PASCO ripple tank and produce plane waves in the “strobe light” setting. 

1. Trace three or four plane waves on a sheet of paper located on the screen of the ripple tank. 
Draw a line showing the direction of the traveling waves. 

2. Measure the length of 5 consecutive crests and determine the wavelength l by dividing that 
distance by 5. For instance, a frequency setting to give you a wavelength around 6 cm may 
be suitable. The frequency f is displayed on the PASCO wave generator itself. What is the 
velocity v of the waves according to equation (1)?  Answer:  v = _________m/s 
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The wave speed can also be obtained from the measured time t the wave takes to travel a 

distance d, according to the formula . With a stopwatch, measure the time t it takes the 

wave to travel a given distance d, without the strobe light turned on.  

3. Take three time measurements. Record the average time:     t =________s. 

4. Now calculate the wave speed from v = d/t:    v  =________m/s. 

5. Compare your values for the velocity from questions 2 and 4 and discuss possible reasons for 
any discrepancy. 

6.  For the velocity for shallow water waves we have v = (gd)1/2,	where	g	=	9.8	m/s2	and	d	is	
the	depth	of	the	water.		Obtain	the	value	for	the	velocity:		v  =________m/s.	

 

Reflection 

When sound waves hit a barrier such as a wall, some of the sound is reflected (with the rest 
absorbed by the wall). Waves obey law of reflection. A line drawn perpendicular to a point on 
the wall is called the “surface normal” - see Figure 3. The angle that the incoming wave makes 
with the normal is called the angle of incidence. The law of reflection states that for a wave 
approaching a barrier, the wave will be reflected from the surface at an angle equal to the angle 
of incidence. For the law of reflection to hold, the surface roughness must be small compared to 
the size of the wavelength. In other words, we need a smooth, or optically speaking, a “mirror-
like” surface. This is the case in our experiments with the ripple tank. 

 

Figure 3. Incoming wave reflected off a smooth surface 

  

€ 

v =
d
t
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Produce a plane wave with the PASCO ripple tank by placing one of the longer straight barriers 
in the center of the tank. Observe how the waves are reflected. The light and the wave generator 
are synchronized in STROBE mode so that when the generator is producing waves with f =20Hz, 
the light will strobe at the same frequency. This gives the appearance of non-moving “frozen” 
waves and thus facilitates observation. By changing the strobe frequency of the light slightly, the 
waves can be made to look as if they were traveling slowly. This is for clearly seeing the 
direction of the traveling waves. 

7. Trace the wave barrier on a sheet of paper. Trace the incoming and reflected waves and 
draw  two lines representing the direction of travel for each of them. 

8. Use a protractor to measure the angles of both the incoming and reflected waves. Are the 
two angles the same in accordance with the law of reflection? 

Note that an interference pattern also is created in this experiment  (see interference below). 

Place the concave plastic piece in the water to act as a “mirror” for the water waves. Observe 
focusing of the waves in analogy to an optical mirror. 

 

Refraction 

Refraction means a change in the direction in which a wave travels (see Figure 4). This happens 
for instance in water where the depth changes, and the wave speed changes as a consequence. 
Although refraction has only limited applications to sound propagation in enclosed rooms such 
as our laboratory, it accounts for some interesting atmospheric phenomena (see below). 
Refraction also occurs with light waves, where it accounts for the action of optical lenses. In all 
cases where refraction occurs, the wave speed and direction of propagation change.  

 

Figure 4. Refraction of wave on a barrier such as in water. 
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In our experiment, place the shaped trapezoidal plastic plate into the ripple tank. Produce plane 
waves that move toward the plate. You should see that the wave speed and wavelength in the 
deeper water are greater than in the shallower water on top of the plastic plate. Note that, 
whereas the wavelength changes, the frequency does not change in the two regions!  

9. Draw the shape of the plastic plate on a sheet of paper. Draw a line representing the 
direction of the incoming waves and a line for the direction of the refracted waves. 
Clearly show that the two lines are not parallel, but have a kink instead, meaning 
refraction. 

10. Where is the wave speed slower and what do you think causes the decrease in speed? 

Place the plastic lens in the water to act as a lens for the water waves. Observe focusing of the 
waves in analogy to an optical lens. 

A Remark on Refraction of Sound Waves in the Atmosphere 

The speed of sound depends on the temperature of the air. Cooler, denser air will transmit sound 
more slowly than warmer air. Under normal conditions, the air near the ground is warmer than 
the air above it. This is the reason why you may not always hear the thunder from a lightning 
strike several miles away: The sound traveling through the cold air higher up travels more slowly 
than through the warm air closer to the ground. The sound therefore is refracted upwards and 
may not reach you. In contrast, a temperature inversion, where the air is cooler closer to the 
ground, produces the opposite effect. A cool lake at night and in the morning hours can cause 
such a temperature inversion: Sound is refracted downwards towards the listener, effectively 
amplifying the direct sound across the lake. This makes the sound, for instance from people on 
the opposite shore, sound louder and closer than it actually is. 

 

Interference of Waves 

When two or more wave trains move through the same region of space, the waves interfere with 
each other at any given spot. Constructive interference occurs when two waves with the same 
phase, such as two wave crests, align at the same location. The two amplitudes add together to 
create a “hotspot” of twice the amplitude and thus a maximum in intensity - see Figure 5.  

On the other hand, if the wave crest of one wave meets with a wave trough of another wave, the 
two waves are completely out-of-phase and suffer destructive interference. The resultant 
amplitude is nearly zero, and so is the wave intensity.  
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Figure 5. Interference and superposition of two waves. The diagram on the left shows 
constructive interference and on the right destructive interference. 

 

Interference of Water Waves 

Study the interference maxima and minima with water waves in the “ripple tank”. Use the wave 
generator with two small point-like dippers, each producing circular waves. Space the plungers a 
few wavelengths apart.  Choose a frequency between 15 and 20 Hz. Observe the interference 
pattern.  

11.  Change the frequency of the dippers. Describe how the interference pattern changes. 

Set up the long barriers side by side so that they make a barrier parallel to the plane waves. In the 
gap between the two long barriers place a small barrier so that two small gaps or “slits” are 
created. Use the wave generator and produce plane waves with a frequency of about 10 Hz 
moving towards the “slits”.  

The two slits can be considered new “point sources” by themselves for the emission of waves.  
(Our experiment is a direct analog to the interference in the famous double slit experiment in 
optics, where light was shown for the first time to be a wave.) After passing through the slits, the 
emerging waves interact and create an interference pattern according to the principle of 
superposition. You should be able to see bright spots where the waves add constructively and 
dark spots where they add destructively. Record the frequency shown on the wave generator. 
Trace the barriers and the double slits on a sheet of paper. Mark the lines of constructive and 
destructive interference.  

12.  Increase the frequency of the wave generator. What happens to the interference pattern? 
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Diffraction 

Diffraction is a wave phenomenon with direct applications to sound propagation when there is a 
barrier, opening, or corner. The effect is pronounced when the wavelength is comparable to the 
size of the obstacle. In such cases diffraction enables one to hear sound “around corners” - see 
Figure 6. We all have heard sound from a door opening when we were outside a room but not in 
the line-of-sight of the sound source inside.  

 

 

Figure 6. Diffraction of sound waves after passing through an opening, around a barrier, 
and around an edge.  

Create a small opening (“single slit”) of about 2 cm between two long barriers in the ripple tank, 
the barriers being in line with each other and parallel to the approaching plane waves. Produce 
plane waves of frequency 20 Hz with the wave generator. 

13. Trace the opening in the barrier on a sheet of paper. Trace the incoming and diffracted 
waves. 

14. If the incoming waves were circular instead of planar, what would the diffracted waves look 
like? Confirm your guess by removing the plane wave generator and adding a single dipper in its 
place, which now produces circular waves. 

Set up a barrier for the waves in the ripple tank instead of the opening. Let a wave approach a 
barrier with width large compared to the wavelength. You should see a “shadow” region without 
waves behind the barrier, as expected. If, however, you make the wavelength comparable to the 
barrier width, the “shadow” region behind the barrier becomes small and waves travel into the 
region. Verify this by using a small barrier or by decreasing the frequency of the wave generator 
(this increases the wavelength). 

Finally, use one of the long barriers for an “edge” or “corner” in the tank and block about half of 
the incoming wave. Note again that the wave passing the edge is diffracted into the “shadow” 
region behind the barrier (Figure 6). 

P.S.: Water waves are an example of transverse waves, whereas sound waves are longitudinal 
waves. In the first case the medium oscillates transversely to the direction of wave propagation, 
in the second case (air) the oscillations are longitudinal along and against the propagation 
direction. These differences do not affect the basic study of wave behavior in this laboratory. 
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Interference of Sound waves 

Sound waves from two speakers behave exactly like the interfering water waves in the “double 
slit experiment” in the ripple tank above. For interference from the speakers to be clearly 
audible, the wavelength should be somewhat smaller than the distance between the speakers. 

Use a signal generator, set the frequency between 600-2000 Hz, and play the same signal 
through two loudspeakers. Walk rather quickly in front of the speakers. Can you hear the 
interference maxima (constructive interference) and minima (destructive interference) as you 
walk?  

15. At the midpoint in front of the speakers. i.e. at the same distance from each speaker, do you 
hear constructive or destructive interference? Why? 

16. Does the number of audible maxima and minima increase or decrease if the frequency is 
increased? 

17. Is interference of sound waves desirable or undesirable in rooms and concert halls? Why? 
How would you address such problems? 

18. Give examples for diffraction of sound from openings, barriers and edges. Discuss this in the 
context of desirable or undesirable room acoustics. 
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3. String Resonance 
 
PURPOSE AND BACKGROUND 

Standing waves on stretched strings and in pipes offer a convenient way to study vibrations, 
including the fundamental frequency and harmonics (overtones). For strings in particular, the 
frequency depends on the tension, the mass of the string per meter (linear mass density), and the 
total length. In wind instruments, with air as the vibrating medium, the frequency is defined by 
the speed of sound and the effective length of the pipe. Once the fundamental frequency is 
known the higher harmonics are found as simple integer multiples of that frequency. 

EQUIPMENT 

PASCO Sonometer Model WA-9611 with Driver/Detector Coils, weights, function generator, 
loudspeaker, violin, Faber Electroacoustics Toolbox software, Mac mini. 

Resonances and Modes 

When a string is plucked, a transverse standing wave is created on the string - see Figure 1. In 
the simplest case, we have only one anti-node with maximum movement in the center. The 
points at the two ends of the string do not move and are called nodes. The standing waves result 
from two waves traveling in opposite directions along the string. The superposition of the two 
waves yields a standing wave, provided that the resonance conditions are met. 

The first 3 vibrational modes of a string are shown in Figure 1. For the fundamental mode 
(harmonic number N = 1), the wavelength is λ = 2L, where L is the length of the string. For the 
next higher mode, the first overtone or second harmonic (N = 2), the wavelength λ = L. 

                                        String Length L 

 
 
Figure 1. Vibrations of a string. The wavelengths of the standing wave resonance modes are lN = 
2L/N and the frequencies are fN = v/lN = Nv/2L = Nf1, where N is the harmonic number, v the 
velocity of the wave along the string and f1, and the fundamental frequency. 
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The velocity v of the wave on the string (not the speed of sound in air!) is given by 

     ,     (1) 

where F is the tension on the string and μ its linear mass density (mass per unit length or kg/m).  

For example, a typical metal guitar string has a mass per unit length of μ = 6.3×10-3 kg/m. For a 
tension F =73.3 N, the velocity of the wave along the string is 

 

The fundamental frequency f is given by  

  ,  and hence     (Mersenne’s Law) (2) 

Note that this frequency also defines the pitch of the sound from the string. Strings on a classical 
guitar have a length of L= 0.65m. With the velocity known, the fundamental frequency is 

 f = 108.0/(2x0.65) = 83.0 Hz.  This is close to the frequency of the E-string of a guitar. 

Question: Discuss how the tension, mass, material, diameter, and length of the string affect the 
fundamental frequency and the wave velocity on the string. 

String Vibration Experiments 

Stretch a horizontal string made of flexible fabric over a pulley. Place a suitable weight on the 
vertical end of the string. Fasten the horizontal end of the string to a vibrator. Connect the 
vibrator to a frequency generator. Tune the frequency to the fundamental vibrational mode and 
fundamental frequency (1st harmonic) of the string. Increase the frequency until you get the 2nd 
vibrational mode (2nd harmonic). Keep increasing the frequency and note the appearance of 
successively higher harmonics. How many harmonics are you able to produce? 

Change the weight on the string and note the change in the fundamental frequency.  

Change the length of the string and again note the change in the fundamental frequency. 

Sonometer Experiments 

Use a sonometer (PASCO Model WA 9611) – see Figure 2. This allows us to study the 
resonance modes and frequencies of a stretched string and to determine the wave velocity.  

Sonometer setup instructions: The tensioning lever for the weights must hang level. The bridges, 
over which the strings are stretched, can be placed at any location and define the vibrating part of 
the string length L. Hang a mass of approximately 1 kg from the tensioning lever to produce the 
desired tension. Adjust the string adjustment screw so that the lever is level – See Figure 2.    

µ
Fv =

s
m108.0

m
kg106.3

73.3Nv
3

=
×

=
−

€ 

f =
v
λ

=
v
2L

€ 

f =
1
2L

F
µ



3-3 
 

 
 
Figure 2. PASCO Sonometer Model WA-9611 for studying vibrating strings. The string is 
excited with a Driver Coil and the vibrational modes are analyzed with a Detector Coil. The sine 
wave generator activates the Driver Coil. The vibrating string induces a voltage in the Detector 
Coil. The latter is connected to the Mac computer. Open an “Oscilloscope Tool” there in the 
Electroacoustics Toolbox to observe the signal. 
 
The tension is determined as follows: For a mass M in slot 1 of the lever, the tension is F = Mg, 
where g = 9.8 m/s2. If you hang the mass from slot 2, the tension is 2 Mg, and so on.  

Some qualitative experiments: Pluck the string. Vary the tension, length, and linear mass 
density of the string, one at a time. Listen the effect on the pitch. Observe the change in pitch 
(fundamental frequency) with the spectrum analyzer on the computer. 

1. Vary the tension by hanging the mass M from different slots in the tensioning lever. Keep 
the lever level. How does the pitch (fundamental frequency) change with tension? 

2. Vary the length L of the string by adjusting the distance between the bridges. How does 
the pitch change? How can you also infer this from equation (2)? 

3. Change strings to vary the linear mass density. How does the pitch change, as heard and 
also seen on the computer? How can you see this from equations (1) and (2)? 

Table 1. Linear Mass Density of Guitar Strings 
String diameter Linear Mass Density 

μ (g/m) 
0.010in (0.254mm) 0.39 g/m 
0.014in (0.356mm) 0.78 g/m 
0.017in (0.432mm) 1.12 g/m 
0.020in (0.508mm) 1.50 g/m 
0.022in (0.559mm) 1.84 g/m 
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Sonometer Experiments with the Driver Coil and Detector Coil 
 
Connect the Driver Coil to a Pasco Signal Generator instead of a function generator as shown in 
Figure 2. Connect the detector coil directly to the Mac computer and open an oscilloscope tool in 
Faber Electroacoustics Toolbox. 
 
Position the driver coil approximately 5 cm from one of the bridges. More generally, the driver 
will drive the string best if placed at an anti-node of the wave pattern. However, if you place the 
driver near one of the bridges, it will work reasonably well for most frequencies. 
Position the detector midway between the bridges initially. You may experiment with this for 
optimal signal. It works best when positioned near an anti-node of the wave pattern. 
 
Choose a frequency between 100 and 200 Hz. Increase the amplitude. Slowly vary the 
frequency. When you reach a resonant frequency, you should see a vibration of the string and the 
sound produced should be loudest. The wave pattern seen on the oscilloscope should become a 
clean sine wave. You may need to vary the amplitude on the Pasco Signal generator slightly for 
best results. 
Keep the detector coil at least 10 cm away from the driver coil. This minimizes the interference 
between driver and detector. 
Important: The frequency observed on the wire usually is twice the driver frequency. The reason 
is that the electromagnet of the driver exerts a force on the wire twice during each cycle. Also try 
a violin bow as the “driver” (this does not double the frequency).  
 
An example of a frequency spectrum from the sonometer  is shown in Figure 3. 
 

 

Figure 3. Sonometer string excited with a driver coil placed near one of the two bridges and 
harmonics recorded with an electromagnetic detector coil.  
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Some quantitative Experiments and Calculations 
 

4. Determine the first 4 lowest harmonics on the string by varying the frequency of the 
signal generator. Observe in the “oscilloscope” mode when the vibrations are largest, or 
observe this with the spectrum analyzer. Read the individual frequencies directly from 
the function generator while you choose them, or get all at the same time from the 
spectrum analyzer. Note that the harmonic frequency chosen gives the strongest signal. 

 
f1 =        Hz    f2 =     Hz   f3 =    Hz  f4 =    Hz 
 
Add these frequencies to Table 2. 
 
5. Calculate the velocity of the waves on the string from equation (1) by using your values 

of the tension F and the linear mass density μ of the chosen string given in Table 1. 
 

Answer :  v =    m/s 
 

6. Calculate the fundamental frequency f1 from equation (2) by using the velocity and your 
value for L. Obtain the next three higher harmonics as integer multiples of f1. Show all 4 
calculated frequencies in Table 2. Also add to the table the location of the driver coil as 
measured from one of the two bridges. Add the number of nodes and antinodes for each 
of these harmonics. 

7. For which harmonics would you have detected very little signal if you had placed the 
detector at the center of the string? 

 
Table 2. Standing Waves on a String 
 

 Calculated 
f 

Observed 
f 

Location of 
Detector 

Coil 

Location 
of Driver 

Coil 

Number 
of Nodes 

Number 
of 

Antinodes 
Fundamental       
1st Overtone       
2nd Overtone       
3rd Overtone       
 

Disconnect the detector coil from the Mac. Use a microphone connected to the Mac and record 
frequency spectra of a violin. 

8. Pluck the string. Record the frequency spectrum. How many harmonics can you see? 
Note the relative amplitudes of the harmonics and the overall shape of the spectrum 
(Figure 4, bottom). Listen to the quality of the sound. 

9. Bow the string. Record the frequency spectrum. Discuss the similarities and differences in 
the spectra of the plucked and bowed string. Listen to the quality of the sound (Figure 4, 
top). 
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10. Think of reasons why the spectra from the plucked and bowed string are different. 

11. Compare the timbre or quality of sound from the bowed string with the plucked string. 

12. List some other string instruments, including some “exotic” ones. 

 

 
 

Figure 4. Sound spectrum form the G3 open string of a violin. Top figure: Spectrum from bowed 
string. Bottom figure: Spectrum from plucked string. Note that the bowed string has more 
pronounced higher harmonics resulting in a richer sound. 

Illumination of a Vibrating String and Spring with a Stroboscope 
Use a stroboscope and set it to the resonance frequency of a vibrating string. Observe the 
“frozen” standing wave modes. Do this for the first few resonance modes of the string. 
Similarly, use a vertical spring (not string!) fastened at the bottom end to a mechanical vibrator. 
Observe the nodes and anti-nodes of the spring, without and with the stroboscope. 
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4. Air Resonance  
EQUIPMENT 

PASCO Resonance Tube of variable length, large cardboard packing tube, speaker, large 
spherical Helmholtz resonator, didgeridoo, wine  bottle, Faber Electroacoustics Toolbox (FEaT) 
software, Mac mini, microphone, organ pipes. 

PURPOSE AND BACKGROUND 

The concept of resonance in a pipe is similar to that of a string. The waves in pipes consist of 
compressions and rarefactions of the air, with back-and-forth motion of the air molecules in the 
direction of propagation or against it. The waves in air thus are longitudinal waves. In this 
laboratory we study standing waves in a pipe. They are the result of two waves traveling in 
opposite directions inside the pipe, with each wave being reflected at the ends of the pipe. In this 
way the superposition of two waves yields a standing wave, provided that in addition the 
resonance conditions are met. 

For a pipe with both ends open, resonance at the lowest frequency (fundamental frequency or 
first harmonic) occurs when there are anti-nodes of the air motion at the ends – and only there, 
with a single velocity node at the center, see Figure 1. The motion of air molecules is highest at 
the anti-nodes and lowest at the nodes.  

For a pipe with one end closed and one end open, resonance at the lowest frequency occurs when 
we have a velocity node at the closed end and an anti-node at the open end. Plotted in Figure 1 is 
the displacement or velocity of air molecules as a function of position along the pipe. The two 
curves for each pipe in Figure 1 are one-half period of oscillation apart. 

 

 

Figure 1. Open and closed pipe 

For the pipe with both ends open, we have L = l/2 according to Figure 1. For the closed pipe we 
have L = l/4. The fundamental frequency is given by   

  (both ends open)  (one end closed) (1) 

where v is the velocity of sound. 
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1. For a pipe with both ends open, what are the formulas for the fundamental and the 
frequencies f2, f3, f4 of the next three overtones or harmonics)? (Hint: Higher harmonics have 
frequencies that are integer multiples of the fundamental, and all integers are allowed for a 
pipe with both ends open.)   

 
f1 =    f2 =    f3 =    f4 =    

 
2. For the pipe with one end closed and one end open, we have L = l/4 according to Figure 3. 

Write down the equations for the fundamental frequency and for the first three existing 
overtones. (Hint: Only odd integers are allowed according to class, or as you can see by 
extending the drawings in Figure 1 to higher harmonics.) 

 
f1 =    f3 =    f5 =    f7 =    

3. Choose a suitable value for the length L of the PASCO Resonance Tube. Take v = 346 m/s as 
the velocity of sound at a room temperature of 25 0C. Calculate the fundamental frequencies 
of the open pipe and the closed pipe. Record the values under Calculated f in Table 1 and 
Table 2. Add the overtone frequencies or higher harmonics as integer multiples of the 
fundamental frequency. (Caution with the closed pipe!) 

Table 1. Open Ended Pipe 

 Harmonic 
Number N 

Calculated 
f 

Observed  
f 

Corrected f Number 
of Nodes 

Number of 
Antinodes 

Fundamental 1      

2nd Harmonic 2      

3rd Harmonic 3      

4th Harmonic 4      

 

Table 2. Closed End Pipe 

 Harmonic 
Number N 

Calculated 
f 

Observed  f Corrected 
f 

Number 
of Nodes 

Number of 
Antinodes 

Fundamental 1      

3rd Harmonic 3      

5th  Harmonic 5      

7th  Harmonic 7      
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Experimental Procedure 

Prop the PASCO Resonator Tube in front of the loudspeaker, with the microphone at the other 
end of the tube  - see Figure 2. 

Method 1. Connect the speaker to the Mac mini. Select white noise from the frequency generator 
in the Faber Acoustic Toolbox. Take a frequency spectrum. 

Method 2. Connect the speaker to the Mac mini. Select a frequency sweep from the frequency 
generator in the Faber Acoustic Toolbox. Take a frequency spectrum. 

Note the large increase in sound intensity from the tube at the fundamental frequency. Figure 3 
shows a frequency spectrum from Method 1 with the fundamental frequency and harmonics 
(tube open at both ends). Record the fundamental frequency and next three harmonics in Table 1 
table under Observed f. Compare the calculated and observed frequencies.   

Repeat this procedure for the closed pipe. In this case the closed pipe must have the microphone 
and speaker on the same side of the tube. Record the lowest four frequencies in Table 2 under 
Observed f. Compare the calculated and observed frequencies. 

 

Figure 2. Set up of the resonance tube in the “open tube” configuration. White noise or a sine-
sweep from the Mac mini is applied to the speaker. The sound enters the tube on the left and 
excites the resonances. The microphone on the right records them for display in the computer. In 
the “closed tube” configuration the speaker and microphone must be on the same (right) side. 

Pipe Length Correction  

Note that the calculated and observed fundamental frequencies may not agree well. This has to 
do with the fact that in pipes, waves reflect from the ends of the tube by sticking out a little bit. 
There is an end correction that increases the wavelength. This correction is proportional to the 
radius of the tube. Therefore, the larger the tube radius, the more the wave will “stick out” and 
cause an increase in wavelength. The correction results in an extra length DL, given from theory 
by DL = 0.61r for each open end, where r is the radius of the pipe. Thus for a closed pipe and 
open pipe of length L and radius R, the effective lengths are, respectively,  

 Leffective = L + 0.61r  (closed)  Leffective = L + 1.22r (open)  (2) 
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4. Calculate the resonance frequencies for the corrected pipe lengths. Add your results in the 
column entitled Corrected f in Tables 1 and 2. 

 

 

Figure 3. Resonances of a PASCO resonance tube excited with a frequency sweep. Upper figure: 
Tube open at both ends with an effective length Leff, open = 1.18 m. Lower figure: Tube closed at 
one end with an effective length Leff, closed = Leff, open /2 ≈ 0.59 m (with a plug in the tube to 
shorten its length). The fundamental frequency for both tubes is f1 = 146 Hz, but only the odd 
harmonics are observed in the closed tube.  
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Determination of the Sound Velocity 

Determine experimentally the velocity of sound with the resonance tube. Use the observed value 
of the fundamental frequency f1 together with the corrected pipe length Leff in equation (1) for a 
pipe with two open ends or one end closed.  

5. Answer:  f1 =  _______Hz,    L = ______m ,    Leff = _______,   v = ________m/s 

How does your value compare with the value of 346 m/s assumed earlier? If there is a 
discrepancy, what might be the reasons? 

Experiments with the Large Cardboard PASCO Packing Tube 

Do some other experiments with a large brown cardboard packing tube from PASCO in order to 
study resonance and the decay of sound intensity.  Close one end with a plug. Ask a partner to 
hold the microphone near the top of the tube. On the computer you should see a peak in the 
acquired FFT frequency spectrum. This peak corresponds to the resonating fundamental, which 
gets excited just from the broadband background noise in the room. The tube acts as a resonator 
that picks out its resonance frequency from the ambient noise and responds much less to the 
other frequencies in noise.  

Open an Oscilloscope Tool in the Electroacoustics Toolbox. Tap the tube with its closed end on 
the floor to excite the tube resonances more strongly than just from the ambient noise. Listen to 
the resulting resonance and record the frequency spectrum with the microphone and the FFT 
mode in the Electroacoustics Toolbox as usual. An example of such a resonance curve is shown 
in Figure 4. 

  

 

 

 

 

 

 

 

 

 

Figure 4. Frequency spectrum from a cylindrical PASCO packing tube, tapped on the floor with 
the closed end.  The large peak is the N =1 harmonic, the small peak is the N = 3 harmonic. The 
N= 2 harmonic is missing, as is to be expected for a tube closed at one end.  
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Next, record the waveform of the damped oscillation. Use a measurement window of 200 ms per 
division. Figure 5 shows the decay of the signal as a function of time after tapping the tube on 
the floor at time t = 400 ms. The waveform closely resembles a damped sine wave.  

 

Figure 5. Decaying waveform of the packing tube.  

6. Look at the observed waveform in Figure 5 and estimate the so-called exponential decay time. 
This is the time it takes for the signal to decrease to 37% of its original value. 
 
7. Produce sound with some of the organ pipes in the laboratory. Describe the quality or timbre 
of the sound. Acquire a frequency spectrum and discuss its relationship to timbre. 
 
8. Play a model aboriginal didgeridoo. Measure the length, record the sound spectrum, and read 
the fundamental frequency. Calculate the frequency. Compare both frequencies. 
 
   fmeasured  = __________Hz fcalculated = ___________Hz  

Helmholtz Resonator 

Experiment with a simple spherical cavity called a Helmholtz Resonator. We have a large hollow 
metal sphere, with a tube protruding from one side for admitting white noise or a frequency 
sweep from a computer speaker. It has another smaller tube on the opposite side for listening to 
the resonance frequency or for recording the frequency spectrum with a shotgun microphone on 
a long shaft that can be inserted into this tubing.  

First listen to the sound from the Helmholtz resonator when exposed to ambient room noise and 
note the deep rumbling tone, which is the resonance. The resonance is excited from the broad 
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noise spectrum in the room. Hermann Helmholtz (1821-1894) used a series of such “Helmholtz 
Resonators” of different sizes to analyze the frequency spectrum of sounds and musical 
instruments, all before the advent of electronic tools! 

Next use the setup for the Helmholtz resonator shown in Figure 6. Connect the speaker directly 
to the Mac mini (you can do away with the stereo receiver). Acquire a resonance spectrum from 
the Helmholtz resonator by either using white noise from the signal generator or a frequency 
sweep in the software. A resonance curve is shown in Figure 7. It has one prominent peak. 

 

Figure 6. Experimental setup for spherical Helmholtz resonator. 

 
Figure 7.  Helmholtz resonance curve from a large aluminum sphere. The measured and 
calculated values of the resonance frequency at the peak are 92 Hz and 93 Hz, respectively. 
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9. On the computer monitor, set the cursor to the peak of the resonance curve for the large metal 
sphere. Read off the value of the resonance frequency. Answer:  f =   Hz 
 
10. Use a ruler together with a calculator and determine the frequency at the peak of the 
resonance curve of the Helmholtz resonator in Figure 7 from a previous experiment.  

  Answer:   f =   Hz. 
 

Comment on the agreement/disagreement of the two values of the resonance frequency obtained 
here and in the preceding part. 

 
Calculation of the Resonance Frequency of Helmholtz Resonator 
The resonance frequency of a Helmholtz resonator is given by the formula 

         (3) 

where v is the velocity of sound, A the area of the opening of the resonator, Leff the effective 
length of the cylindrical neck, and V the volume. This formula is quite general and can by used 
for spheres, bottles, etc.  
 
P.S.: If you have a Helmholtz resonator such as a box with just a hole in it, rather than a “bottle 
neck”, you can still use formula (3). For the actual length we have L = 0. But Leff is not zero. The 
hole is open at both ends. So use L = 0 in equ.(2) and obtain Leffective = 1.22r  for the hole.  
 
11. Back now to our large spherical metal Helmholtz resonator: Measure the radius R of the 
sphere, the length L of the “bottle neck”, and its inner radius r. Calculate the values for A, V, and 
Leffective = L + 1.22r needed in equ.(3). Then calculate the resonance frequency.  
 
 R =  0.150 m   L =  0.080 m  r =       0.041 m   
 
 V =   m3 Leff =   m A =   m2 
 
 Calculated resonance frequency:  f =   Hz 
 
Compare your measured resonance frequency from Question 9 with your calculated frequency 
from Question 10. 
 
12. Helmholtz Resonance in Bottles 
Distinct Helmholtz resonances can be obtained by blowing gently across the opening of bottles. 
Practice this with various bottles. 
Record the Fourier spectrum and resonance frequency for a wine bottle. 
Measure the inside diameter of the bottle neck. 
Calculate the area A of the opening needed in equ.(3).  
Measure the length L of the bottle neck and calculate its effective length. (Use the formula for an 
open tube, i.e.  Leffective = L + 1.22r according to equ.(2)). 
Find the volume V from the label on the bottle.  
Calculate the resonance frequency from equ.(3) and compare with the measured frequency: 
Answers:      fcalculated = ________Hz   fmeasured = ________Hz 

€ 

f =
v
2π
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An example of an earlier measurement for a 0.75 liter wine bottle is shown in Figure 8. 
 

 
Figure 8. Helmholtz resonance from a 0.75 liter wine bottle. 

 
Data for Figure 8: 
Measured peak frequency: f = 113.0 Hz 
Volume V = 0.75 Liter = 0.75×10-3 m3 
Average radius at middle of bottleneck: ravg = 10.53 mm = 0.01053 m 
Actual bottle neck length: L = 8.5 cm = 0.085 m 
For the length correction at the un-baffled outside opening at top of the bottleneck we take 
0.61×ravg, and for the baffled opening inside the bottle we take 0.85×ravg (from physics theory). 
Thus the effective length of bottle neck is given by  
Leff = L0 +(0.61 + 0.85)× ravg = 0.085 +1.46×0.01053 = 0.1004 m. 
Then the calculated frequency from equ.(3) is f = 118.4 Hz  ± 5%. 
The uncertainty of 5% arises primarily from the dimensions of the bottleneck (try to verify this). 
 
13. Use 1 liter and 2 liter plastic soda bottles having the same dimensions of the bottle necks. 
Measure their Helmholtz resonance frequencies.   Derive the frequency ratio and compare with 
your measurement. 
Answer:  Calculated frequency ratio f1liter/f2liter =                    , measured f1liter/f2liter =    
P.S.: This frequency interval is the so-called “tritone”, also called the “devil’s tone”. 
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5. Fourier Analysis and Synthesis of Waveforms 
 
PURPOSE AND BACKGROUND 

The simplest sound is a pure sine wave with a single frequency and amplitude. Most sound 
sources and instruments do not produce such simple waves. Usually their sound contains many 
sine waves with higher frequencies, called harmonics. These act together according to the 
superposition principle to produce a complex tone. This addition of sine waves with suitable 
amplitudes and phases is called Fourier synthesis of sound. The opposite, the decomposition of 
sound into its sine-wave components, is called Fourier analysis. Periodic sound can be 
synthesized or analyzed with a sufficient number of sine waves. A pure tone is a sine wave with 
a single frequency.  Many sine waves added together form a complex tone and waveform 
periodic in time. This laboratory is about the analysis and synthesis of sound and how electronic 
synthesizers can mimic real instruments. 

EQUIPMENT 

Mac mini, speakers, function generator. 

THEORY AND EXPERIMENT 

Fourier Synthesis of Waveforms 

For our experiment, use the FEaT (Faber Electroacoustics Toolbox) software, open a Signal 
Generator tool. Listen to the four available wave forms (sine, triangle, square, and saw tooth) at a 
fundamental frequency of f1 = 500 Hz (pitch).    

1. Which tone sounds most like the pure sine wave? (Do not look at the computer screen.)  

2. Which tone sounds the least like the pure sine wave? 

 

Open an Oscilloscope tool and choose the Built-In-Output under the Device drop-down menu. 
The oscilloscope measures the amplitude of the sound wave, which the speaker produces as a 
function of time. Adjust the amplitude to 100mV full-scale (FS). Listen again to the four 
different tones while observing their waveforms. All four tones should have the same output of 
100mV FS. 

3. Draw sketches of the four waveforms.  

4. Which waveform most resembles a pure sine wave?  

5. Which waveform looks the least like the sine wave? 

6. Do some of the waveforms sound louder than others, even though they all have the same 
amplitude of the fundamental? Why or why not? 
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Complex waveforms are produced by adding sine waves of different frequencies and amplitudes. 
The tone heard in all four cases has the same pitch or fundamental frequency f1= 500 Hz. For a 
pure tone (sine wave), the fundamental is the only frequency present. For complex tones, sine 
waves with integer multiples of the fundamental frequency and suitable amplitudes are added 
together. For example, the next integer multiples of the fundamental f1 = 500Hz are f2 = 2f1= 
1000 Hz, f3 = 3f1 = 1500 Hz, and so on.  

These higher frequencies are called overtones or harmonics. Just like the fundamental, each 
overtone has a single frequency. A complex waveform can be produced with the fundamental 
plus higher harmonics of suitable amplitudes. This process is called superposition of waves or, 
mathematically speaking, Fourier synthesis of waves.  Conversely, you can take a complex 
waveform apart by decomposing it with our software into its individual harmonics. This is called 
Fourier analysis of waves. 

In our experiment, and with the superposition principle in mind, several sine waves are added up 
to generate a complex waveform. Open five different Signal Generator tools in the software. Set 
Sig 1 (Signal Generator 1) to be the fundamental f = 500 Hz. For the four tones used, the 
fundamental frequency has the highest amplitude. (In musical instruments, some overtones 
actually may have higher amplitudes. Even then the pitch of the complex tone you hear comes 
from the lowest fundamental.)   

Set the Master Volume of the fundamental to 100%. The other four Signal Generators, Sig2 to 
Sig5, are the first four overtones. For the different waveforms we use, i.e. the triangle, square 
wave, saw tooth, the relative amplitudes of the harmonics are different. Since our FEaT software 
is limited to a finite number of sine waves, we only use five of them to imitate a theoretically 
infinite sum of waves.  

Sig 2 will be the first overtone or second harmonic. It is convenient to use “harmonic number” 
for the words “first overtone”, “second overtone”, etc. The fundamental is called the first 
harmonic (N=1), the first overtone is called the second harmonic (N=2), the second overtone is 
called the third harmonic (N=3), and so on. 

 

Saw-Tooth Waveform 

The harmonics of the saw tooth wave follow a simple pattern. All harmonics exist from N=1 to 
N=∞. Thus all integer multiples of the fundamental frequency contribute to the waveform. Since 
in practice we cannot add an infinite number of harmonics, we shall only use the first five and 
add them up. 

For the first harmonic N=1, f1=500Hz, set the amplitude to A1=100% on the Master Volume 
slider of the Sig 1 tool. The second harmonic N=2, f2=1000Hz, has an amplitude A2 = A1/2. 
Continuing this trend, the amplitudes of the harmonics of the saw tooth waveform decrease 
according to A1/N. Set them in this way on the Master Volume slider of each Signal Generator 
tool.  

7. Find the frequencies of the next three higher harmonics and their relative amplitudes in %. 
Complete the entries in Table 1 
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Table 1. Saw tooth: Harmonic numbers, frequencies, and relative amplitudes. 

N fN  AN  

1 500Hz 100% 

2 1000Hz 50% 

      

      

      

    
 
Synthesize a sawtooth by adding the first two harmonics according to the information in Table 1.  
Take a look at and listen to the waveform generated. Continue adding successive harmonics N = 
2, 3, 4, 5, 6 and note the changes in tone and waveform. With each addition of a harmonic, the 
wave should look more and more like a saw tooth. If this is not the case because of an electronic 
artifact, turn off all harmonics, then turn them on again all at once “Universal ON”  in the FEaT 
software. The waveform may now look more like a saw tooth. Note it sounds practically the 
same as before, no matter how it looks. The reason for this is that the human ear is not sensitive 
to the phase differences between individual harmonics, but only to the amplitudes. (This is called 
“Ohm’s Law of Hearing”).  

In order for the summed harmonics to look like a saw tooth on the screen, they must all begin at 
the same time. But that does not matter for the ear to hear a saw tooth. The ear primarily senses 
the frequencies and amplitudes of the harmonics, not the relative phase differences between 
them, and thus you keep hearing a “saw tooth”. 

8. What would be the frequency and amplitude of the N = 10 harmonic for a saw tooth 
waveform of fundamental frequency f1 = 500 Hz? 

 F10 =    Hz  A10 =    % 

 

Rectangular Waveform 

A square or rectangular waveform is similar to the saw tooth in that the amplitudes of the 

harmonics follow the  dependence. However, the major difference is that only the odd 

harmonics N=1, N=3, N=5 etc. contribute.  

9. Use this information and complete the entries in Table for the square wave. 

 

 

N
A1
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Table 2. Square wave: Harmonic numbers, frequencies, and relative amplitudes.  

N fN AN  

1 500 Hz 100% 

3 1500 Hz 33.33% 

      

      

      

 
 
In our experiment, reset all five Signal Generators to the configuration for the square wave. 
Listen to the combination of the first two harmonics, then add the higher harmonics successively. 
Note the changes in tone and waveform. Again, starting all five frequencies at once may give a 
better looking square wave on the screen, but what you hear is unaffected by how it looks.  

 

Triangular Waveform 

The triangular wave is similar to the square wave in that it too consists of odd harmonics only. 

However, the amplitudes no longer follow the dependence, but rather a  dependence. For 

instance, given an amplitude of the first harmonic of 100%, the amplitude of the third harmonic 

now is .  

10. Complete the entries in Table 3 for the triangular waveform. 

Table 3. Triangular waveform: Harmonic numbers, frequencies, and relative amplitudes. 

N fN AN  

1 500 Hz 100% 

3 1500 Hz 11.11% 

      

      

      

 

Use the completed Table 3 to reset the five Signal Generators for a triangle waveform and listen 
to the result. 

N
A1

2
1

N
A

%11.11
9

100%
3
A
2
1 ==
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11. Of the three waveforms, which had the least noticeable contributions from its overtones to 
the overall form and tone?  

12. Which of the three waveforms had the most noticeable contributions from its overtones?  

13. How could you get sharper “edges” on the square and saw tooth waves than those seen on the 
screen? 

14. Question: Why can you hear a 1 Hz square wave? 

 

Fourier Analysis of Waveforms 

Select the signal generator tool in the FEaT software. Open a FFT tool and select the Built-In 
Input from the drop-down menu. FFT is the abbreviation for Fast Fourier Transform. It is a tool 
that analyzes an incoming signal with a mathematical operation to identify the different 
frequencies in the signal. The display is a frequency spectrum. Select a sine wave on the function 
generator. The FFT tool will show a frequency spectrum with one peak for the only frequency 
present, with the amplitude being the height of the peak. For non-sinusoidal periodic waveforms 
you will see many peaks. 

Change the waveform from sine wave to square wave on the function generator. The FFT signal 
will change to show only odd harmonics. Adjust the amplitude of the fundamental frequency to a 
simple value such as 100 mV. Then verify that the amplitudes of the first few harmonics follow 
the theoretical values discussed above. Finally, select a triangular waveform and inspect its 
harmonics. Compare the frequency spectra of the three selected waveforms.  

Musical Synthesizers 

Modern keyboards are capable of simulating sounds from real instruments quite well. They work 
on the basis of Fourier analysis and synthesis. Every tone from a given instrument has its own 
timbre and Fourier spectrum. The fundamental frequency determines the pitch of the tone. Often 
the fundamental does not have the highest amplitude. Some higher harmonics may be stronger. 
Nonetheless, the ear discerns the frequency of the fundamental as the pitch of the tone. Musical 
instruments produce sound with complex Fourier spectra. These change with every note. For 
example, the Fourier spectra of “middle C” (f = 261.63 Hz) from a violin and a viola or bassoon 
look quite different. 

Play “middle C” of some synthesized tones on the keyboard, such as violin, trombone, 
saxophone, guitar etc. Also play non-sustained tones from percussion instruments such as drums, 
cymbals etc. Listen to the attack and decay transients. Observe some corresponding spectra. 

Play some real instruments such violin, trumpet, saxophone, etc. and compare with the 
synthesized sound from the keyboard.  

15. Overlay the spectra on the same display and comment on the similarities and differences.  

16. What do Fourier analysis and Fourier synthesis of sound have in common?  
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Real and Synthesized Sound of a Didgeridoo 

17. Play a didgeridoo (pitch D2) and record the sound spectrum. Use the signal generator in the 
Electroacoustic Toolbox and synthesize the sound with the 4 lowest odd harmonics. Compare the 
synthesized sound with the real sound. 

An example of the spectrum from a didgeridoo and the corresponding synthesized tone is shown 
in Figure 1 below. The synthesized tone sounds similar to the actual one, but not quite the same. 

 

 

Figure 1. Top: Actual sound spectrum of the note D2 from a didgeridoo. The odd harmonics 
dominate, as expected for a “closed tube”. Bottom: Synthesized sound spectrum, using only the 
first four odd harmonics N = 1, 3, 5, 7.  

18. Why does the synthesized tone not sound exactly like the real tone from the didgeridoo? 
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6. Spectrum Analysis of Instruments and Voice 
 
PURPOSE AND BACKGROUND 

The frequency spectrum of sound is analyzed with the Faber Electroacoustics Toolbox (FEaT) 
software. We continue with our discussion of harmonics. All musical instruments produce tones 
that are unique and have a characteristic timbre or quality of sound. The frequency spectra tell 
the harmonic content of a tone and how it can be synthesized. Electronic keyboards make use of 
this to reproduce sounds. We analyze the sound from a variety of instruments, from human 
voice, noise, and pulse trains. 

 
EQUIPMENT 

Musical instruments from the lab or from students, for instance violin, guitar, bassoon, organ 
pipes, recorder, saxophone, trumpet, didgeridoo, corrugated plastic tubes. Yamaha Keyboard, 
microphone, Mac mini with ElectroacousticsToolbox software.  

 
THEORY AND EXPERIMENT 

String Instruments 

All musical instruments use a driving force to set an oscillator into motion. Stringed instruments 
use a bow or plucking for exciting the vibrations. Figure 1 shows an example of a frequency 
spectrum from the open G3 of a violin. The first 6 harmonics are seen. Placing a finger down on 
the fingerboard reduces the effective length of the string and increases the pitch.  

1. The strings of a violin are tuned to the notes G3, D4, A4, and E5, for the guitar they are E2, 
A2, D3, G3, B3 and E4. You see that the note G3 is common to both instruments. Play G3, 
the lowest note on the violin, by bowing and by plucking.  Observe the different frequency 
spectra in the FFT (Fast Fourier Transform) mode of the Electroacoustics Toolbox. How do 
the spectra from the bowed and plucked string differ? Then play G3, the fourth lowest note 
on the guitar, and compare the sound spectrum and timbre with the violin. 

Figure 1 shows an example of a frequency spectrum from the G3 strings of a violin and guitar.  

Placing a finger down on the fingerboard reduces the effective length of the string and increases 
the pitch.  

2. Repeat by bowing and plucking the violin string at a higher pitch. How do the bowed and 
plucked tones differ? What is still similar? 

 
3. What differences do you see in the frequency spectra of the two bowed tones? 
 
4. Obtain the frequency spectra of all four bowed empty strings of the violin with the FFT tool.  
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5. Have the instructor or a violinist play one of the highest notes on the violin and estimate the 
frequency range of a violin with the FFT. 

 

 

Figure 1. Upper figure: Frequency spectra of the plucked open G3 strings of a guitar 
(upper figure) and violin (lower figure). The fundamental frequency (pitch) and 
frequencies of the harmonics are the same. But the timbre (quality of sound) is very 
different because of the different relative amplitudes of the harmonics. 

196Hz 
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Wind Instruments 

Wind instruments use air as the vibrating medium. Brass instruments have closed pipes, with the 
closed end near the mouth. Woodwinds such as the clarinet, oboe and bassoon also are closed 
pipes, with a reed at the closed end.  The lowest harmonics of these instruments are primarily the 
odd harmonics, as is expected for closed pipes. This applies especially to the clarinet due to its 
straight cylindrical bore. For other wind instruments, all harmonics are present without a special 
dominance of odd or even harmonics. Flutes, piccolos, recorders and, more exotically, an 
ocarina, are open pipes with even and odd harmonics.  

Use a slide whistle and obtain the frequency spectrum of its lowest note, or use another available 
wind instrument such as a recorder. The simple, almost purely sinusoidal frequency spectrum 
from a slide whistle is shown in Figure 2.  Try to over-blow the lowest note and note the next 
harmonic f3 of the closed pipe. Blowing harder may produce f5 and even f7. 

6. Determine the frequency range of the slide whistle by moving its piston. 

7. How does the frequency spectrum of the slide whistle compare to that of the violin? 

Play and record the sound spectra from a flexible corrugated plastic tube (“whirly”) by swirling 
it around in a circle. Record spectra from a trumpet and trombone if possible. 

8. How do these spectra compare with that from the slide whistle?  

9. Determine the harmonic numbers N that are active in the spectrum of the corrugated plastic 
tube. Note that the fundamental most likely does not show. What are the musical intervals 
between the harmonics that are present (e.g. octave, fifth, fourth, third)? 

 

Figure 2. Frequency spectrum of a slide whistle with f = 880Hz. 
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Voice 

The human vocal tract is an intricate system for producing sound. The voice of each person is 
unique. The sound is produced, and its quality determined, by the vocal tract consisting of throat, 
nasal cavity, and mouth. Each of these components acts as a resonator with characteristic 
resonant frequencies. The different vowel sounds come from different regions of the vocal tract.  
This allows for a large variety of sounds, but some general characteristics exist. 

10. The human throat has a typical overall length of 17 cm. Consider it as a simple pipe, with one 
end closed at the vocal folds and the other open at the mouth. What is the fundamental 
resonance frequency? 

Have a male and female student sing the vowels “oo” or “ah” into the microphone. Observe the 
resulting frequency spectrum with the FFT tool. Figure 3 shows such a spectrum for a male voice 
singing “ah” with a pitch of 220 Hz.  

The frequency regions where several neighboring harmonics have high amplitudes are called 
vocal formants. Some persons may have similar formants because of similar size and shape of 
their vocal tract. The individual resonators of the tract produce the different formants. They can 
be adjusted by a change in size and shape of the throat, nasal cavity and mouth. How this is done 
distinguishes a great singer from a bad one. Vocal formants are what we listen to in order to 
recognize persons. Adjusting the cavities of the vocal tract changes the formant regions. 
Adjusting the tension in the vocal cords changes the pitch and associated harmonics. 

 

Figure 3. Male voice singing an “ah” sound at f1 = 220 Hz 
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11. Have a male and female student sing a vowel sound “oo”. What is the frequency range of the 
first formant region for these voices? Why can the formants be different? 

12. Have two or more students with noticeably different voices sing the vowel sounds “oo”, 
“ah”, and “ee” into the microphone. Acquire the frequency spectra. Compare the formant 
regions of the students. In Table 1, record the first and second formant region for one of the 
students. An example for the vowel sound “ee” from a male and female student is shown in 
Figure 4 and from the sound “eh” in Figure 5. 

Table 1: Vowel sounds and corresponding vocal formant regions. 

Sound 1st   Formant 
region (Hz) 

2nd  Formant 
region (Hz) 

oo   
ah   
ee   

 

 

 

Figure 4. Top: Vowel sound “ee” from male voice. Bottom: Vowel “ee” from female voice. The 
female voice has purer harmonics. Note the formant regions. 
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Figure 5.  Vocal “eh” sound from a male (red) and female voice (black). The pitch from the 
female voice is an octave higher. The formant regions cover similar frequency ranges, as is to be 
expected because of the similar sizes of the vocal tracts.   

13. Identify any formant regions in the male and female in Figure 4 where the amplitudes are 
pronounced. 

 
14. How can you effectively change the resonant frequencies of the vocal tract (formant regions) 

and of the vocal folds?  
 
15. Telephones transmit frequencies only in the approximate range 300-3000 Hz. Why is this 

frequency range sufficient for most purposes? 
 
The human vocal tract produces various types of sound. Continuant sounds are consonant sounds 
such as “m” and “n” that have a soft continuous tone. Sibilant sounds are consonants such as “s” 
and “z” that can be continuous and sound rather harsh. Plosive sounds are short and explosive 
like “p” and “t”. Observe some of these sounds and their frequency spectra. 
 
16. Which vocal sounds sound more “musical”? Hint: Which sounds have a discrete frequency 

spectrum as compared to a more continuous spectrum with many closely spaced frequencies 
characteristic of noise?  

 
17. Which sounds are not “musical” and rather “noisy” and have a rather continuous frequency 

spectrum? 
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Voice and Audio Spectrograms 
 
Select the spectrogram mode in the Electracoustics Tool box software. You will see frequency 
on the y-axis versus progressing time on the x-axis, with the intensity of the sound in color. This 
3-parameter display of sound may be the most informative one in certain situations, for example 
voice analysis. 
 
18. Observe a voice sonogram (not a frequency spectrum) from a student singing a vowel. Do 

you see any discrete bands in the spectrogram indicating vocal formants? 
 
19. Have a group of female and male students separately sing the same vowel sound. Record and 

compare both the sound spectra and voice spectrograms with respect to any formants. 
 
20. Play instruments producing simple sounds, e.g. an organ pipe or didgeridoo. Interpret their 

sound spectrograms in terms of the small number of harmonics present.   
 
21. Play an instrument that produces a complex sound, e.g. a saxophone, krummhorn, or 

harmonica. Interpret their sound spectrograms and compare with the pipe or didgeridoo. 
 
Keyboard 
 
Connect the keyboard to the Mac mini and simulate some of the real instruments played in this 
laboratory. Select different “voices” on the keyboard. For example, use Voice #056 for “Violin”. 
Play the same note on the keyboard “violin” that you played on the real violin. Take a frequency 
spectrum of the synthesized tone from the keyboard and compare with the spectrum of real 
violin. Play the synthesized sound of some other instruments such as “guitar” on the keyboard. 
Listen and compare with the real instrument.  
 
22. Which synthesized keyboard sound most closely resembles the actual instrument? (Try the 

trumpet!) 
 
23. What features does synthesized sound generally lack compared to the real sound? How does 

this affect the tonal quality or timbre of the sound? 
 
24. Which instrument would be the hardest to synthesize, and why? 
 
25. Which instrument would be the easiest to synthesize, and why? 
 
 
Percussion Instruments, Noise, and Pulse Trains 
 
Play a real snare drum and a “snare drum” synthesized on the keyboard. Analyze their frequency 
spectra. Note that the spectra are largely continuous. This is a general feature of non-periodic, 
non-sustained sound. 
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26. Describe the similarities and differences in the spectra of the real and synthesized snare 
drum.  

 
27. How could you change the frequency spectrum of the synthesized snare drum to make it 

sound more like the real one? 
 

28. Undo the latch on the snare drum so that it becomes a tom drum. Analyze the frequency 
spectrum of the tom. Does it sound more musical? Describe the difference between the 
frequency spectra of the snare drum and the tom drum. 

 
29. Emit a pulse train from your lips by producing a buzzing sound. Record a frequency 

spectrum. Is the spectrum continuous or discrete? Is it noise? Is the sound periodic? Why 
does it not sound musical? (Hint: Discuss the structure and width of the frequency spikes.) 
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7. Sound Intensity, Hearing, Just Noticeable Difference (JND) 
 
PURPOSE AND BACKGROUND 

We can hear a wide range of sound intensities and frequencies. The intensity between the 
thresholds of hearing and the threshold of pain varies by a factor of 1012, i.e. by 12 orders of 
magnitude or 120 decibel. The corresponding range in air pressure amplitudes is a factor of 106. 
In view of this extreme range in sound intensity level (SIL), numbers are most conveniently 
expressed in power-of-ten notation and with a decibel or dB-scale.  

We study in the present laboratory sound intensity levels (SIL) and the frequency response of the 
human ear. We also discuss “just noticeable differences” (JND) in intensity and frequency that 
the ear can discern.  

The ear is sensitive to a range in frequencies from about 20 Hz to near 20 kHz. This audible 
range thus covers a factor of 103 in frequency, which is not nearly as large as the intensity range 
of 1012. In order to cover these large ranges, the ear response is compressed or logarithmic with 
respect to both frequency and sound intensity.   

 

EQUIPMENT 

Microphone, calibrated sound level meter, speakers, Mac mini, 2 stand-alone signal generators. 

 

THEORY AND EXPERIMENT 

The amplitude of a sound wave corresponds to air pressure fluctuations or compressions and 
rarefactions of the air in a longitudinal wave.  

The threshold of hearing is a sound intensity at the ear of  at f = 1000 Hz.  

This is the reference intensity for measurements. The sound intensity level (SIL) is defined by 
comparing any intensity I to the threshold of hearing I0 according to 

            (1) Inverse equation:     (2),  

where the logarithm taken to the base 10. 

The SIL is measured in decibel or dB.  

For example, let the sound intensity in a room be .  The SIL then is  

2
121010
m
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0
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I
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2m

W6101I −×=



7-2 

 

   SIL =  

The SIL also can be used to express a change in intensity from one value to another, without 
referring to the threshold of hearing I0. We are then dealing with a change in SIL and not the SIL 
itself. For instance if the intensity I doubles to 2I, we have a  

Change in SIL =             (3) 

Therefore, a doubling in intensity corresponds to an increase of 3 dB in the SIL. 

1. Use a sound level meter and find the SIL of the background noise in the room. There always is 
ambient noise from air conditioners, computer fans etc. The sound intensity level in a typical 
environment generally is much higher than the threshold of hearing. What is the measured SIL of 
the background noise in our laboratory?  

SIL =__________dB 

2. What is the sound intensity I of this background noise, expressed in units of W/m2?  Hint: Use 
equation (1) and solve for I. Ask your instructor for help if needed. 

1. I =__________  

3. Use the FEaT Sound Level Meter software and record the sound intensity level of one student 
clapping.  

SIL1 =__________dB 

4. Calculate the theoretical increase in sound intensity level, if the intensity I10 for ten students 
clapping is ten times the intensity I1 for one: 

SIL10 - SIL1=__________dB 

5. Make an educated guess of the sound intensity level of ten students clapping together, each 
equally loud as the student before. Measure the actual value and record it here: 

  SIL10 =__________dB 

A sound of frequency f =1000 Hz and an intensity of  becomes quite painful to the ear. 

6. What is the sound intensity level SIL in dB of a 1000Hz sinusoidal tone at the threshold of 
pain? 

SIL =__________dB 

€ 

10dB ⋅ log10
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1×10−12
% 
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( 
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I
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Frequency Response of the Ear 

The ear can hear sound over a wide frequency range from about 20 Hz to 20 kHz. However, the 
perceived intensity varies quite dramatically with frequency. The so-called Fletcher-Munson 
curves in Figure 1 show lines of equal perceived loudness. The curve at the bottom marked “0 
phons” represents the threshold of hearing, and the line marked  “120 phons” the threshold of 
pain. Each curve has a “phon” designation and indicates equal perceived loudness as a function 
of frequency. The “decibel” and “phon” scales agree by convention at a frequency of 1000 Hz 
(see Figure 1). For example, if a loudspeaker produces a 1000 Hz tone with SIL = 60 dB at your 
location, you perceive this as SIL = 60 dB and loudness of 60 phon. If on the other hand the 
speaker produces a tone at 100 Hz with the same SIL = 60 dB, you hear this less loud than the 
1000 Hz tone. In order for the two frequencies to sound equally loud, the speaker must produce 
the 100 Hz tone at about SIL = 70 dB instead. Verify this on the curve labeled “60 phons”!  

You can see from Figure 1 that the human ear is most sensitive to sound around 4000 Hz, where 
the Fletcher-Munson curves dip lowest. Therefore, if you follow a Fletcher-Munson curve from 
4000 Hz to lower frequencies, the sound intensity must be raised to be perceived as equally loud.  
The same applies to higher frequencies above 4000 Hz.  

 

Figure 1. Fletcher-Munson curves of equal loudness.  (“Physics of Sound” by R. A. Berg and D.  
     G. Stork.) 

Open three Signal Generator tools in the FEaT software. Set them to frequencies of 100, 1000, 
4000 Hz. Set the Master Volume of all three tools to 20% maximum. Use the volume knob on 
the stereo receiver to adjust the f =1000 Hz tone to 60 dB on a calibrated Sound Level Meter. 
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Adjust the Master Volume of the other two tools for a perceived loudness equal to that of the 
1000 Hz tone.  

7. What is the measured SIL of the 100Hz tone? 

8. What is the measured SIL of the 4000 Hz tone? 

9. From the Fletcher-Munson curve labeled “60 phons” in Figure 1, read the SIL at 100 Hz and 
4000 Hz. How close are your measurements to the dB-values on the 60-phon curve?  

Just Noticeable Difference (JND) in Intensity 

The just noticeable difference in intensity (JND) is the smallest change in SIL the ear can 
discern. Usually a 25% or 1 dB change in intensity is detected. This depends somewhat on sound 
intensity and frequency as can be seen in Figure 2. As the intensity or frequency decreases, the 
ear becomes less sensitive to changes. 

10. Express a 25% change in intensity I as a change in dB.   Answer: Change in SIL =       dB 

(Hint:  Use Change in SIL = , where I2  = 1.25I1.)  

Use an external function generator (without the computer) that produces sine waves and square 
waves. Play the sound through a loudspeaker. Use a portable sound level meter to read the sound 
intensity level in the room. Play a sine wave. Adjust the SIL on the signal generator so that it 
reads 80 dB. Increase the intensity slowly until you hear a change in intensity. 

11. What is your measured JND from the sound level meter readings for a sine wave?                                            
    JND (80 dB, 1000 Hz) =    dB                                     
What is the value for the JND in Figure 2 on the 1000 Hz curve at 80 dB?                                             
   JND (80 dB, 1000 Hz)  =    dB 

Use two signal generators at 1000 Hz and switch quickly between them. Keep switching between 
the generators while you change the SIL on one of them. 

12. What is your JND when changing the intensity quickly? Compare with a slow change.  
   JND (80 dB, 1000 Hz) =   dB 

13. Obtain the JND at 1000 Hz from Figure 2. Compare your values for this from questions 11 
and 12 with the value from Figure 2. Your answers:        
     From Figure 2:    

14. Compare the JND of a square wave at f = 1000 Hz with that of a sine wave. Alternate 
quickly between the two types of waves. For which do you get a smaller JND, i.e. for which can 
you hear smaller differences in SIL? Can you give a reason for this? Check one answer: 

JND is smaller with square wave   JND is smaller with sine wave   

Give a reason for your answer. (Hint: Consider the harmonics in the square wave.) 

10dB⋅ log10
I2
I1
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Figure 2. Just noticeable difference (JND) curves for 70 Hz, 200 Hz, and 1000 Hz sine waves. 
(From: “Physics of Sound” by R. A. Berg and D. G. Stock.) 

Just Noticeable Difference (JND) in Frequency 

In addition to discern changes in sound intensity, we have even a  better ability to notice changes 
in frequency. Let us do the following simple experiment:  

15. Play two pure tones sequentially. Start with the same frequency. Increase one frequency 
slightly and keep playing both tones one after another. When do you hear the just noticeable 
difference in frequency?  Do this at frequencies of 200 Hz and 800 Hz. 

Just noticeable difference = _______ Hz, or _____%, at a frequency f = 200 Hz.  

Just noticeable difference = _______ Hz, or _____%, at a frequency f = 800 Hz.  

 Loudness in Sones 

The dB-values above are based on objective measurements of the sound intensity. There also 
exists a subjective sone scale that tells what sounds “twice as loud” to many persons.  Such a 
“twice as loud curve” is shown as a straight line in Figure 3. Note that both the ordinate and 
abscissa scales are logarithmic. On the sone scale, 1 sone corresponds to a loudness level of 40 
phon for a pure sine wave with f = 1000 Hz. For the special case of a sine tone of frequency f = 
1000 Hz, the number of phon is the same as the number of dB.  

Figure 3 shows that, in order for sound to be perceived as twice as loud, the sound intensity level 
is higher by 10 dB. (Some persons do perceive a 6 dB increase as twice as loud.) For example, 
for an increase in loudness from 1 sone to 2 sone, the intensity increases by 10 dB from 40 dB to 
50 dB. Generally, for every increase in intensity by 10 dB, the sone number doubles. Example: 
For a doubling in loudness from 4 to 8 sone, the sound intensity increases from 60 to 70 dB. 
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16. Start with a 1000 Hz sine tone at SIL = 60 dB and increase the intensity without looking at 
the sound level meter until you perceive the sound as twice as loud. By how many dB did the 
SIL increase?    

Measured increase in SIL:      dB  

Expected increase according to the above:    dB 

 

Figure 3. Sone scale, with “twice as loud” meaning a doubling in the sone number. The reference 
is 1 sone at a loudness level of 40 phon. The phon scale is the same as the dB scale for a pure 
tone of 1000 Hz. 

17. According to Figure 3, what is the increase in phon for a doubling in loudness from 10 to 20 
sone?  

18. How many times louder does a 90 phon tone sound than a 60 phon tone?  

The sone scale is used for specifying the loudness of fans and appliances. For instance, quiet 
bathroom fans have a rating of 1 to 2 sones, louder ones 3 to 4 sones or more. 

 

Sound Intensity Level versus Pressure Amplitude 

The sound intensity is proportional to the square of the wave amplitude. Our range of hearing 
corresponds to a factor of 1012 in the change of intensity. This corresponds to a range of 106 in 
the pressure amplitude. According to Figure 1, the pressure amplitude of sound at the threshold 
of hearing is 2x10-5 Pa. It is 20 Pa at the threshold of pain. These are minute values compared 
with  the static atmospheric pressure. Our ear is very sensitive to pressure changes in the audible 
frequency range. Very small amplitudes suffice to hear well. 
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8. Room Acoustics 
 

PURPOSE AND BACKGROUND 

An enclosed space has characteristic resonance frequencies for standing waves between walls 
and other surfaces. We already have discussed the much simpler case of resonating air columns 
in pipes. The acoustics of a room depends on the volume of the room, the surface area of the 
walls, the sound absorption properties of the materials, and persons and furniture in the room. 
When you sing in a shower, you will notice that certain frequencies are enhanced. This is due to 
resonances in the box-shaped volume of the shower. Resonances may also play an undesirable 
role in concert halls. These resonances may cause feedback noise if electronic sound 
amplification is used. In such cases the resonances can be removed from the frequency spectrum 
with electronic equalizers. 

A study of room acoustics includes the frequency analysis and time analysis of sound. The 
reverberation time is the time it takes for the sound intensity to decay by 60 dB or factor of 106. 
Large concert halls and churches have reverberation times of up to a few seconds. Our music 
laboratory has a reverberation time of about 1 second or less. Sound travels with v = 346 m/s at 
250C.  A large concert hall has large distances for sound to travel and consequently a long decay 
time. The materials from which sound is reflected also affect the reverberation time. Sound 
absorbing materials such as cloth, egg crating, acoustical boards, greatly absorb sound and have 
a short reverberation time. Highly reflective materials such as concrete walls and tile floors 
reflect sound with little absorption and result in long reverberation times. The sound absorption 
of a material depends on frequency and hence so does the reverberation time. One can “tune” the 
reverberation time of a room for best acoustics by the choice of materials and their placement. 

 
EQUIPMENT 

Dynamic microphone, Mac mini, loudspeaker, wooden acoustics cube (“model room”). 

THEORY AND EXPERIMENT 

Room Resonance 

For the simplest case of a box-like room, with all surfaces constructed of the same material,  the 
resonant frequencies are given by the formula 

 ,    (1) 

where Nx, Ny, Nz are integer harmonic numbers, x, y, z are the dimensions of the room, and v is 
the speed of sound in air. For example, the lowest resonance frequency (fundamental) for the x-
direction is f100 = v/2x, with Nx=1, and Ny=Nz=0. This is the same as for the fundamental 
frequency of a vibrating string, where the wavelength was twice the length of the string. Now the 
wavelength is twice the x-dimension of the box. The y and z dimensions have their resonance 
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frequencies as well, calculated in the same way. Many higher resonance frequencies exist for the 
standing waves in each direction and also when waves get reflected at an angle with respect to 
the walls of the box. These frequencies are obtained from equation (1), with more than one of the 
harmonic numbers Nx, Ny and Nz equal to 1 or larger. 

Our music laboratory has a complicated geometry. It is not a “box” and therefore it has a much 
more complex resonance spectrum than that from equation (1).  The room contains furniture, 
equipment, and people that change the resonances. Nevertheless, we shall assume in a grand 
simplification that the room is box-like and calculate the lowest resonances.  

Measure the length x, width y, and average height z of the music laboratory. 

x =__________m y =__________m z =__________m 

1. Calculate the three fundamental resonance frequencies of the room from the formula 

       (2) 

where  L is any of the lengths x, y, z, and v = 346 m/s at an assumed room temperature of 250C. 

f100 =   Hz  f010 =   Hz  f001 =   Hz 

2. Calculate the first overtones (2nd harmonics) of each of the three fundamentals by doubling 
the frequencies from the preceding question. 

f200 =   Hz  f020 =   Hz  f002 =   Hz 

3. Write down the range of these first 6 frequencies:   Hz  to    Hz 

Acoustics Box.  

Instead of studying our laboratory in more detail, we use a cubical box or “model room” with 
identical dimensions x = y = z = L  = 362 mm. See Figure 1 for a similar but non-cubical box. 
The frequency spectrum for this cubical “room” is much simpler than for a real room with 
different dimensions, surfaces, furniture etc. Formula 1 above simplifies to  

         (3) 

The integers N1, N2, N3 in the formula are the harmonic or mode numbers. For example, the 
lowest mode with an air resonance in only the x-direction is (N1, N2, N3) = (1, 0, 0). The 
corresponding resonance frequency is  

           (4) 

For a cubical box, we obviously have the same resonance frequency f1,0,0 for the three modes 
(1,0,0), (0,1,0), (0,0,1). 
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Figure 1. Acoustics box (as shown or use an available wooden cube) to simulate the acoustics of 
a room (built by Arnold Fernandez). The small speaker at the top excites box resonances with a 
sine sweep or white noise. The microphone inserted on the right records the resonances.  

Acquire some resonance spectra with the “FFT Analyzer” in the FEaT software. Example of  
“room spectra” from the cubical box is shown in Figure 2 and Figure 3. Excite the resonances 
with white noise or sine sweep and determine which yields the better spectra. 

4. Calculate and read off the frequencies of the lowest resonances from Figure 2. For example, 
the lowest frequency in Figure 2 and Figure 3 is f1,0,0 = 478 Hz. Read the next four higher 
frequencies and assign the corresponding modes to them:   

                Frequencies (calculated)      Hz  Hz  Hz  Hz     

    Frequencies (observed)        Hz  Hz  Hz  Hz 

     Mode numbers           (   ,   ,   )   (   ,   ,   )   (   ,   ,   )    (   ,   ,   ) 

Calculation of the Reverberation Time 

The reverberation time is one of the most important characteristics of a room. Just as in the case 
of the resonant frequencies, the reverberation time depends on the geometry of the room, on 
choice of sound absorbing materials, and on persons and furniture in the room. The reverberation 
time can be estimated from the formula 

        (in seconds),    where   Asabin = aA   (5) 

where V is the room volume in ft3, Asabin the effective room area called “absorption” in units of 
sabin, a the absorption coefficient of the wall material, and A the physical area square feet. 
€ 

Treverb = 0.050 V
Asabin
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Figure 2. Resonances in a cubical plywood box of inside dimension L = 362 mm. The lowest 
resonances can be clearly seen and the vibrational mode numbers identified. Some of the modes 
are f(1,0,0)=477.901Hz, f(2,0,0)=955.801Hz, f(2,1,0)=1068Hz, f(2,2,0)=1351Hz, 
f(2,2,1)=f(3,0,0)=1433Hz. The resonances were excited with broadband white noise. 
 

 
Figure 3. Resonances of the cubical box with white noise excitation on an extended frequency 
scale including the higher modes. The modes become denser with increasing frequency. 

f(1,0,0)=478Hz 

f(2,0,0)=956Hz 

f(2,1,0)=1068Hz 

f(2,2,0)=1351Hz 

f(3,0,0)=f(2,2,1)=1433Hz 
f(3,2,0)=1723Hz 
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The unit sabin is named after Wallace C. Sabine, founder of architectural acoustics. One sabin is 
equal to a square foot of perfectly absorbing material. For instance, a 3 ft2 hole in a wall is a 
perfect sound absorber. It reflects no sound and corresponds to an effective area Aesabin= 3 sabin. 
Table 1 shows the absorption coefficients of several common materials. For example, a piece of 
carpet with an area of 3 ft2 at a sound frequency of 500 Hz has an absorption coefficient a = 0.3 
and an effective area Asabin = aA = 0.3×3 = 0.90 sabin. 

Table 1. Absorption coefficients a of various materials. (Values from Richard E. Berg and David 
G. Stork, “The Physics of Sound”) 

 Frequency (Hz) 
Material 125 250 500 1000 2000 4000 

Concrete, bricks 0.01 0.01 0.02 0.02 0.02 0.03 
Carpet 0.10 0.20 0.30 0.35 0.50 0.60 

Curtains 0.05 0.12 0.25 0.35 0.40 0.45 
Acoustical Board 0.25 0.45 0.80 0.90 0.90 0.90 

Glass 0.19 0.08 0.06 0.04 0.03 0.02 
Plasterboard 0.20 0.15 0.10 0.08 0.04 0.02 

Plywood 0.45 0.25 0.13 0.11 0.10 0.09 
 
For an adult person, use Aesabin= aA = 4.2 sabin.  

In order to find the total effective area entering in equation (3), each surface area A of a room in 
ft2 is multiplied by its absorption coefficient a, resulting in the product a×A for each surface. The 
total effective area then is the sum over all areas  

Asabin = a1A1 + a2A2 + a2A2    (6) 

5. Calculate the reverberation time of our lecture room (not the laboratory room) for which the 
width is x = W = 24 ft, length y = L = 29 ft, average height z  = H = 9.5 ft. Use the absorption 
coefficients from Table 1 which you find most appropriate for the materials in the lecture room. 
Look up the values at a frequency of 500 Hz in Table 1. Calculate the effective area Asabin from 
equation (6). Calculate the volume from V = xyz. Use your values for Asabin and V in equation (5) 
to obtain the reverberation time. 

 Answer:        Asabin = _______________sabin,  Treverb = ________________s 

6. Compare your values with those in this Course Guide (see chapter on “Room Acoustics”): 

   Asabin = _______________sabin,  Treverb = ________________s 

Calculation of the Reverberation Time of the Cubical Acoustics Box 

7. Consider the much simpler case of our cubical box and calculate its absorption Asabin and 
reverberation time Treverb. Assume a length L = 362 mm for all three dimensions of the box. Use 
the value for the absorption coefficient for plywood at 500 Hz in Table 1. 

 Answer:          Asabin = _______________sabin,  Treverb = ________________s 
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8. Look up the least and most sound absorbing materials in Table 1 at 500 Hz and calculate the 
reverberation time of the cubical box for those materials instead of plywood.  

Material:       Largest absorption coefficient a =     Treverb =  s 

Material:       Smallest absorption coefficient a =    Treverb =  s                 
                

9. From your results for the shortest and longest reverberation times, describe how you can 
adjust this characteristic time with the choice of proper materials. 

 

Reverberation Time of The Laboratory Room 

Use the signal generator tool and select the Spectrogram Mode in the software.  Set the signal 
generator to 500 Hz or use “white noise”. Record a colored spectrogram, also called a sonogram, 
where the vertical axis on the display is the frequency, the horizontal axis is time, and the color 
indicates sound intensity. Run the spectrogram for a few seconds, then turn off the signal 
generator to stop recording. Observe the time within which the 500 Hz line or white noise fade 
out. This happens within about one second. This gives a good indication of the reverberation 
time. You will have to guess on the spectrogram display when the reverberating sound has faded 
into the background. You may also do this experiment by clapping instead of using a frequency 
generator or white noise. 

10. Write down the reverberation time for our laboratory room as obtained from the sonogram:  

    Answer: Treverb =   s 

11. Compare this reverberation time with the value you calculated for our classroom (see 
Questions 5 and 6). Does the classroom or the laboratory room has a shorter reverberation time? 
Give reasons for the difference. 

 Reasons:             

Reverberation Time of The Hallway 

12. Finally, obtain an estimate of the reverberation time TR for the much simpler geometry of the 
hallway outside the laboratory. Ask a student to clap once with his hands in order to produce an 
impulsive sound. Acquire a sonogram from the time before until after the clap. Read the 
reverberation time from the sonogram. 

    Answer: Treverb =   s 

Resonances in the Hallway 

Place a loudspeaker in the hallway and direct white noise or a sine sweep to a wall near the 
laboratory door. Acquire some resonance spectra with the “FFT Analyzer” in the FEaT software. 
Note the first few resonance frequencies and compare with the frequencies you can calculate 
from the width of the hallway.  
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Reverberation Time in the TTU Southwest Collection/Special Collections Library           

Go to the entry hall of the Southwest Collection Library at TTU. Note its size and building 
materials. Clap once with your hand and listen to the long decay of the sound. Acquire a 
sonogram. The lower frequencies around 500 Hz decay more slowly (Treverb ≈ 2.5 s) than the 
higher ones at 4000 Hz (Treverb ≈ 1.5 s).                                            

13. Acoustically, does the hall have more “warmth” or more “brilliance”? 

14. Use V = 17000 ft3 and Aesabin = 325 sabin for the hall. Calculate the reverberation time TR.                                       

 

Figure 4. Entry Hall of the TTU Southwest Collection/Special Collections Library. 

Focused Sound and Echoes at the Campus Circle at Texas Tech University                        
Take a field trip to the Campus Circle and the Pfluger Fountain at the center of TTU.  Stand in 
the center and clap with your hands. You will hear an echo of focused sound from the low walls 
of the circle. Move away from the center. The echo will be less because of a lack of focus. 

15. Do you hear an echo, reverberating sound, or resonances? Discuss the differences. 

 

   Figure 5. Campus Circle at Texas Tech University. 
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9. Electric Energy and Work, Acoustical Power 
 
PURPOSE AND BACKGROUND 
Electricity is one of the most important energy forms. In this laboratory we study electric energy, 
work, power, voltage, current, and resistance. We measure the power consumption of a 
conventional incandescent light bulb and compare it with the more efficient compact fluorescent 
light bulb (CFL) and the yet more efficient light emitting diode (LED). We will determine the 
energy and dollar savings with a CFL compared to an incandescent light bulb. In a second part of 
this laboratory we investigate the acoustic power radiated by a loudspeaker by finding the sound 
intensity level (SIL) in front of the speaker. The speaker efficiency then follows from the 
acoustic power divided by the electric power. We judge how loud a speaker sounds for a given 
acoustic power and find out how acute our sense of hearing is.   
 
EQUIPMENT 
Loudspeaker, light bulb fixture with incandescent light bulb, compact fluorescent light bulb 
(CFL), light emitting diode (LED), “Watts UP” power meter for light bulbs, power meter for 
loudspeaker (General Radio Output Power Meter 1840-A), two multi-meters for current and 
voltage measurements, PASCO Sine Wave Generator, EXTECH Digital Sound Level Meter. 
 
Some Theory Concerning Power, Energy, Work, and Electricity 
 
Energy is the ability to do work. 
 
Example: 1 gallon of gasoline contains energy to do work. An automobile engine does work and 
moves a car 30 miles with this energy. 
Unit of energy and work:    1 Joule (J) 
 
Power is the rate at which work is done  Power = Work/Time or P = W/t   
 
Work       Work = Power×Time   W = P×t 
 
The unit of power is Joule/second = Watt 1 J/s  = 1 Watt (W) 
 
Ohm’s law of electricity   V = I×R, where 
 
 V = voltage across a load in volt (V), for instance a light bulb or loudspeaker 
 I  = current through the load in Ampere (A) 
 R = resistance of the load in Ohm (W) 
 
Electric power   P = V×I, or equivalently P = I2R and P = V2/R 
 
Common unit of energy: kilowatt×hour (kWh) 
 
Conversion: 1 kWh = 1000 W×3,600 s = 3,600,000 W× s = 3,600,000 J = 3.6 x 106 J  
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Example: A sedentary person consumes 2000 kcal (kilocalories) of food energy per day. The 
conversion is 1 kcal = 4185 Joule. Therefore 2000 kcal = 8,370,000 J. This amount of energy is 
consumed in a time t = 24 hours = 86,400 s. 
Hence the rate of energy consumption is P = W/t = 8,370,000 J/86,400 s = 97 J/s = 97 W or 
about 100 W. 
This is typical for the resting metabolic rate of a person. You may know this rate as “2000 Kcal 
per day” rather than 100 Watt. When we sit around doing little, we burn food energy at the rate 
of 100 W, i.e. about the same as an old-style 100 W incandescent light bulb consumes in the 
form of electricity. 
 
EXPERIMENTS 
 
Power and Energy Consumption in Light Bulbs 
 
Use the triple light bulb fixture. Note the brightness from the conventional incandescent light 
bulb, the compact fluorescent light bulb (CFL), and the light emitting diode (LED) light bulb. 
 
1. After warming up, are the three light bulbs about equally bright?         
 
2. Write down the power rating of the three light bulbs, 40 W, 9 W, 6W, on the next line: 
 
Incandescent light bulb P = ________W       CFL P = ________W       LED P = ________W 
 
3. Plug the “Watts Up” Power Meter into a household outlet. Plug the triple light bulb fixture 
into the “Watts Up” meter. Read the power consumed by each light bulb. Compare with their 
nominal ratings above:  
 
Incandescent light bulb P = ________W       CFL P = ________W       LED P = ________W 
 
4. Read the current in ampere on the meter of the light bulb fixture. Assume a household voltage 
of V = 120 Volt. Calculate the power from the formula P = V×I. 
 
Incandescent light bulb P = ________W       CFL P = ________W       LED P = ________W 
  
5. How well do the values for power in questions 2, 3, 4 agree? Express the differences in 
percent. Explain why the readings from experiment 4 above for the CFL and LED may differ 
from experiments 2 and 3.  
Ask your instructor! (Hint: The AC power for a CFL and LED is not simply P = V×I.)   
 
6. Suppose you turn the light bulbs on for 5 hours each day. Calculate the energy used in a 30-
day month. Express your answer in Joule and then convert to kWh. 
 
Incandescent light bulb:   Energy = _____________J  =  ______________kWh 
CFL light bulb:   Energy = _____________J  =  ______________kWh 
LED light bulb:   Energy = _____________J  =  ______________kWh 
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7.  Electricity costs about 13 cents/kWh. What is the electric bill for the light bulbs in a month? 
 
Incandescent light bulb    Electric bill = $   
Compact fluorescent light bulb (CFL) Electric bill = $   
Light emitting diode (LED)   Electric bill = $   
 
8. An incandescent light bulb costs $0.75 (if still available), a CFL $1.50, and an LED $5.00.  
How long does it take to amortize the extra cost of the CFL and LED over the incandescent light 
bulb? 
 
Amortization time:  CFL   months   LED   months  
 
9. How much money is saved over the lifetime of 10,000 hours of a CFL and 20,000 hours of an 
LED, compared to the 2000 hours for an incandescent light bulb?  
Include in your calculation the number of incandescent light bulbs you would need during the 
lifetime of a CFL and LED. 
 
Money saved:  CFL $      LED $     
 
10. What are the energy savings in percent when using a CFL and LED instead of an 
incandescent light bulb? (Hint: Compare the wattages of the three bulbs.) 
 
Energy savings in percent when using a  CFL =  % or LED =   %    
 
Electric Power to a Loudspeaker 
 
Connect a signal generator (e.g. PASCO WA 9867 sine wave generator) to a loudspeaker (not 
the dedicated computer speakers). Do not plug the signal generator into the household outlet yet. 
Connect a multi-meter, set to the Ammeter mode, in-line between the loudspeaker and the signal 
generator. Connect a multi-meter, set to the Voltmeter mode, in parallel to the speaker inputs. 

 
Figure 1. Schematic of the speaker connections to a signal generator, voltmeter, and ammeter. 
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Select AC alternating current settings (not DC settings!) on the ammeter and voltmeter. Choose 
an initially high range for Amperes and Volts on the meters. Turn down the amplitude on the 
signal generator. Now plug the signal generator into the household outlet and choose a frequency 
in the mid-range, i.e. 500 Hz. Observe the voltage and current on the meters. Play with the 
amplitude and frequency settings and listen to the loudness and pitch of the sound.  
 
11. At a comfortable loudness from the speaker, note the current through the speaker and the 
voltage across its terminals. 
 
Current  I = _______Ampere  Voltage V = ________Volt 
 
12. Calculate the power to the loudspeaker from the formula P = I×V. 
 
       Power   P = ________W 
 
13. Loudspeakers of hi-fi systems often are rated at 100 W or higher. 
How does your answer for our loudspeaker compare with such ratings? 
 
14. Do you think a power of several hundred Watt is necessary? Why or why not? 
  
Resistance or Impedance of a Loudspeaker, Power Continued  
 
The reaction of a loudspeaker to an applied AC voltage is called impedance, labeled with the 
letter Z. Impedance is not the same as resistance because it also includes capacitance and 
inductance. We ignore this here and use resistance for impedance. Use Ohm’s law V = IR and 
calculate the resistance from R = V/I. Use the value of R to get an estimate for the impedance. 
 
15. Obtain the impedance of the loudspeaker from your measured voltage and current. Compare 
this with the specification on the loudspeaker enclosure. 
 
Impedance    Z = V/I = ______/______ = ______W 
Written on enclosure    Z = ______W 
 
16. Obtain the power to the loudspeaker from the expression P = I2R. 
 
Power      P = (______)2×(______)  =  _______W 
 
Compare your answer with the result from question 12:  P =   W 
     
Loudspeaker Power Measured Directly with a Power Meter 
 
Do not change the amplitude and frequency settings on the signal generator. Feed the output 
from the signal generator directly into the “General Radio Output Power Meter” without the 
loudspeaker, voltmeter, and ammeter in the circuit. Set the impedance dial on the power meter to 
the same value as for the impedance found in question 15.  
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17. What is the reading on the power meter? Compare with your calculated results from 
questions 12 and 16. 
   Power read from power meter: a) P = ______W 
   Power from question 12:   b) P = ______W 
   Power from question 16:    c) P = ______W 
 
 
Acoustical Power and Loudspeaker Efficiency 
 
Keep a note of the power read from the “General Radio Output Power Meter”. Keep the 
amplitude and frequency settings on the signal generator. Remove the power meter from the 
signal generator and replace it with the loudspeaker. 
 
Use a sound level meter, e.g. the EXTECH Digital Sound Level Meter.  Choose setting “A” on it 
corresponding to the human ear response. Measure the sound intensity level (SIL) at various 
locations in front of and close to the speaker. For instance, measure the SIL at a distance between 
0.5 m and 1 m from the speaker. Move the sound level meter around the speaker in a circular arc, 
left to right, and up and down, always at the same distance from the center of the speaker. Note 
the reading on the sound level meter. 
 
18. Write down the SIL readings from the sound level meter. 
 
SIL center = ____dB,  SILleft = ____dB,   SILright = ____dB,   SILup = ____dB,  SILdown =  ____dB 
 

 
 
Figure 2: Fletcher-Munson curves of equal loudness.  (“Physics of Sound” by R. A. Berg and  
    D.G. Stork.) 
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19. Take the average of these sound intensity level values. 
 
      SILaverage =______dB 
 
20. Consult the Fletcher-Munson curves in Figure 2 and write down the sound intensities (not the 
sound intensity levels!) in Watt/m2 corresponding to your SIL values. 
Example: For SIL = 80 dB we have a sound intensity I = 0.0001 Watt/m2 = 1×10-4 Watt/m2. 
 
Icenter = ________,   Ileft = _________ ,   Iright = _________ ,  Iup = _________ ,  Idown =  ________ 
 
Average of these intensity values:  Iave = _______× 10-4 W/m2 
  
21. Calculate the total acoustical power radiated by the loudspeaker. Assume that the acoustical 
power is radiated into a cone in front of the speaker.  For the area of the base of the cone at a 
distance r in front of the speaker take A = 0.6pr2. Write down the distance where you took the 
measurements with the SIL meter and calculate the area through which the effective acoustical 
power went. 
  Distance r = _____m  Area A = _____m2 
 
22. Multiply your value for the average intensity Iaverage from question 20 by the area A. This is a 
good estimate for the total radiated acoustical power. 
 
Acoustical power Pacoustical = Iaverage×A = _______W/m2 × _______m2 = ________Watt 
You can now compare the radiated acoustical power with the electric power to the speaker (see 
result from 17a) and obtain the loudspeaker efficiency. 
 
  Speaker efficiency = Pacoustical/Pelectric x100 = _______% 
 
23. Use your answer for the speaker efficiency to comment on the conversion of electrical to 
acoustical power.  
 
24. Compare the acoustical power output from a speaker with the light output from a compact 
fluorescent light bulb. Assume that the same electrical power (e.g. 10 W) goes into the speaker 
and the CFL. For the CFL assume a conversion efficiency of 20% from electric power to light. 
Write down the acoustical output from the speaker and the light output from the CFL. 
 
Speaker output  Pacoustical = ______W   CFL output Plight = ______W 
 
Your result should indicate that that the emitted acoustical power is much lower than the light 
output from a CFL. 
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10. Frequency Response of a Stringed Instrument 
 
PURPOSE AND BACKGROUND 
 
In this laboratory we study the frequency response of a violin when a sine sweep is applied to the 
bridge or the instrument is tapped at the front and back. Such measurements give information on 
the quality of an instrument. We also simulate the resonances of the instrument with so-called 
Chladni figures on a metal plate that is shaped like a violin body.  
 
EQUIPMENT 
 
Violin, Mac mini, microphone, violin support beam, vibrator, stereo receiver, fine dry sand, 
Chladni plate.  
 
THEORY AND EXPERIMENT 
 
A violin is played by bowing or plucking its strings. The string vibrations are transferred to a 
bridge mounted on the top plate, and from there to the sound post placed under pressure between 
the top plate and back plate of the violin body. All this couples the string vibrations to the 
instrument. As a result, the violin body resonates over a rather wide frequency range. The cavity 
of the violin acts as a Helmholtz resonator. The wood and the air of the cavity resonate to create 
the characteristic rich tone of a violin. The quality of the sound is affected by the materials, the 
way the wood is shaped, the glue for joining the components, the varnish, and the skills of the 
instrument maker.  
    
1. The four strings of a violin are tuned in musical fifths to the notes G3, D4, A4, and E5. Look 

up the frequency range of the violin from G3 to C7 (with C7 played on the E5-string). 
Frequency of G3 =         Hz  Frequency of C7 =   Hz 
 

Chladni Figures 
 
We use a so-called Chladni plate to simulate the vibrational patterns on the violin body. The 
Chladni plate is made of sheet metal and shaped in the form of the violin back plate. This is a 
very rough approximation of a violin body, where in reality wood is used and the plates are 
curved. Nonetheless, we produce resonance patterns with some resemblance to a real violin.  
 
Place the metal plate horizontally on a vibrator that is driven by a frequency generator. Place a 
large sheet of paper under this setup and sprinkle some sand evenly on the plate. You need the 
paper to collect the sand and not mess up the lab. 
 
Set the amplitude on the function generator to about halfway on the dial. Adjust the frequency 
until you can see clear vibrational patterns of the jumping sand particles on the plate. The 
resonances start at frequencies well below G3 of a real violin. Take a quick look at the patterns 
from these low frequencies. Then begin at about 180 Hz and slowly increase the frequency until 
audible and visible resonances occur. The sand jumps around and forms patterns.  The places 
where the sand collects are the vibrational nodes with minimum movement of the plate. (This is 



10-2 

 

a 2-dimensional analogy to the 1-dimensional nodes of a vibrating string.) The places where no 
sand is left are the anti-nodes where the Chladni plate vibrates the most. The sand moves away 
from these anti-nodal regions towards the nodal areas. You will see many beautiful and strange 
looking patterns as you increase the frequency. Figure 1 shows an example of a Chladni figure. 
 
 

 
 

Figure 1. Chladni figures from a metal sheet simulating the back plate of a violin. The 
resonances are excited with a vibrating shaft mounted from below the center. 

 
Our Chladni figures are not really the vibrational modes of a violin. However, the wooden plates 
of a violin do show some qualitatively similar patterns. Find pictures of some real vibrational 
mode patterns in books or on the Internet! The plates of a good violin exhibit one or two major 
wood resonances and air resonances in the volume of the body. The cavity of the body acts as a 
Helmholtz resonator. 
 
2. Write down 10 to15 frequencies of major resonances of the Chladni plate in the range 100 to 

1000 Hz.  

3. Use the camera on your cell phone or any camera and take some pictures of good-looking 
Chladni figures. Add the resonance frequency to each figure.  

4. How does the complexity of the Chladni figures change as the frequency increases? 

An interesting effect is seen when the resonance frequencies of the Chladni plate are plotted 
versus the resonance number N. The first visible resonance (N = 1) seen in the sand occurs at 
about f = 100 Hz. When the excitation frequency is increased slowly on the sine wave generator, 
the first 12 resonances are found to be in the range 100 to 800 Hz.  Plotting these frequencies as 
a function of resonance number N reveals a nearly linear relationship, as seen in Figure 2. Shown 
also along with the resonance frequencies are the pictures of the corresponding Chladni figures.  
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Figure 2. The first 12 resonance patterns (Chladni figures) in the sand of a vibrating metal plate. 
The relationship between the resonance frequency and the resonance number is nearly linear. 
The photographs show the Chladni figures for each resonance. 
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Response Curve of a Violin 
 
The study of the vibrational modes of the violin is much more difficult than the simulation of its 
wood resonances with Chladni figures. The wood has two major resonances that greatly affect 
the tone and quality of a violin. Lower tones may be reinforced by a wood resonance called wood 
prime resonance W’, see Figure 3. On a good violin, the lower notes are given a boost by the W’ 
resonance that contributes to a rich deep tone. An additional wood resonance W may boost the 
higher frequencies. If a note is played near the frequency regions of the wood resonances, the 
violin becomes louder in intensity. Consequently, any higher harmonics that fall within these 
regions increase in intensity as well, adding to the tone quality or timbre of the instrument. The 
air resonance in the cavity of the violin body (Helmholtz resonator) also increases the intensity 
and quality of the sound. This resonance is determined by the volume and shape of the violin, 
including the f-holes. The air resonance from Stradivarius and Guarneri violins is shown in 
Figure 3 by the open circle. It is seen that only the Stradivarius clearly exhibits the wood 
resonances W and W’, and thus is superior to the Guarneri. (A Guarneri generally is an excellent 
violin, too!)  
 
 

 
Figure 3. Response curves for (a) good Stradivarius violin, (b) “poorer” Guarneri violin. Only 
the Stradivarius clearly shows the wood prime resonance W’ (left dark dot) and the wood 
resonance W (right dark dot). Both violins show the air resonance (open circle). (From C. 
Hutchins “The Physics of Music”, Scientific American, 1962.) 
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Experiment 
 
Use a vibrator and control it with the FEaT software in the Mac mini via the output from the 
stereo receiver, see Figure 4. Couple the vibrator to the bridge of the violin with a clip. The 
bridge directs the vibration of the violin strings to the sound post in the cavity and thus to the 
violin as a whole. Photographs of the violin setup are shown in Figure 5. The violin bridge rocks 
right and left, not straight up and down. Therefore, the coupling from the vibrator must be off-
center in order to produce a good sound, see the clip mounting in Figure 5.  
 

 
 

Figure 4. Violin setup for acquiring the response curve with the FEaT software. A microphone 
and a piezoelectric transducer can be used for signal acquisition. Measurements can also be taken 
by moving the two sensors to the front.  
 
The piezoelectric transducer for sensing the plate vibrations can be taped  to the back or front 
plate (be careful not to damage the varnish!). Similarly, the microphone can be placed near the 
front or back plate. For the front plate, position the microphone close to the f-holes of the violin. 
Set the FEat software to a higher resolution (e.g. 4096 lines) and the frequency scale to 2.8 kHz. 
Sweep a sine wave excitation into the violin via the vibrator-bridge connection and record the 
response curve as the sine frequency is ramped up. Record a loudness response curve (spectrum) 
on a logarithmic scale and linear amplitude scale. 
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Figure 5. Mounting of the violin for recording the response from the front plate. The driving rod 
of the vibrator is fastened off-center to the bridge of the violin with a clip. Note the microphone 
positions in both pictures. (A piezoelectric transducer can be taped to the back (or front) to 
complement the microphone measurements.) 
 
An example of the frequency response measured near the violin front and back plates is shown in 
Figure 6 (on a linear scale). Several resonances are visible in the figure. 
 

 
Figure 6. Response curve of a violin on a linear amplitude scale, excited with white noise by a 
vibrator on the bridge of the violin. Red curve: Microphone near front plate. Black curve: 
Microphone near back plate. (Ordinate scale: The red resonance at 280 Hz is about 500 mV.) 
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We see that the two curves in Figure 6 are qualitatively similar. Pronounced resonances are 
common around 550 Hz and 1800 Hz to both curves. The big difference is the sharp resonance at 
about 280 Hz in the red curve. This is the air resonance from inside the violin body that, of 
course, is only noticeable at the open f-holes of the front plate.  
 
Alternative Excitation of the Violin with Tap Tones  
 
An easy way for exciting the violin vibrations is tapping the back plate. The result is not the 
same as exciting the front plate with a vibrator. But it offers additional information. Tapping the 
back plate of the body excites the resonances similar to applying a noise spectrum. Figure 7 
shows a response curve obtained this way.  
 
5. Look at the response curves in Figure 6 and Figure 7. Can you detect the air resonance and 

wood resonances W’ and W? Hint: See Figure 3 for the approximate locations of the 
resonances from two excellent violins. The frequencies of the open strings of the violin are 
G3 = 196.00 Hz, D4 = 293.66 Hz, A4 = 440.00 Hz, E5 = 659.26 Hz. 

6. Can you definitively say which peak in Figure 6 is the air resonance? How can you be sure? 
What is the frequency of the air resonance? Answer:   Hz. 

7. Compare Figure 7 for our violin with the response curves of the two violins in Figure 3. How 
would you rate the quality of our violin? 

 
Figure 7.Violin response from tapping the back plate, with the microphone near the front plate. 
The pronounced peak near 280 Hz most likely is from the air resonance inside the violin body. 
  
8. Remove the violin from the stand. Ask a violinist among the students to bow the four open 

strings with equal pressure. Which string(s) would you expect to sound louder than others, 
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based on your measured response curves? Specifically, play the open G3-string and then the 
open D4-string. Listen to the loudness of the notes G3 and D4 and compare. Which note 
sounds louder? Is this what you would expect from Figure 7? 

Measurements With a Piezoelectric Transducer 

Shown in Figures 6 and 7 are measurements obtained with a microphone. Take some recordings 
with a piezoelectric transducer mounted at the front and back plates of the violin. Compare with 
the microphone results. 

a) Excitation with vibrator at bridge, piezoelectric transducer at front plate. 

b) Excitation with vibrator at bridge, piezoelectric transducer at back plate. 

Helmholtz Resonance From a Guitar 

Excite the resonances in a guitar with a speaker placed above the guitar opening. Apply white 
noise to the speaker or do a sine-sweep. Listen to resonances of the sound from the opening. 
Place a microphone near the opening and acquire a sound spectrum. Can you detect a Helmholtz 
resonance (air resonance) in the spectrum? 

You can also try exciting the resonances with a vibrator on the top plate of the guitar and a 
microphone near the opening. Again, analyze the spectrum for a Helmholtz resonance. Listen if 
you can hear it directly. 
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11. Musical Scales, Temperament, Elementary Music Theory 
 
PURPOSE AND BACKGROUND 

The arrangement of musical notes today is the result of centuries of changes in both musical style 
and taste. As music became more complex, the tuning of instruments, for instance the piano, 
took various forms. The older styles of tuning are primarily of historical interest, but it is still 
worthwhile to understand how music has arrived at the modern equal temperament. In tuning 
any instrument, a starting pitch must be chosen. For a violin, this pitch is concert A4 (f = 440 
Hz). The rest of the strings are tuned to this pitch. The manner in which they are tuned is called 
the musical temperament. A violin has only four strings and therefore tuning is not difficult. But 
how is a piano tuned with so many keys? What should be the starting pitch, and how do you tune 
the other keys? These questions arose from the need for standardization. This laboratory will 
discuss briefly some features of older temperaments, their benefits and drawbacks. The equal 
temperament will be treated in detail. 

 
EQUIPMENT  

Keyboard, violin, Mac mini 

 
THEORY AND EXPERIMENT 

Pythagorean Temperament 

When music started using multiple parts, chords became integral objects of melodic structure. 
Initially perfect fifths were used to tune all notes on a keyboard. A perfect fifth is rather easy to 
discern, even by the musically challenged. The term fifth refers to the fifth note in a major scale. 
For example, in the C-major scale C, D, E, F, G, A, B, the note “G” is the fifth. The frequency 
ratio between the perfect fifth (G) and the tonic (C) is 3:2.  

The fifth was the first ratio to be used in tuning. Early piano tuners would first tune middle C4, 
then the notes G4, D5, A5, E6, B6, F#7 all in perfect fifths above C4. They also tuned F3, Bb2, Eb2, 
Ab1, Db1 in perfect fifths below C4. F#6 is then tuned by a perfect octave down from F#7, and C#6 
is tuned a perfect fifth above F#6. In this way, the twelve different keys in the chromatic scale 
were determined. All other keys were tuned from these keys by octaves with frequencies in the 
ratio 2:1. The resulting temperament was known as the Pythagorean temperament. 

1. Middle C is commonly taken as C4 = 261.63Hz. What is the frequency of a perfect fifth 
above middle C,  G4 = __________Hz,  and below middle C,   F3 = __________Hz? 

2. Consider the notes Db1 and C#8 tuned by fifths according to the Pythagorean temperament. 
Since all 12 keys in the chromatic scale are determined in this manner, there are 12 jumps of 3/2 
in frequency, or twelve perfect fifths, from Db1 to C#8. Calculate the frequency ratio   

C#8/Db1 =    
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3. Db and C# are the same key on the piano. We thus would expect Db8 and C#8 to have the same 
pitch. (Note that C#8 is one half step above the highest key on the piano, but answer this question 
anyway.) Going from Db1 to Db8 in octaves spans 7 octaves. Each octave increases the frequency 
by a factor of 2. Calculate the frequency ratio 

     Db8/Db1 =    

4. Questions 2 and 3 arrive at the same notes by two different means, one by 12 fifths, the other 
by 7 octaves. How much do the frequency ratios in questions 2 and 3 differ?   

The discrepancy is the Pythagorean comma. Octaves are retained as being perfect, with a ratio of 
2:1. But the fifths must be re-tuned for 12 fifths to equal 7 octaves. In the Pythagorean 
temperament, all fifths are tuned true but the last one. The final fifth sounds very bad and is 
known as the “wolf fifth” because of its growling sound and beats. This became unacceptable as 
music evolved.  

Just Temperament and Mean Tone Temperament. 

When music began to have more differentiated harmonies, the inclusion of a perfect third with a 
frequency ratio 5:4 became increasingly important. The Pythagorean temperament had 
particularly bad thirds and so its use was slowly discarded and replaced by other temperaments.  

The just temperament tuned a perfect fifth above and below middle C4, resulting in G4 and F3, 
respectively. It also tuned perfect thirds above F3 and above middle C4. In this way, major triads, 
composed of the tonic, third, and fifth notes on a scale, sounded perfectly in tune. Tuning the 
other eight keys in just temperament is slightly more complicated than in the Pythagorean 
temperament.  

5. Calculate the frequency of a perfect third above middle C4:  E4 =__________Hz,  and 
below middle C4:        Ab3=__________Hz 

As music expanded into minor keys, one of the serious weaknesses of just temperament became 
painfully apparent. Minor triads sound especially bad in this temperament. The error again is all 
concentrated in one area. In this case, above Eb, the pair F# and Db should be a perfect fifth, but 
each note is reached by two different routes. Therefore this fifth is off by a significant amount. 
The mean tone temperament was created to compensate for the error by spreading it over all the 
fifths, not just one. This too, however, caused problems when musical keys farther from the key 
C where used. 

Equal Temperament  

All these problems eventually led to a resolution with the introduction of equal temperament or 
the equal-tempered scale. Here the error is spread equally across all twelve notes in the 
chromatic sequence. All keys then sound the same. However, there are no true fifths or thirds or 
any other chords, except the octave. The twelve keys in equal temperament are spaced by equal 
frequency ratios. Since an octave must have a 2:1 ratio, the interval between keys must be 
multiplied 12-times in order to give a value of two. This interval therefore is the 12th root of two, 
namely . Thus the frequency of each note is multiplied by this number to give the next note 
one half step or semitone higher. 

12 2



11-3 

 

6. Use a calculator and compute the value of =                  . Calculate the frequencies of the 
remaining 11 notes of the chromatic scale, starting with middle C4. Insert  results in Table 1.  

Table 1. Frequencies of the notes of the chromatic scale in equal temperament, starting with C4. 

Note Frequency Note Frequency 
 C4 261.63Hz  F#4/Gb4   
 C#4/Db4   G4   
 D4   G#4/Ab4   
 D#4/Eb4   A4   
 E4   A#4/Bb4   
 F4    B4   

 

Compare your calculated values in Table 1 with the frequencies shown in Figure 1 for the piano 
keyboard (see end of this chapter). This is the way all pianos are tuned today, including the 
keyboard in our laboratory. 

Verify that the keyboard in the laboratory is correctly tuned to equal temperament by opening a 
FFT tool in FEaT. Make the frequency span range from 0 to 2756.2 Hz and adjust the number of 
spectral lines to 22050. Use the sine-wave-voice on the keyboard (#352). Press and hold a key 
until a definite peak is observed in the frequency spectrum on the computer screen. Read the 
frequency for the peak. Do this for three notes of your choice. 

7. Record the values of the measured frequencies and compare them to the actual frequencies of   
the notes in Figure 1. Collect your data in Table 2. 

Table 2. Three notes on the keyboard.  

Note Actual 
Frequency 

Measured 
Frequency  

      
      
      

 

8. How well is our keyboard tuned to equal temperament?  
 
9. Compare the frequencies of the C major triad in equal temperament and just temperament. For 
just temperament, take the answer for the perfect fifth G4 from Question 1, and perfect third E4 
from Question 4. For equal temperament, use values from Table 1. Insert all values in Table 3. 

 
 
 
 
Table 3. Frequencies of the major triad based on C4, in just and equal temperament. 

12 2
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Just Equal 

Note Frequency Note Frequency 
 C4 261.63 Hz  C4 261.63 Hz 
 E4   E4  
 G4   G4  

 

10. Open three Sound Generator tools in FEaT on the computer and set the sine frequencies for 
the C-major triad in just temperament. Play and listen to this triad from the computer. Then set 
the keyboard to “sine-wave-voice #352” frequencies. Play the major triad in equal temperament 
on the keyboard. Listen to both triads simultaneously and compare.  

11. Which triad sounds “better”, and why?  

12. Can you hear any beats between the two triads? If so, explain which notes they come from. 

Tuning a Violin and Beats 

String instruments in chamber music often are tuned to Pythagorean temperament. The A-string 
of a violin is first tuned beatless to concert A4 = 440 Hz by comparing for instance with a tuning 
fork. The term beatless refers to the absence of “beats” that would otherwise be heard if a note 
were slightly out of tune with another. This can be observed on the computer with two sine wave 
notes a half-step apart, as follows:  

Open an Oscilloscope tool in FEaT and play two sine notes on the keyboard (voice #352) one 
half-step apart, first one note at a time. Then play the two notes simultaneously. The two 
individual notes are sine waves, but when played together they produce a sine wave “within a 
sine wave envelope”. You can hear two things: A tone with a frequency close to the individual 
frequencies f1 and f2, and a slow amplitude variation “beating” with the difference frequency    
Df  =   êf2  - f1½. This difference frequency is the beat frequency. 

13. Measure the beat frequency by finding the time interval from one node to the next of the 
wave form on the computer screen. Take the inverse of this time and find the beat frequency     
Df =__________Hz.  How is the beat frequency related to  = 1.059463? Does your 
measurement show this? 

Once the A4 string on the violin is tuned to 440 Hz, the E5 string, a fifth higher than A4, is tuned 
by beats: The 3rd harmonic of A4, i.e. E6 = 1320Hz, is tuned beatless with the 2nd harmonic of the 
E5 string, which again is E6 = 1320 Hz. In the same manner, the D4 string, which is a fifth down 
from the A4 string, is tuned beatless with the A4 string. Finally, the G3 string, which is a fifth 
down from the D4 string, is tuned beatless with the D4 string. An experienced string instrument 
player can easily hear the beats between two strings that are out of tune and thus tune them to be 
beatless. All strings are tuned by perfect fifths in this way according to the Pythagorean 
temperament. The resulting sound from a string ensemble can be very clean and pleasing. But 
slight dissonances may arise when string instruments tuned to Pythagorean temperament and  an 
equally-tempered piano play together. 

12 2
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14. What are the frequencies of the four strings on the violin tuned to Pythagorean temperament, 
starting with A4 = 440 Hz? Put your entries in Table 4. 

Table 4. Frequencies of the four open violin strings in Pythagorean temperament and 
comparison with equal temperament. 

String Violin 
Tuned f 

Equal 
Temp. f 

G3   
D4   
A4   
E5   

 

15. Start with middle C4 = 261.63 Hz and calculate the frequency of E4 in Pythagorean 
temperament. (Answer: E4 = C4•81/64 = 331.13 Hz). Select a sine wave on the signal generator 
tool at this frequency and play it. Then play E4 = 329.63 Hz on the synthesizer keyboard in equal 
temperament. Do you hear beats between the two notes? What is the expected beat frequency? 
Use a stop watch, measure the beat frequency, and compare: 

   Dfcalculted =   Hz  Dfmeasured =   Hz 

 

Figure 1. Frequencies of the equal temperament scale (Physics of Sound, Richard E. Berg and 
David G. Stork) 


