
1. Simple Harmonic Motion (SHM)

PURPOSE AND BACKGROUND

In order to understand sound and music, we need to understand periodic motion and how it gives
rise to sound. Periodic motion is any sort of movement that repeats itself after an amount of time
called the period. For example, a violin string or the reed of a bassoon exhibits periodic motion
when playing a sustained tone. A grandfather clock exhibits periodic motion as the pendulum
swings back and forth, and so does a Ferris wheel that rotates at a constant speed.

Simple harmonic motion (SHM) is the purest form of periodic motion. Two conditions have to be
met:

1) There exists a stable equilibrium position. If the system is at rest it will stay at rest there. It will
tend to return to that position if displaced from it.

2) There exists a restoring force towards the equilibrium position. This force is proportional to the
amount of displacement from equilibrium. For example, if a mass hanging from a spring originally
is at rest and then pulled down a small distance, the mass will oscillate up and down with SHM
when let go. The spring provides a restoring force to bring the mass back to the equilibrium
position. If the mass instead is pulled twice as far, the spring provides twice the force to bring it
back. In this manner, the system is linear and it is said to obey Hooke’s Law.

Much of music and sound is generated from periodic vibrations of the air or solid material in
musical instruments. Examples are the vibrating strings of a violin and the reeds of woodwind
instruments. In practice, however, very few musical tones come from pure SHM. That sound
actually would be rather boring. Instead, musical tones consist of a combination of harmonics—
see a tone from a plucked violin string in Figure 1. The lowest frequency corresponding to the first
peak is called the fundamental frequency. This is the only frequency present in SHM. The peaks at
the higher frequencies in Figure 1 are the higher harmonics or overtones that make up the tone. We
shall discuss this in more detail in later laboratories.
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Figure 1. Frequency spectrum of a plucked string showing the fundamental frequency and higher 
harmonics (overtones). 

THEORY AND EXPERIMENT 

A basic property of simple harmonic motion and any periodic motion is the period T and directly 
related to it the frequency f. The period is the time for one complete cycle of motion. The 
frequency is the number of cycles during that time. These two quantities are inversely related. 
For example, if it takes a mass on the spring two seconds to complete a cycle, then 

€ 

T = period = 2s, and the frequency is one cycle per two seconds. As a formula we can write 
    

     

€ 

f =
1
T

=
1
2s

= 0.5Hz      (1)  

The unit of frequency is Hertz, abbreviated Hz, and is the number of cycles per second. A cycle 
can be one revolution, a completion of a periodic process, or one oscillation.  

The Pendulum 

Make a pendulum using a string and either a lead (Pb) or aluminum (Al) ball as the mass (see 
Figure 2). 

4. Which mass is heavier? If the length of the string is the same for both masses, which one do 
you believe will have the longer period? 

 

Figure 1: Frequency spectrum of a plucked string showing the fundamental frequency and higher
harmonics (overtones).
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THEORY AND EXPERIMENT

A basic property of simple harmonic motion and any periodic motion is the period T and directly
related to it the frequency f . The period is the time for one complete cycle of motion. The frequency
is the number of cycles during that time. These two quantities are inversely related. For example,
if it takes a mass on the spring two seconds to complete a cycle, then T = period = 2 s, and the
frequency is one cycle per two seconds. As a formula we can write

f =
1

T
=

1

2 s
= 0.5 Hz . (1)

The unit of frequency is Hertz, abbreviated Hz, and is the number of cycles per second. A cycle can
be one revolution, a completion of a periodic process, or one oscillation.

I Pendulum
For the first part of this lab, we make a pendulum using a string and either a lead (Pb) or aluminum
(Al) ball as the mass (see Figure 2). The length of the string is initially L = 20.0 cm from the
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Figure 2. Pendulum and spring 

The length of the string should be L = 20.0 cm from the support to the center of the mass ball. 
Obtain the time it takes for one period of oscillation using a small displacement. For accuracy, 
find the time for ten oscillations, then divide the total by 10 to get the average time for one 
period. Repeat this process three times and record the average time. Repeat the whole process for 
the other mass using the same length of L = 20.0 cm, then repeat for the lead and aluminum balls 
using L=80.0 cm. 

5. Put your results in Table 1: 

Pendulum Periods T (second) 
 L=20.0 cm L=80.0 cm 
Trial Pb Al Pb Al 
#1         
#2         
#3         

 
6. Compare your results for the different masses and lengths. Which variable had an effect on 

the period? Which had no effect? (This might puzzle you and is different from the spring 
below.) 

 
7. Note that the long pendulum was four times longer than the shorter one. Compare the periods 

of the longer and shorter pendulums.  

We know from basic mechanics that the period T is proportional to the square root of the length 
of the pendulum according to the formula 

     

€ 

T = 2π L /g ∝ L      (2)  

So, if the long pendulum is four times as long as the short one, the period T is only twice as long. 
(The quantity g is the acceleration in Earth’s gravitational field, given by g = 980 cm/s2.) 

8. If the length of the long pendulum were 9x longer (i.e. L=180 cm) than the short pendulum, 
what would be the period?   

 

Figure 2: Pendulum (left) and spring (right).

support to the center of the ball. To obtain the time it takes for one period of oscillation using
a small displacement, we measure the time it takes for ten oscillations, and then divide the total
time by 10 to get the average time for one period. We repeat this process three times and record
the average of the three trials. We repeat the whole process for the other mass using the same
length of L = 20.0 cm, and then repeat for both the lead and aluminum balls for a string of length
L = 80.0 cm. The results are given in the following table:

Pendulum Period T (seconds)
L = 10.0 cm L = 40.0 cm L = 90.0 cm

Trial Pb Al Pb Al Pb Al
# 1
# 2
# 3
avg
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Questions

Question 1: Compare the results for the different masses and lengths. Which variable had an
effect on the period? Which had no effect? (This might puzzle you and is different from the spring
below.)

Question 2: Based on your data from the table above, how does the period T depend on the
length of the pendulum L? Give a mathematical or proportionality expression to describe the
relation.

Question 3: If the length of the long pendulum were 25× longer than the short pendulum (i.e.,
L = 250 cm), what do you think the period would be?

We know from basic mechanics that the period T is proportional to the square root of the length L
of the pendulum according to the formula

T = 2π

√
L

g
∝
√
L . (2)

So, if the long pendulum is four times as long as the short one, the period T is twice as long. (The
quantity g is the acceleration in Earth’s gravitational field, given by g = 980 cm/s2.)

II Spring

For spring oscillations, we start by attaching a 50 g mass to the spring (see Figure 2). Pulling down
slightly on the spring, we let go, and measure the time for ten oscillations, dividing by 10 again to
obtain the average period. We repeat this process three times and record the average of the three
trials. We then repeat with a mass of 200 g. Record results in the table belllow:
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Spring Period T (seconds)
Trial m = 50 g m = 200 g m = 450 g

# 1
# 2
# 3
avg

Question 4: How does the period T of oscillation of a spring depend on the mass m suspended
from it? Write a simple proportionality to describe the observed behavior.

For a mass attached to a spring, the formula for the period of oscillation is

T = 2π

√
m

k
, (3)

where m is the mass suspended from the spring and k is the so-called spring constant.

III Vibrating Strings

We can also study the simple harmonic motion of a vibrating string. Guitars and other string
instruments have strings under tension. We use a so-called sonometer, which is an apparatus with
strings whose tension can be adjusted. A string is fastened at one end to a tension meter and led
over a bridge near the other end (see Figure 3).
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Springs 
 
For springs the formula for the period of oscillation is 
 

€ 

T = 2π m/k ,      (3) 
 
where m is the mass suspended from the spring and k is the so-called spring constant. 

Attach a 50 g mass to the spring. Pull slightly down on the spring, let go, and record the time for                
ten oscillations, dividing by 10 again to obtain the average period. Repeat with a mass of 200 g. 
(Choose your own masses that work best.)  

9. Complete Table 2 

 

 

 

 
 
10. How does the period T of a spring depend on the mass suspended from it? Write a simple 

proportionality to describe your observation. 

Strings 

We study the simple harmonic motion of a vibrating string. Guitars and other string instruments 
have strings under tension. We use a so-called sonometer, which is an apparatus with strings 
whose tension can be adjusted. A string is fastened at one end to a tension meter and led over a 
bridge near the other end (see Figure 3). 

 

 

Figure 3. Sonometer setup with two vibrating strings (only one of the strings is needed). 

Spring Periods (seconds) 
Trial Mass m Period T 
#1     
#2     
#3     

Figure 3: Sonometer with two vibrating strings.

The tension meter on the sonometer measures the equivalent of “mass”. For instance, when the
tension scale reads 6 kg, it is the equivalent of having the string attached to a 6 kg mass hanging
over the edge of the table.
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We use the microphone connected to the Mac mini-computer and record the frequency spectrum
of the vibrating string with the spectrum analyzer in our “Electroacoustics Toolbox” software. See
Figure 1 again, which shows the fundamental frequency as well as the full frequency spectrum
from the vibrating string. (In this figure, the sound intensity from the microphone is displayed
on the y-axis versus the frequency on the x-axis.) Several frequencies are present when a string is
plucked, namely the fundamental and the higher harmonics.

For two different tension masses, 500 g and 2000 g, we record the fundamental frequency from the
spectrum analyzer mode on the computer. We also calculate the period of the string oscillation
using the formula T = 1/f . The results are given in the following table:

String Frequency and Period
Tension mass m (g) Frequency f (Hz) Period T = 1/f (s)

500
2000

Question 5: How does the period change with increasing tension?

Question 6: How does the fundamental frequency (pitch) change as the tension increases?

IV Pythagorean Intervals and String Division
For the last part of the lab, we use the sonometer again and divide its strings with a wedge. We
move the wedge under the string, and pluck the two sections of the string, listening for when the
two resulting tones sound consonant. We do this for four different string divisions. We write down
the lengths of the two string sections, L1 and L2, and take their ratio, written as a decimal fraction
with 3 significant digits (Note: an octive is a ratio of 2:1, try to find ratios smaller than the octive.)
The results are given in the following table:

String Division and Ratio
L1 (cm) L2 (cm) ratio L2/L1 Music Interval

Question 7: What fraction of two integers are these ratios closest to, and what musical intervals
do these ratios correspond to? (For example, 1.51 is close to 3/2, which corresponds to a musical
fifth.) Fill musical intervals into the table above. If need be you can find musical interval ratios
online.
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