
4. Air Resonance

PURPOSE AND BACKGROUND

The concept of resonance in a pipe is similar to that of a string. The waves in a pipe consist of
compressions and rarefactions of the air, with back-and-forth motion of the air molecules in the
direction of propagation or against it. The waves in air are thus longitudinal waves. In this labo-
ratory we study standing waves in a pipe. They are the result of two waves traveling in opposite
directions inside the pipe, with each wave being reflected at the ends of the pipe. In this way
the superposition of two waves yields a standing wave, provided that, in addition, the resonance
conditions are met.

For a pipe with both ends open, resonance at the lowest frequency (fundamental frequency or first
harmonic) occurs when there are anti-nodes of the air motion at the ends – and only there, with
a single velocity node at the center, see Figure 1. The motion of air molecules is highest at the
anti-nodes and lowest at the nodes. For a pipe with one end closed and one end open, resonance
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4. Air Resonance  
EQUIPMENT 

PASCO Resonance Tube of variable length, large cardboard packing tube, speaker, large 
spherical Helmholtz resonator, didgeridoo, wine  bottle, Faber Electroacoustics Toolbox (FEaT) 
software, Mac mini, microphone, organ pipes. 

PURPOSE AND BACKGROUND 

The concept of resonance in a pipe is similar to that of a string. The waves in pipes consist of 
compressions and rarefactions of the air, with back-and-forth motion of the air molecules in the 
direction of propagation or against it. The waves in air thus are longitudinal waves. In this 
laboratory we study standing waves in a pipe. They are the result of two waves traveling in 
opposite directions inside the pipe, with each wave being reflected at the ends of the pipe. In this 
way the superposition of two waves yields a standing wave, provided that in addition the 
resonance conditions are met. 

For a pipe with both ends open, resonance at the lowest frequency (fundamental frequency or 
first harmonic) occurs when there are anti-nodes of the air motion at the ends – and only there, 
with a single velocity node at the center, see Figure 1. The motion of air molecules is highest at 
the anti-nodes with maximal compressions and rarefactions, and lowest at the nodes.  

For a pipe with one end closed and one end open, resonance at the lowest frequency occurs when 
we have a velocity node at the closed end and an anti-node at the open end. Plotted in Figure 1 is 
the displacement or velocity of air molecules as a function of position along the pipe. The two 
curves for each pipe in Figure 1 are one-half period of oscillation apart. 

 

 

Figure 1. Open and closed pipe 

For the pipe with both ends open, we have L = λ/2 according to Figure 1. For the closed pipe we 
have L = λ/4. The fundamental frequency is given by   
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where v is the velocity of sound. 

Figure 1: Air molecule displacement in an open and closed pipe.

at the lowest frequency occurs when we have a velocity node at the closed end and an anti-node at
the open end. Plotted in Figure 1 is the displacement or velocity of air molecules as a function of
position along the pipe. The two curves for each pipe in Figure 1 are one-half period of oscillation
apart.

For the pipe with both ends open, we have L = λ/2 according to Figure 1. For the closed pipe we
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where v is the velocity of sound.

Question 1: For a pipe with both ends open, what are the formulas for the fundamental frequency
and the frequencies f2, f3, f4 of the next three overtones or harmonics? (Hint: Higher harmonics
have frequencies that are integer multiples of the fundamental, and all integers are allowed for a
pipe with both ends open.)
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Question 2: For a pipe with one end closed and one end open, we have L = λ/4 according to
Figure 1. Write down the equations for the fundamental frequency and for the first three existing
overtones. (Hint: Only odd integers are allowed as you can see by extending the drawings in Figure 1
to higher harmonics.)

EXPERIMENTAL PROCEDURE

In the lab, we can record the frequency spectrum of sound in a pipe using the setup shown in
Figure 2.

Connect the speaker to the Mac mini. Select white noise from the frequency generator in the Faber
Acoustic Toolbox. Take a frequency spectrum. Note the large increase in sound intensity from
the tube at the fundamental frequency. Figure 3 shows an example frequency spectrum with
the fundamental frequency and harmonics (tube open at both ends). Record the fundamental
frequency and next three harmonics in Table 1 table under Observed f . Compare the calculated
and observed frequencies.

Repeat this procedure for the closed pipe. In this case the closed pipe must have the microphone
and speaker on the same side of the tube. Record the lowest four frequencies in Table 2 under
Observed f. Compare the calculated and observed frequencies.

Using the equations you found in questions 1 and 2, record the calculated resonant frequencies
under Claculated f in Table 1. Notice: do the calculated f match the measured f?
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Experimental Procedure 

Prop the PASCO Resonator Tube in front of the loudspeaker, with the microphone at the other 
end of the tube  - see Figure 2. 

Method 1. Connect the speaker to the Mac mini. Select white noise from the frequency generator 
in the Faber Acoustic Toolbox. Take a frequency spectrum. 

Method 2. Connect the speaker to the Mac mini. Select a frequency sweep from the frequency 
generator in the Faber Acoustic Toolbox. Take a frequency spectrum. 

Note the large increase in sound intensity from the tube at the fundamental frequency. Figure 3 
shows a frequency spectrum from Method 1 with the fundamental frequency and harmonics 
(tube open at both ends). Record the fundamental frequency and next three harmonics in Table 1 
table under Observed f. Compare the calculated and observed frequencies.   

Repeat this procedure for the closed pipe. In this case the closed pipe must have the microphone 
and speaker on the same side of the tube. Record the lowest four frequencies in Table 2 under 
Observed f. Compare the calculated and observed frequencies. 

 

Figure 2. Set up of the resonance tube in the “open tube” configuration. White noise or a sine-
sweep from the Mac mini is applied to the speaker. The sound enters the tube on the left and 
excites the resonances. The microphone on the right records them for display in the computer. In 
the “closed tube” configuration the speaker and microphone must be on the same (right) side. 

Pipe Length Correction  

Note that the calculated and observed fundamental frequencies may not agree well. This has to 
do with the fact that in pipes, waves reflect from the ends of the tube by sticking out a little bit. 
There is an end correction that increases the wavelength. This correction is proportional to the 
radius of the tube. Therefore, the larger the tube radius, the more the wave will “stick out” and 
cause an increase in wavelength. The correction results in an extra length ΔL, given from theory 
by ΔL = 0.61r for each open end, where r is the radius of the pipe. Thus for a closed pipe and 
open pipe of length L and radius R, the effective lengths are, respectively,  

 Leffective = L + 0.61r  (closed)  Leffective = L + 1.22r (open)  (2) 

Figure 2: Set up of the resonance tube in the “open tube” configuration. White noise from the Mac
mini is applied to the speaker. The sound enters the tube on the left and excites the resonances.
The microphone on the right records them for display on the computer. In the “closed tube”
configuration the speaker and microphone must be on the same (right) side.
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4. Calculate the resonance frequencies for the corrected pipe lengths. Add your results in the 
column entitled Corrected f in Tables 1 and 2. 

 

 

Figure 3. Resonances of a PASCO resonance tube excited with a frequency sweep. Upper figure: 
Tube open at both ends with an effective length Leff, open = 1.18 m. Lower figure: Tube closed at 
one end with an effective length Leff, closed = Leff, open /2 ≈ 0.59 m (with a plug in the tube to 
shorten its length). The fundamental frequency for both tubes is f1 = 146 Hz, but only the odd 
harmonics are observed in the open tube.  

Figure 3: Resonances of a PASCO resonance tube excited with white noise. Upper figure: Tube
open at both ends with an effective length Leff, open = 1.40 m. Lower figure: Tube closed at one
end with an effective length Leff, closed = Leff, open/2 = 0.70 m (with a plug in the tube to shorten
its length). The fundamental frequency for both tubes is f1 = 121 Hz, but only the odd harmonics
are observed in the tube closed at one end.
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Table 1:
Harmonic Number N Calculated f Observed f Corrected f

Fundamental

2nd Harmonic

3rd Harmonic

4th Harmonic

Table 2:
Harmonic Number N Calculated f Observed f Corrected f

Fundamental

3rd Harmonic

5th Harmonic

7th Harmonic

I Pipe Length Correction and Determination of the Speed of Sound

If you were to compare the calculated and observed fundamental frequencies from an actual ex-
periment, you would find that they do not agree very well. This has to do with the fact that, in
pipes, waves reflect from the ends of the tube by sticking out a little bit. There is an end correction
that increases the wavelength. This correction is proportional to the radius of the tube. Therefore,
the larger the tube radius, the more the wave will “stick out” and cause an increase in wavelength.
This correction results in an extra length ∆L, given from theory by ∆L = 0.61r for each open end,
where r is the radius of the pipe. Thus for a closed pipe and open pipe of length L and radius r,
the effective lengths are, respectively,

Leff, closed = L+ 0.61r , Leff, open = L+ 1.22r . (2)

Question 3: Measure the radius r of the cardboard tube. Calculate the effective lengths of both
the closed and open tube used in the above experiment. Use this effective length to calculate the
corrected frequencies f . Record these values under ”Corrected f” in Table 1.

Question 4: Determine experimentally the velocity of sound with the resonance tube. Use the
observed value of the fundamental frequency f1 together with the corrected pipe length Leff in
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equation (2) for a pipe with two open ends or one end closed.

Question 5: How does your value compare with the value of 346 m/s expected for the speed of
sound at at a temperature of 25 Celsius? If there is a discrepancy, what might be the reasons?

Question 6: An aboriginal didgeridoo behaves like a tube closed at one end. Measure the length and
the radius of the didgeridoo and calculate the expected fundamental frequency of the instrument
using the appropriate corrected pipe length and v = 346 m/s for the velocity of sound. Compare
your calculated frequency to the measured value. Were you able to predict the measured value?

II Helmholtz Resonator
We can also do experiments with a simple spherical cavity called a Helmholtz Resonator. In the lab,
we have a large hollow metal sphere, with a tube protruding from one side for admitting white
noise from a computer speaker. It has another smaller tube on the opposite side for listening to
the resonance frequency or for recording the frequency spectrum with a shotgun microphone on a
long shaft that can be inserted into this tubing—see Figure 4.
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noise spectrum in the room. Hermann Helmholtz (1821-1894) used a series of such “Helmholtz 
Resonators” of different sizes to analyze the frequency spectrum of sounds and musical 
instruments, all before the advent of electronic tools! 

Next use the setup for the Helmholtz resonator shown in Figure 6. Connect the speaker directly 
to the Mac mini (you can do away with the stereo receiver). Acquire a resonance spectrum from 
the Helmholtz resonator by either using white noise from the signal generator or a frequency 
sweep in the software. A resonance curve is shown in Figure 7. It has one prominent peak. 

	

Figure 6. Experimental setup for spherical Helmholtz resonator. 

 

 
 

Figure 4: Experimental setup for a spherical Helmholtz resonator.

Even without any white noise excitation, one can listen to the sound from the Helmholtz resonator
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when exposed to ambient room noise. It is a deep rumbling tone, corresponding to the resonant
frequency of the spherical cavity. The resonance is excited from the broad noise spectrum in the
room. Hermann Helmholtz (1821-1894) used a series of such “Helmholtz Resonators” of different
sizes to analyze the frequency spectrum of sounds and musical instruments, all before the advent
of electronic tools!

A resonance frequency spectrum from the Helmholtz resonator using a white noise excitation is
shown in Figure 5. It has one prominent peak.
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Figure 5: Helmholtz resonance curve from a large aluminum sphere. The measured and calculated
values of the resonance frequency at the peak are 92 Hz and 93 Hz, respectively.

A Calculation of the Resonance Frequency of a Helmholtz Resonator

The resonance frequency of a Helmholtz resonator is given by the formula

f =
v

2π

√
A

LeffV
, (3)

where v is the velocity of sound, A is the area of the opening of the resonator, Leff is the effective
length of the cylindrical neck, and V is the volume. This formula is quite general and can by used
for spheres, bottles, etc.

P.S: If you have a Helmholtz resonator such as a box with just a hole in it, rather than a “bottle
neck”, you can still use formula (3). For the actual length we have L = 0. But Leff is not zero. The
hole is open at both ends. So we can use L = 0 in equation (2) and obtain Leff = 1.22r for the hole.

Question 7: Using the large spherical metal Helmholtz resonator: Measure the length L of the
“bottle neck”, and its inner radius r. Radius R of the sphere is givven as R = 0.150 m. Calculate
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the values for A, V, and Leffective = L+ 1.22r. (Hint: For a sphere with a cylindrical neck, A = πr2

and V = 4
3πR

3.) Then using equation (3), calculate the resonant frequency. Use v = 346 m/s for
the velocity of sound.

Question 8: Excite the Helmholtz resonator with white noise. Capture the frequency spectrum and
measure the resonant frequency from the spectrum. How much does your calculated resonance
frequency differ from the this measured value? Express the difference as a percent difference.

percent difference =
|fcalculated − fmeasured|

fmeasured
× 100 . (4)

B Helmholtz Resonance in Bottles

Distinct Helmholtz resonances can be obtained by blowing gently across the opening of different
bottles. The resonance frequency can be measured from a frequency spectrum as in Figure 5 (for
the large aluminum sphere) or Figure 6 (for a 0.75-liter wine bottle). It can also be calculated from
equation (3) once we determineA, Leff , and V . ForAwe use the average cross-sectional area of the
bottle neck. For Leff we use the measured length L of the bottle neck with a correction for the tube
being open at both ends. The volume V can be read off from the label on the bottle.

Question 9: Calculate the expected resonance frequency for a 1 liter soda bottle. Record all the
measuements necessary, and show your work for the calculation.

Question 10: Using the microphone, blow into the bottle and record the frequency spectrum. Use
this to record the measured resonance frequency. How much does your calculated resonance
frequency differ from the this measured value? Express the difference as a percent difference
using equation (4).
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Find the volume V from the label on the bottle.  
Calculate the resonance frequency from equ.(3) and compare with the measured frequency: 
Answers:      fcalculated = ________Hz   fmeasured = ________Hz 
An example of an earlier measurement for a 0.75 liter wine bottle is shown in Figure 8. 
 

 
Figure 8. Helmholtz resonance from a 0.75 liter wine bottle. 

 
Data for Figure 8: 
Measured peak frequency: f = 113.0 Hz 
Volume V = 0.75 Liter = 0.75⋅10-3 m3 
Average radius at middle of bottleneck: ravg = 10.53 mm = 0.01053 m 
Actual bottle neck length: L = 8.5 cm = 0.085 m 
For the length correction at the un-baffled outside opening at top of the bottleneck we take 
0.61⋅ravg, and for the baffled opening inside the bottle we take 0.85⋅ravg (from physics theory). 
Thus the effective length of bottle neck is given by  
Leff = L0 +(0.61 + 0.85)⋅ ravg = 0.085 +1.46⋅0.01053 = 0.1004 m. 
Then the calculated frequency from equ.(3) is f = 118.4 Hz  ± 5%. 
The uncertainty of 5% arises primarily from the dimensions of the bottleneck (try to verify this). 
 
13. Use 1 liter and 2 liter plastic soda bottles having the same dimensions of the bottle necks. 
Measure their Helmholtz resonance frequencies.   Derive the frequency ratio and compare with 
your measurement. 
Answer:  Calculated frequency ratio f1liter/f2liter =                    , measured f1liter/f2liter =    
P.S.: This frequency interval is the so-called “tritone”, also called the “devil’s tone”. 

Figure 6: Helmholtz resonance from a 0.75-liter wine bottle.

Question 11: Measure the resonant frequency of a 2 liter bottle. Calculate the frequency ratio
f1 liter/f2 liter for a 1-liter and 2-liter wine bottle, assuming that the only thing that differs for the
two bottles is their volume. This frequency interval is called a “tritone” or “devil’s tone”.
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