
5. Fourier Analysis and Synthesis of Waveforms

PURPOSE AND BACKGROUND

The simplest sound is a pure sine wave with a single frequency and amplitude. Most sound
sources and instruments do not produce such simple waves. Usually their sound contains many
sine waves with higher frequencies, called harmonics. These act together according to the superpo-
sition principle to produce a complex tone. This addition of sine waves with suitable amplitudes
and phases is called Fourier synthesis of sound. The opposite, the decomposition of sound into its
sine-wave components, is called Fourier analysis. Periodic sound can be synthesized or analyzed
with a sufficient number of sine waves. A pure tone is a sine wave with a single frequency. Many
sine waves added together form a complex tone and waveform periodic in time. This laboratory
is about the analysis and synthesis of sound and how electronic synthesizers can mimic real instru-
ments.

I Fourier Synthesis of Waveforms
For our experiment, we will use the Fourier Series Applet, which is available online at https:
//www.falstad.com/fourier/. Listen to several available waveforms (e.g., sine, triangular,
square, and sawtooth waves) at a fundamental frequency of f1 = 500 Hz. To do so, you will need
to adjust the “Playing Frequency” slider as close as you can to 500 Hz, and then check the “Sound”
box to listen to the sounds.

Questions

1. Draw sketches of the four waveforms.

2. Which waveform most resembles a pure sine wave?

3. Which waveform least resembles a pure sine wave?

4. Which tone sounds least like the pure sine wave?

Complex waveforms are produced by adding sine waves of different frequencies and amplitudes.
The tone heard in all four cases has the same pitch or fundamental frequency f1 = 500 Hz. For
a pure tone (sine wave), the fundamental is the only frequency present. For complex tones, sine
waves with integer multiples of the fundamental frequency and suitable amplitudes are added
together. For example, the next integer multiples of the fundamental f1 = 500 Hz are f2 = 2f1 =
1000 Hz, f3 = 3f1 = 1500 Hz, and so on.

These higher frequencies are called overtones or harmonics. Just like the fundamental, each overtone
has a single frequency. A complex waveform can be produced with the fundamental plus higher
harmonics of suitable amplitudes. This process is called superposition of waves or, mathematically
speaking, Fourier synthesis of waves. Conversely, you can take a complex waveform apart by de-
composing it with a spectrum analyzer into its individual harmonics. This is called Fourier analysis
of waves.

A Sawtooth Waveform

The harmonics of the sawtooth wave follow a simple pattern. All harmonics exist from N = 1 to
N = ∞, with amplitudes given by AN = A1/N , where A1 is the amplitude of the fundamental
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frequency. Thus all integer multiples of the fundamental frequency contribute to the waveform.
Since in practice we cannot add an infinite number of harmonics, we shall use only the first five
non-zero harmonics and add them up.

Using the online app, start by clicking the “Sine” box. You should see a single white dot, sticking
up above the rest, at a height corresponding to the amplitude of the first harmonic. The second
harmonic N = 2, f2 = 1000 Hz should have an amplitude A2 = A1/2 for a sawtooth wave. Add
this harmonic to the fundamental by adjusting the height of the second white dot to half the height
of the first white dot. Take a look at and listen to the waveform generated.

Find the frequencies of the next three higher harmonics and their relative amplitudes in percent.
Complete the entries in Table 1.

Table 1: Sawtooth waveform
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Table 1. Saw tooth: Harmonic numbers, frequencies, and relative amplitudes. 

N fN  AN  

1 500Hz 100% 

2 1000Hz 50% 

		 		 		

		 		 		

		 		 		

    
 
Synthesize a sawtooth by adding the first two harmonics according to the information in Table 1.  
Take a look at and listen to the waveform generated. Continue adding successive harmonics N = 
2, 3, 4, 5, 6 and note the changes in tone and waveform. With each addition of a harmonic, the 
wave should look more and more like a saw tooth. If this is not the case because of an electronic 
artifact, turn off all harmonics, then turn them on again all at once “Universal ON”  in the FEaT 
software. The waveform may now look more like a saw tooth. Note it sounds practically the 
same as before, no matter how it looks. The reason for this is that the human ear is not sensitive 
to the phase differences between individual harmonics, but only to the amplitudes. (This is called 
“Ohm’s Law of Hearing”).  

In order for the summed harmonics to look like a saw tooth on the screen, they must all begin at 
the same time. But that does not matter for the ear to hear a saw tooth. The ear primarily senses 
the frequencies and amplitudes of the harmonics, not the relative phase differences between 
them, and thus you keep hearing a “saw tooth”. 

8. What would be the frequency and amplitude of the N = 10 harmonic for a saw tooth 
waveform of fundamental frequency f1 = 500 Hz? 

 F10 =    Hz  A10 =    % 

 

Rectangular Waveform 

A square or rectangular waveform is similar to the saw tooth in that the amplitudes of the 

harmonics follow the 
N
A1  dependence. However, the major difference is that only the odd 

harmonics N=1, N=3, N=5 etc. contribute.  

9. Use this information and complete the entries in Table for the square wave. 

 

 

Continue adding harmonics (3rd, 4th, 5th, etc.) by appropriately adjusting the heights of the white
dots. Note the changes in the tone and the waveform. With each addition of a harmonic, the
waveform should look more and more like a sawtooth.

B Square Wave

The square or rectangular waveform is similar to the sawtooth in that the amplitudes of the har-
monics follow the AN = A1/N dependence. However, the major difference is that only the odd
harmonics N = 1, N = 3, N = 5, etc., contribute.

Use this information and complete the entries in Table 2 for the square wave.

Table 2: Square wave
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Table 2. Square wave: Harmonic numbers, frequencies, and relative amplitudes.  

N fN AN  

1 500 Hz 100% 

3 1500 Hz 33.33% 

		 		 		

		 		 		

		 		 		

 
 
In our experiment, reset all five Signal Generators to the configuration for the square wave. 
Listen to the combination of the first two harmonics, then add the higher harmonics successively. 
Note the changes in tone and waveform. Again, starting all five frequencies at once may give a 
better looking square wave on the screen, but what you hear is unaffected by how it looks.  

 

Triangular Waveform 

The triangular wave is similar to the square wave in that it too consists of odd harmonics only. 

However, the amplitudes no longer follow the
N
A1 dependence, but rather a 2

1

N
A  dependence. For 

instance, given an amplitude of the first harmonic of 100%, the amplitude of the third harmonic 

now is %11.11
9

100%
3
A
2
1 == .  

10. Complete the entries in Table 3 for the triangular waveform. 

Table 3. Triangular waveform: Harmonic numbers, frequencies, and relative amplitudes. 

N fN AN  

1 500 Hz 100% 

3 1500 Hz 11.11% 

		 		 		

		 		 		

		 		 		

 

Use the completed Table 3 to reset the five Signal Generators for a triangle waveform and listen 
to the result. 
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Synthesize a square wave using the online app by starting as before with just a “Sine”, and then
successively adding the higher harmonics with the amplitudes given in Table 2. Note the changes
in tone and shape of the waveform as more harmonics are added.

C Triangular Waveform

The triangular wave is similar to the square wave in that it too consists of odd harmonics
only. However, the amplitudes no longer follow the AN = A1/N dependence, but rather a
AN = ±A1/N

2 dependence. The sign of the amplitude alternates +, −, +, −, etc., for the 1st,
3rd, 5th, 7th harmonics, etc. For instance, given an amplitude of the first harmonic of 100%, the
amplitude of the third harmonic now is A3 = −A1/3

2 = −11.11%.

Complete the entries in Table 3 for the triangular waveform.

Table 3: Triangular waveform
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Table 2. Square wave: Harmonic numbers, frequencies, and relative amplitudes.  

N fN AN  

1 500 Hz 100% 

3 1500 Hz 33.33% 

		 		 		

		 		 		

		 		 		

 
 
In our experiment, reset all five Signal Generators to the configuration for the square wave. 
Listen to the combination of the first two harmonics, then add the higher harmonics successively. 
Note the changes in tone and waveform. Again, starting all five frequencies at once may give a 
better looking square wave on the screen, but what you hear is unaffected by how it looks.  

 

Triangular Waveform 

The triangular wave is similar to the square wave in that it too consists of odd harmonics only. 

However, the amplitudes no longer follow the
N
A1 dependence, but rather a 2

1

N
A

 dependence. For 

instance, given an amplitude of the first harmonic of 100%, the amplitude of the third harmonic 

now is %11.11
9

100%
3
A
2
1 == .  

10. Complete the entries in Table 3 for the triangular waveform. 

Table 3. Triangular waveform: Harmonic numbers, frequencies, and relative amplitudes. 

N fN AN  

1 500 Hz 100% 

3 1500 Hz 11.11% 

		 		 		

		 		 		

		 		 		

 

Use the completed Table 3 to reset the five Signal Generators for a triangle waveform and listen 
to the result. 

—

Use the completed Table 3 to synthesize a triangular waveform using the online app and listen to
the result.

Questions

1. Of the three waveforms, which had the least noticeable contributions from its overtones to
the overall form and tone?

2. Which of the three waveforms had the most noticeable contributions from its overtones?

3. How could you get sharper “edges” on the square and sawtooth waveform than those cre-
ated with just five non-zero harmonics?

4. Why can you hear a 1 Hz square wave?

II Fourier Analysis of Waveforms
The “FFT Analyzer Tool” in the Electroacoustic Toolbox analyzes an incoming signal with a math-
ematical operation called a Fast Fourier Transform (FFT) to identify the different frequencies in the
signal. The display is a frequency spectrum—see Figure 1. For a sine wave, the FFT tool will show
a frequency spectrum with one peak for the only frequency present (the fundamental), with the
amplitude being the height of the peak. For non-sinusoidal periodic waveforms you will see many
peaks. The location of the peaks and their relative amplitudes follow the theoretical expressions
that we used above to synthesize sawtooth, square, and triangular waveforms.
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A Musical Synthesizers

Modern keyboards are capable of simulating sounds from real instruments quite well. They work
on the basis of Fourier analysis and synthesis. Every tone from a given instrument has its own
timbre and Fourier spectrum. The fundamental frequency determines the pitch of the tone. Often
the fundamental does not have the highest amplitude. Some higher harmonics may be stronger.
Nonetheless, the ear discerns the frequency of the fundamental as the pitch of the tone. Musical
instruments produce sound with complex Fourier spectra. These change with every note. For
example, the Fourier spectra of “middle C” (f = 261.63 Hz) from a violin and a viola or bassoon
look quite different.

B Real and Synthesized Sound of a Didgeridoo

An example of the spectrum from a didgeridoo and the corresponding synthesized tone is shown
in Figure 1. The synthesized tone sounds similar to the actual one, but not quite the same.

Questions

1. Why does the synthesized tone not sound exactly like the real tone from a didgeridoo?
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Real and Synthesized Sound of a Didgeridoo 

17. Play a didgeridoo (pitch D2) and record the sound spectrum. Use the signal generator in the 
Electroacoustic Toolbox and synthesize the sound with the 4 lowest odd harmonics. Compare the 
synthesized sound with the real sound. 

An example of the spectrum from a didgeridoo and the corresponding synthesized tone is shown 
in Figure 1 below. The synthesized tone sounds similar to the actual one, but not quite the same. 

 

 

Figure 1. Top: Actual sound spectrum of the note D2 from a didgeridoo. The odd harmonics 
dominate, as expected for a “closed tube”. Bottom: Synthesized sound spectrum, using only the 
first four odd harmonics N = 1, 3, 5, 7.  

18. Why does the synthesized tone not sound exactly like the real tone from the didgeridoo? 

Figure 1: Top: Actual sound spectrum of the note D2 from a didgeridoo. The odd harmonics
dominate, as expected for a “closed tube”. Bottom: Synthesized sound spectrum, using only the
first four odd harmonics N = 1, 3, 5, 7.
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