
3. String Resonance

PURPOSE AND BACKGROUND

Standing waves on stretched strings and in pipes offer a convenient way to study vibrations, in-
cluding the fundamental frequency and harmonics (overtones). For strings in particular, the fre-
quency depends on the tension, the mass of the string per unit length (linear mass density), and the
total length of the string. In wind instruments, with air as the vibrating medium, the frequency is
defined by the speed of sound and the effective length of the pipe. Once the fundamental frequency
is known, the higher harmonics are found as simple integer multiples of that frequency.

THEORY AND EXPERIMENT

When a string is plucked, a transverse standing wave is created on the string—see Figure 1. In the
simplest case, we have only one anti-node with maximum movement in the center. The points at
the two ends of the string do not move and are called nodes. The standing waves result from two
waves traveling in opposite directions along the string. The superposition of the two waves yields
a standing wave, provided that the resonance conditions are met.
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PURPOSE AND BACKGROUND 

Standing waves on stretched strings and in pipes offer a convenient way to study vibrations, 
including the fundamental frequency and harmonics (overtones). For strings in particular, the 
frequency depends on the tension, the mass of the string per meter (linear mass density), and the 
total length. In wind instruments, with air as the vibrating medium, the frequency is defined by 
the speed of sound and the effective length of the pipe. Once the fundamental frequency is 
known the higher harmonics are found as simple integer multiples of that frequency. 

EQUIPMENT 

PASCO Sonometer Model WA-9611 with Driver/Detector Coils, weights, function generator, 
loudspeaker, violin, Faber Electroacoustics Toolbox software, Mac mini. 

Resonances and Modes 

When a string is plucked, a transverse standing wave is created on the string - see Figure 1. In 
the simplest case, we have only one anti-node with maximum movement in the center. The 
points at the two ends of the string do not move and are called nodes. The standing waves result 
from two waves traveling in opposite directions along the string. The superposition of the two 
waves yields a standing wave, provided that the resonance conditions are met. 

The first 3 vibrational modes of a string are shown in Figure 1. For the fundamental mode 
(harmonic number N = 1), the wavelength is λ = 2L, where L is the length of the string. For the 
next higher mode, the first overtone or second harmonic (N = 2), the wavelength λ = L. 

                                        String Length L 

 
 
Figure 1. Vibrations of a string. The wavelengths of the standing wave resonance modes are λN = 
2L/N and the frequencies are fN = v/λN = Nv/2L = Nf1, where N is the harmonic number, v the 
velocity of the wave along the string and f1, and the fundamental frequency. 

Figure 1: Vibrations of a string. The wavelengths of the standing wave resonance modes are λN =
2L/N and the frequencies are fN = v/λN = Nv/2L = Nf1, where N is the harmonic number, v
the velocity of the wave along the string, and f1 = v/2L the fundamental frequency.

The first 3 vibrational modes of a string are shown in Figure 1. For the fundamental mode (har-
monic number N = 1), the wavelength is λ = 2L, where L is the length of the string. For the next
higher mode, the first overtone or second harmonic (N = 2), the wavelength λ = L.

The velocity v of the wave on the string (not the speed of sound in air!) is given by

v =

√
F

µ
, (1)

where F is the tension on the string and µ its linear mass density (mass per unit length or kg/m).
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For example, a typical metal guitar string has a mass per unit length of µ = 6.3× 10−3 kg/m. For a
tension F = 73.3 N, the velocity of the wave along the string is

v =

√
73.3 N

6.3× 10−3 kg/m
= 108.0

m

s
. (2)

The fundamental frequency f is given by

f =
v

λ
=

v

2L
⇒ f =

1

2L

√
F

µ
(Mersenne’s Law) . (3)

Note that this frequency also defines the pitch of the sound from the string. Strings on a classical
guitar have a length of L = 0.65 m. With the velocity known, the fundamental frequency is f =
108.0/(2× 0.65) = 83.0 Hz. This is close to the frequency of the E-string of a guitar.

I String Vibration Experiments

One can illustrate standing waves on a string by stretching a horizontal string made of flexible
fabric over a pulley. We place a suitable weight on the vertical end of the string, and fasten the
horizontal end of the string to a vibrator. The vibrator is connected to a frequency generator. By
tuning the frequency of the vibrator to the frequency of the fundamental vibrational mode, we can
produce the fundamental (1st harmonic) oscillation of the string. Then by increasing the frequency
of the vibrator, we can produce the higher vibrational modes (2nd, 3rd, · · · harmonics).

Question 1: Using your string vibrator set up, find and record the frequecies for the first 5
standing wave modes f1, f2, f3, f4,&f5. Do your recorded frequencies agree with the fN = Nf1
relationship?

Question 2: What happens to the amplitude of the string vibration when the frequency is near one
of the vibrational modes?

Question 3: Suppose we change the weight attached to the end of the string. How would that
change the fundamental frequency?

Question 4: Suppose we keep the weight the same but change the length of the string. How would
that change the fundamental frequency?
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II Sonometer Experiments

We can also study the resonance modes and frequencies of a stretched string using a sonometer.
As shown in Figure 2, the string is excited with a driver coil and the vibrational modes are
analyzed with a detector coil.

Use the frequency driver to find the first 3 resonant frequencies (note the driver drives the string
at twice the frequency of the reading on the tool interface). Sweep through different frequencies
on the driver until you hear the sonometer resonates loudly. The frequencies that cause these
resonants corespond to your harmonics.

Question 5: Record the fundamental frequency (1st harmonic) and the first three overtones (2nd,
3rd, and 4th harmonic) of the vibrating string. Is there a simple relationship between these
frequencies? What is it?

Question 6: What is the wave velocity v? Express your answer in m/s.

Question 7: If the string has a linear mass density of µ = 1.5 × 10−3 kg/m, calculate the tension F
in the string needed to produce that wave velocity.

Capture a frequency spectrum of the driven sonometer. A sample frequency spectrum is shown in
Figure 3.

Question 8: Record the first 4 peaks of the frequency spectrum. Do these frequencies agree with
the harmonics you found using resonance?
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Figure 2. PASCO Sonometer Model WA-9611 for studying vibrating strings. The string is 
excited with a Driver Coil and the vibrational modes are analyzed with a Detector Coil. The sine 
wave generator activates the Driver Coil. The vibrating string induces a voltage in the Detector 
Coil. The latter is connected to the Mac computer. Open an “Oscilloscope Tool” there in the 
Electroacoustics Toolbox to observe the signal. 
 
The tension is determined as follows: For a mass M in slot 1 of the lever, the tension is F = Mg, 
where g = 9.8 m/s2. If you hang the mass from slot 2, the tension is 2 Mg, and so on.  

Some qualitative experiments: Pluck the string. Vary the tension, length, and linear mass 
density of the string, one at a time. Listen the effect on the pitch. Observe the change in pitch 
(fundamental frequency) with the spectrum analyzer on the computer. 

1. Vary the tension by hanging the mass M from different slots in the tensioning lever. Keep 
the lever level. How does the pitch (fundamental frequency) change with tension? 

2. Vary the length L of the string by adjusting the distance between the bridges. How does 
the pitch change? How can you also infer this from equation (2)? 

3. Change strings to vary the linear mass density. How does the pitch change, as heard and 
also seen on the computer? How can you see this from equations (1) and (2)? 

Table 1. Linear Mass Density of Guitar Strings 
String diameter Linear Mass Density 

µ (g/m) 
0.010in (0.254mm) 0.39 g/m 
0.014in (0.356mm) 0.78 g/m 
0.017in (0.432mm) 1.12 g/m 
0.020in (0.508mm) 1.50 g/m 
0.022in (0.559mm) 1.84 g/m 

 
 

Figure 2: PASCO Sonometer Model WA-9611 for studying vibrating strings. The string is excited
with a driver coil and the vibrational modes are analyzed with a detector coil. The sine wave
generator activates the driver coil. The vibrating string induces a voltage in the detector coil. The
latter is connected to the Mac computer. The “Oscilloscope Tool” and “FFT Analyzer Tool” in the
Electroacoustics Toolbox are used to observe the signal.
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Sonometer Experiments with the Driver Coil and Detector Coil 
 
Connect the Driver Coil to a Pasco Signal Generator instead of a function generator as shown in 
Figure 2. Connect the detector coil directly to the Mac computer and open an oscilloscope tool in 
Faber Electroacoustics Toolbox. 
 
Position the driver coil approximately 5 cm from one of the bridges. More generally, the driver 
will drive the string best if placed at an anti-node of the wave pattern. However, if you place the 
driver near one of the bridges, it will work reasonably well for most frequencies. 
Position the detector midway between the bridges initially. You may experiment with this for 
optimal signal. It works best when positioned near an anti-node of the wave pattern. 
 
Choose a frequency between 100 and 200 Hz. Increase the amplitude. Slowly vary the 
frequency. When you reach a resonant frequency, you should see a vibration of the string and the 
sound produced should be loudest. The wave pattern seen on the oscilloscope should become a 
clean sine wave. You may need to vary the amplitude on the Pasco Signal generator slightly for 
best results. 
Keep the detector coil at least 10 cm away from the driver coil. This minimizes the interference 
between driver and detector. 
Important: The frequency observed on the wire usually is twice the driver frequency. The reason 
is that the electromagnet of the driver exerts a force on the wire twice during each cycle. Also try 
a violin bow as the “driver” (this does not double the frequency).  
 
An example of a frequency spectrum from the sonometer  is shown in Figure 3. 
 

 

Figure 3. Sonometer string excited with a driver coil placed near one of the two bridges and 
harmonics recorded with an electromagnetic detector coil.  

 
 
 

Figure 3: Sound spectrum of a sonometer string excited with a driver coil placed near one of the
two bridges and harmonics recorded with an electromagnetic detector coil.
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III Plucked versus Bowed String

Figure 4 shows the sound spectrum of the G3 open string of a violin when it is bowed (top plot)
and plucked (bottom plot). Have a student pluck and bow a violin, and capture the frequency
spectrums for each playing method.
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10. Think of reasons why the spectra from the plucked and bowed string are different. 

11. Compare the timbre or quality of sound from the bowed string with the plucked string. 

12. List some other string instruments, including some “exotic” ones. 

 

 
 

Figure 4. Sound spectrum form the G3 open string of a violin. Top figure: Spectrum from bowed 
string. Bottom figure: Spectrum from plucked string. Note that the bowed string has more 
pronounced higher harmonics resulting in a richer sound. 

Illumination of a Vibrating String and Spring with a Stroboscope 
Use a stroboscope and set it to the resonance frequency of a vibrating string. Observe the 
“frozen” standing wave modes. Do this for the first few resonance modes of the string. 
Similarly, use a vertical spring (not string!) fastened at the bottom end to a mechanical vibrator. 
Observe the nodes and anti-nodes of the spring, without and with the stroboscope. 

Figure 4: Sound spectrum from the G3 open string of a violin. Top figure: Spectrum from bowed
string. Bottom figure: Spectrum from plucked string.

Question 9: Discuss the similarities and differences in the timbre of the plucked and bowed string.

Question 10: Compare the similarities and differences in the frequency spectra for the plucked
and bowed string. How many harmonics can you see for the bowed string vs the plucked? Note
the relative amplitudes of the harmonics and the overall shape of the spectrum.
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Question 11: List some reasons why the spectra from the plucked and bowed string are different.
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